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ABSTRACT. We present a decomposition theorem showing that any positive fi-
nitely additive measure defined on an orthomodular poset attaining values in a
Dedekind complete normed Riesz space can be expressed as a sum of two finitely
additive measures, where the first one belongs to a given cone of measures, and the
second one is singular with respect to the cone. As corollaries we obtain Yosida-
Hewitt-type decompositions giving cones of o -additive measures, completely ad-
ditive measures, P -regular measures, Lebesgue-type-decomposition, and Aarnes
decomposition on inner product spaces.

1. Introduction

The classical decomposition theorems of Yosida-Hewitt [20] and Lebesgue
[12] have received in last years attention of authors studying finitely additive
measures on orthomodular posets which generalize algebras of sets [5, 18, 4,
6, 7]. In the present paper, we give a general decomposition theorem for Riesz
space-valued, finitely additive measures defined on an orthomodular posets. Our
method generalizes that one from [5] which is a natural refinement of the orig-
inal arguments of Yosida and Hewitt [20]. We recall that it also reflects some
reasonings of Riittimann [18] for real-valued measures. As corollaries we obtain
many familiar results from the papers [1, 20, 12, 18, 5, 6, 7|. Some comments con-
cerning Gleason’s theorem and decomposition of real-valued measures defined
on splitting subspaces of inner product spaces are present in details.
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2. Orthomodular posets

An orthomodular poset is a partially ordered set L with an ordering <, the
minimal and maximal elements 0 and 1, respectively, and an orthocomplemen-
tation L : L — L such that

(i) alt=aforany acL;
(i) aVat=1forany acL;
(ili) ifa <b,then bt <a't;
(iv) ifa <bt (and we write a L b), then aVbe L;
(v) ifa<b,then b=aV(aVbt)l (=aV(bAal))
(orthomodular law).

We recall that from the above axioms we have de Morgan laws

(\/ai>l z/i\af‘ and (/\ai)l :\i/a%

i 1

saying that if one side of an equality exists in L, so exists the second one,
and both are equal. If in an orthomodular poset L the join of any sequence
(any system) of mutually orthogonal elements exists, we say that L is a o-
orthomodular poset (a complete orthomodular poset). An orthomodular lattice is
an orthomodular poset L such that, for any a,b € L, a Vb exists in L (using
de Morgan laws, a A b exists in L, too). A distributive orthomodular lattice is
called a Boolean algebra. We recall that an orthomodular lattice L is a Boolean
algebra iff for any pair a,b € L there are three mutually orthogonal elements
ai,bi1,c € L such that a=a; Ve, b=b; Ve.

We recall that orthomodular posets are intensively studied due to their in-
timate connection with mathematical foundations of quantum mechanics (for
more details concerning orthomodular posets and lattices see, e.g. [13, 17]).

One of the most important cases of orthomodular lattices is the system of
all closed subspaces, L(H), of a real or complex Hilbert space H, with an
inner product (-,-). Here the partial ordering, <, is induced by the natural
set-theoretic inclusion, and M+ = {z € H: (z,y) =0 for any y € M} . Then
L(H) is a complete orthomodular lattice, which is not a Boolean algebra, if
dimH #1.

If S is an inner product space (not necessarily complete), denote by E(S)
the set of all splitting subspaces of S, i.e., the set of all M C S such that
M + M+ = S. Then E(S) is an orthomodular poset which is not necessarily
a o-orthomodular poset.- We recall that according to [8], S is complete if and
only if E(S) is a o-orthomodular poset.
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3. Riesz spaces

Let V' be a real vector space with a partial ordering < such that
(i) ifz,yeV,thenzAyeV,zVyeV;
(i) ifz<y,then z+2<y+z,forany zeV;
(iii)) if z <y, then az < ay for any a € R4,
then V is said to be a Riesz space. We define for any z € V:zt =2V 0,27 =
(—z) VO, |z| =zt + 2~ . The set [z,y] := {z € V:z < 2,z < y}, where
z,y €V, z <y, is called an order interval.
A non-void set D of V is said to be directed downwards, and we write D |,
if for any z,y € D there exists z € D such that 2z < z and 2 < y. For a
directed downwards set D, the set D, = {y € D : y < z}, where z € D, is
called a section of D determined by z; the system {D,: z € D} is a filter base
in V for a filter F(D) called a filter of sections on D . We say that a filter F
on V is order convergent to a vector x € V if F contains a family of order
intervals with intersection {z}.

A Riesz space V is called Dedekind complete if, for every non-void majorized
subset B of V, \/ B:=\/{b: b€ B} existsin V.

A norm ||-|| on a Riesz space V is said to be a Riesz normif |z| < |y| implies
llz|l < |lyll, and a pair (V, | -||) is called a normed Riesz space, if, moreover,
(V, || -]l) is complete, it is called a Banach lattice.

A normed Riesz space is said to have order continuous norm if every order
convergent filter in V' converges in norm to its order limit. We recall that any
Banach lattice with order continuous norm is Dedekind complete.

The following are well-known examples of Dedekind complete normed Riesz
spaces with order continuous norm:

(1) The n-dimensional vector space R™ with its canonical order and norm;
(2) Lp(Q, %, n) with 1 <p < o0;

(3) L1(R,B(R), u1,), where py, is the Lebesgue measure;

(4) Any reflexive Banach lattice.

4. Decomposition theorem

In the present part, we give the main result of the paper. The proof follows
ideas developed in [5], and to be self-contained we present our proof in the full
generality.

Throughout this paper by L we understand an orthomodular poset and by
(V, || -1]) a Dedekind complete normed Riesz space with order continuous norm.
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Now let W be an arbitrary normed Riesz space. Define the following partial
ordering <, on Wl: p; <, py if py(a) < p2(a) for every a € L. We say that
peWwrl is

(a) finitely additive if p(aV b) = p(a) + p(b) whenever a L b;

(b) o -additive if, for any sequence of mutually orthogonal elements {51224
of L for which \/;2, a, exists in L, we have p(\/oo, an) = 300, u(a,) (in
the norm topology of W );

(c) completely additive if, for any system of mutually orthogonal elements
{a;}ier of L for which the join V,er @i exists in L, we have that the family
{u(as): i € I} is summable in W and u(\/;c; ai) = >, p(a;) (in the norm
topology of W').

We denote by a(L, W), ca(L,W);, and ca(L, W), the sets of all posi-
tive finitely additive, o -additive, and completely additive measures, respectively,
from W% . We recall that ca(L, W); C oa(L, W) C a(L, W), , and p(0) =0,
if pea(L,W),.

Let C be a non-void subset of a(L, W), . We say that C is a quasi cone of
a(L, W), if the zero function on L belongs to C, and pu; + s € C whenever
p1,u2 € C. C is uniformly closed if for a net {y;} in C and an element u €
a(L, W), such that ||u(c) — p(c)|| — 0 uniformly for ¢ € L, we have p € C.
We say that an element p € a(L, W)y is singular with respect to the quasi cone
C if v <, p for some v € C implies ¥ = 0. We denote by C! the set of all
elements of a(L, W), which are singular with respect to C.

It is evident that if {C; : ¢ € I} is a system of uniformly closed quasi
cones of a(L,W)4,s0is C=();c;Ci, and C can be used for different kinds of
decompositions.

THEOREM 4.1. Let C be a uniformly closed quasi cone of a(L,V)y . Then for
any p € a(L,V)4 there exist two elements £ € C and n € C! such that

p=&+7. (1)

Proof. Define I'y = {y € C: v <, p}. Since the zero function belongs to
C, T',, is non-empty. Let I', be a totally ordered subset of T » With respect to

the natural ordering <, on VI and define

Yo(e) = \/{¥(c): v €TL}, ce L.

Since v(c) < v(1) < u(1), and V is Dedekind complete, ,(c) is defined cor-
rectly in V. Since T', is totally ordered, the set D(c) := {v,(c) —v(c): v € T}
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is directed downwards. Moreover, it is easy to verify that

0= 70(€) = 7o) = 7o(c) )=V veTo}
(Viule) 200 7 T1) = A DGO

Because the norm of V' is order continuous, it follows that the filter 7 (D(c))
of sections of D(c) converges in norm to 0 for all c€ L.

Write @, = 7,(1) — v(1) for any v € T',. Then {7&7 v € T,} is a net in
D(1) such that for every vi-€ Ty, {zy: v €Ty, 1 < v} C Dy, where Dy is
the section of D(1) determined by z., . Given £ > 0, by [2, §7, no. 1, prop.1],
there exists v; € I', such that ||7uq|[ < ¢ whenever v € I', and v <,, v. This
entails that

lim (7(1) =7(1)) =0

in the norm topology of V. Let now ¢ € L be arbitrary. Due to inequalities

0 < 70(e) = v(e)-= Yo(1) = ¥(1) = (alc™) = 7(ch))
<o(1) — (1),

we conclude that ||v,(c) — v(e)|| < [|76(1) —(1)]| . This implies

lim (Yole) = ¥(c)) =0 (2)

uniformly for ¢ € L in the norm topology of V.

Clearly that 7, € VX and 0 <, 7, <n 1. We now show that -y, is finitely
additive. Let a,b € L be mutually orthogonal. Since ||v,(aVb)—v,(a)—7,(b)|| <
Yo(aVb) —y(a V)| +||vo(a) —y(a)]| + ||7o(b) — ¥(b)|| for any vy € T, it follows
from (2) that ~, € a(L,V )+, and the uniform closedness of C gives 7, is an
element of -C . This together with v, <,, 4 means that -, is a majorant of I', in
I', . It follows from Zorn’s lemma that I', contains a maximal element & which
belongs to C and & <,, .

Put n = p—&, clearly that n € a(L, V), . To finish the proof, we show that
n € CP. Let v € C besuch that v <, 7= pu— ¢, so that v+ & <,, . Because
v+ & € C, the maximality of £ in I'), implies v =0. O

We recall that the problem of the uniqueness of decomposition in (1) seems
to be open. For a partial result see, e.g., Theorem 7.1.
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5. Applications of the decomposition theorem

In the present section, we apply the Decomposition theorem 4.1 to obtain
Yosida—-Hewitt-type decompositions for special cones of o-additive measures,
completely additive measures, P -regular measures, subadditive measures, etc.,
as well as Lebesgue-type decompositions.

COROLLARY 5.1. Every positive finitely additive measure y : L — V can
be expressed as a sum p = £ + n, where £ is a positive completely additive
measure from VI, and 7 is a finitely additive measure such that if ( <, 7,

¢€ca(L,V)y, then ( =0.

Proof. Define the quasi cone C; = ca(L,V)s. We show that C; is uni-
formly closed. So let {u:} be anet from C; and let ||pt(c)—p(c)|| — 0 uniformly
for ¢ € L in the norm topology of V. It is clear that u € a(L,V)4 . Suppose
that the join a = \/;c; a; of mutually orthogonal elements from L existsin L.
Let € > 0 be given. Then there exists p;, such that ||ue, (c) — p(c)|| < &/3 for
any c € L. Since p:, € ca(L, V)4, there exists a finite subset J, of I such that
lee, (@) = > ey t2,(as)|| < €/3 whenever J is a finite subset of / containing

Jo. Then |lp(a) — 3 oie; wlai)ll < llua) — pe, (@)l + llwe, (@) = X se 5 pie, (as)l] +
e, (Vies i) — (Ve g ai)ll <€, so that peCy.
To the rest it suffices to apply Theorem 4.1. (]

COROLLARY 5.2. Every element p € a(L,V)4 can be expressed as a sum
u=¢&+n, where £ belongs to oa(L,V)y and n € oa(L, V)ﬁ_

Proof. It is identical to the proof of Corollary 5.1 if we use the cone Cy =
oa(L, V). O

REMARK 5.3. Corollaries 5.1 and 5.2 have been proved in [5]. They are ana-
logues of the classical Yosida-Hewitt decomposition. In [5], n from the decom-
position corollaries 5.1 and 5.2 are said to be a weakly purely additive measure
and a purely additive measure.

Let P be a non-empty subset of L. We say that a finitely additive measure
u € a(L,V)y is P-regular if for any a € L and any & > 0 there exists b €
P, b< a, such that ||u(a) — u(b)|| < e. We denote by ap(L,V) the set of all
P -regular elements from a(L,V)+.

COROLLARY 5.4. Let P be a non-empty set of L such that if a,b € P, then
a Vb exists in L and belongs to P. Then every element u € a(L,V) can be
expressed as a sum p = €+ 1, where £ is a P -regular positive finitely additive

measure and 7 € ap(L, V)i ;
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Proof. Definetheset C3 = ap(L,V ). Thenif py, pus € C3,then pu+pus €
Cs. Really, let a € L and € > 0 be given. We find b;,b2 < a such that
llps(a) — pi(bs)|| < e/2. Then b =by Vby € P and |pi(a) + p2(a) — pa(b) —
p2(O)| < lla(a AbD)| + [lpala A DD < Hlpa(a AP+ [[a(a Abg)] <e.

The uniform closedness of C3 is now simple. Applying Theorem 4.1, we obtain
the decomposition in question. O

Now we introduce the following notions. An element p € a(L,V); is said
to be (1) a wvaluation if p(z Vy) = pu(z) + y) whenever c Ay =0 and zVy
exists in L; (2) subadditive if p(z Vy) < p(z) + p(y) whenever zVy € L.

We denote by v(L,V)y, sa(L,V)4 the sets of all V -valued valuations and
subadditive positive measures, respectively, on L.

COROLLARY 5.5. Theorem 4.1 holds if C =v(L,V)y, or C =sa(L,V)4 .
Proof. It is necessary to verify the conditions of Theorem 4.1. O

We recall that in all above corollaries p € C iff =0, and peC! iff £ =0,
where £,n are from the decomposition (1).

6. Lebesgue—-type—decompositions

Let o € a(L,V)+ and let (W,]|-||) be a normed Riesz space and let A €
a(L,W),. We say that (i) p is A-continuous, and we write p <. A, if for
every € > 0 there is § > 0 such that every a € L with ||A(a)| < § implies
lle(a)|| <e; (i) p is dominated by A, and we write p < A, if A(a) =0 implies
u(a) = 0. It is clear that if p <. A, then pu < A. The converse statement
holds, for example, if L is a o -algebra of subsets and p and A are real-valued
o -additive measures.

It is known that for orthomodular posets it does not hold, in general. For
example, let L = L(R?), i.e., the system of all closed subspaces of R?, and let
V=R =W andlet {M,} be a sequence of one-dimensional subspaces of R?
such that for all n # m, M, L M,,. We define u(M,) =1/(n+ 1), p(M;}) =
n/(n+1), u(R?) =1, p(0) =0, and for all other one-dimensional subspaces M
let (M) =1/2, and define A(M) =1/2 if dimM =1 and A\(R?) =1, A\(0) =
0. Then p <€ A but pu & A.

We say that two measures p € a(L,V); and A € a(L, W); are singular,
and we write pu L ), if there exists a € L such that p(a’) =0, and A(a) =0.

We say that p is A-singularif, whenever v € a(L,V )y, v < A and v <, A,
then v = 0. We recall that according to [5], if p is A-singular, then p and A
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are singular, and if V = W, then g A v = 0, where the meet A is taken in
CL(L, Vv).{_ .

Now we present two Lebesgue-type decompositions.

THEOREM 6.1. ([5]) Let p € a(L, V)4, (W,||-]|) be a normed Riesz space
and let A € a(L, W), . Then u can be expressed in the form (1), where £,n €
a(L, V)i, £ €.\, and n is \-singular.

Proof. Let usdefine C = {y € a(L,V)y: v <. A\}. Then C is a quasi cone
of a(L,V)y which is uniformly closed. Indeed, let {v;} be a net of C which
converges uniformly for ¢ € L in the norm topology of V. Given € > 0 we find
vi such that ||v(c) —i(c)]| < e/2 for all ¢ € L. Since v; <. A, we find § >0
such that |[A(a)|| < 6 implies ||vi(a)|| < £/2. Therefore, for a with ||[A(a)|| < é
we have [[y(a)|| < [lv(a) = vi(a)l| + lvi(a)]| <e.

Applying Theorem 4.1, we obtain the decomposition in question. O

Now we present the following generalization of a weak Lebesgue decomposi-
tion from [18]:

THEOREM 6.2. For any pair of finitely additive measures p, A € a(L, V),
there exist two elements & and n in a(L,V). such that

p=E+m, A, (3)

and n AA=0.

Proof. Theset Cy = {£ € a(L,V)y: £ € A} is a uniformly closed quasi
cone in a(L,V); . Applying Theorem 4.1, we obtain the first part of (3), where
n e Ci. Suppose now that k is an element of a(L,V), such that & <, n and

k <, A. Then k € C) and from the basic property of the set C§ we conclude
that-k =0, ie, 0=nA M. O

We recall that the above Lebesgue-type decompositions can varied if we define
different types of quasi cones, for example, quasi cones of o-additive measures,
completely additive measures, P -regular measures, etc.

7. Concluding remarks

It is worth to say that in some particular cases, C can consist only of the zero
function, and in this case, the decomposition (1) is trivial, since C* = a(L, V), .
For example, there are cases of L having no system of non-trivial o-additive
or completely additive measures. This case can happen, e.g., if L is a Boolean
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o-algebra and V = R [19], or, if L = E(S) and V = R for an incomplete
inner product space S because in this case the set of all completely additive
measures is {0} . The former follows from the assertion {10, 11} saying that S is
complete iff E(S) possesses at least one non-zero completely additive measure.
On the other hand, even for incomplete S, the set of all P(S)-regular finitely
additive measures from a(E(S),R) + Is not trivial, where P(S) is the set of
all finite-dimensional subspaces of S. Indeed, according to [9, 10], the following
Aarnes decomposition holds (see also [14, 15] in other structures):

THEOREM 7.1. For any real-valued finitely additive measure p on E(S) there
exists a unique decomposition

p=E+m,
where ¢ is a P(S)-regular finitely additive measure, and 7 is a real-valued
finitely additive measure vanishing on all finite-dimensional subspaces of S.

u is regular if and only, if there is a Hermitian trace operator T': 55,
where S denotes the completion of S, such that

u(M) = tx(T Pyp), M € E(S), 4
where Py denotes the orthoprojector from S onto M.

Proof. Let C be the quasi cone of all P(S)-regular measures on E(S).

Then, according to [9, 10], C* is the set of all elements from a(E(S),R)4 which
vanishes on every finite-dimensional subspace of S'. O

It is worth to say that (4) is the Gleason formula for the set of all splitting
subspaces. We recall that if S is complete, then p is P(S)-regular iff u is
completely additive, and this is equivalent to the so-called Gleason’s formula
(4). The decomposition from Theorem 7.1 gives an important one for E(S)
even when ca(E(S),R) = {0} for incomplete S.

Finally, let A be a von Neumann algebra of operators acting on a Hilbert
space H . Denote by L4(H) the set of all orthoprojectors from A. Then L =
L A(H) is a complete orthomodular lattice, where the partial ordering < is
defined via P < Q iff (Pz,z) < (Qz,z), € H, and the orthocomplementation
1 is Pt :=1T1— P, where I is the identity operator on H .

Suppose that V is a Banach lattice with an order continuous norm ||-||. Using
the quasi cone ca(La(H),V )+, we can any element p € a(La(H),V); decom-
pose in the form p = £+n, where £ € ca(LA(H),V)4+ and n € ca(L4(H), V)i,
Corollary 5.1. According to [3] (see also the sketch of the proof for complex-
valued measures in [16]), p,£ and 7 can be extended to unique bounded linear
operators fi,& and A from A into V such that pu = a|La(H), & = §C|LA(H),
and n = A|La(H). In this case we have i =& +1.
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