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HEWITT-YOSIDA DECOMPOSITION
FOR O-DECOMPOSABLE MEASURES

ENDRE PAP

ABSTRACT. In the present paper, [J-decomposable measures defined on a o-
complete lattice with relative complement and with values in a o-complete lattice
ordered semigroup are considered. For such measures a Hewitt—Yosida decompo-
sition theorem is proved.

1. Introduction

Klement and Weber [6] gave a unified approach to several concepts of
measures introducing the notion of generalized measure. Let (L, A, V,0,1) be a
o-complete lattice with smallest and largest element 0 and 1, respectively, and
let (S,0,<,0,1) be a o-complete, lattice ordered commutative semigroup with
identity 0 and with the smallest and largest element 0 and 1, respectively.

DEFINITION 1. A mapping m : L — S satisfying

m(z Ay)Om(z Vy) =m(z)Om(y),

(@anen 1= supm(za) =m( \/ an).

neN

is called an S-valued measure on L.

It turns out that this notion is very useful as a unified approach to several con-
cepts of measures: g-additive measure, probability measures on fuzzy events [17],
possibility measures [18], fuzzy probability measures [5], fuzzy-valued fuzzy mea-
sures [6], o-1-decomposable measures [14] and [9], measures on fuzzy events [6],
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@®-decomposable measures [6], Stone and W *-algebra-valued positive mea-
sures [15, 16]. An S-valued measure m has the following property

m(zVy)=m(z)Om(y) for zAy=0,

i.e., m is a O-decomposable measure.

We shall prove in this paper a Hewitt—Yosida type theorem for U-decompos-
able measures continuous from above and with additional suppositions on the
domain and on the range.

2. The set D|(L,S)

DEFINITION 2. A lattice L is called a lattice with a relative complement if,
for each element z from any interval [a,b], there exits an element y such that

zVy=>b and zAy=a.

The element y is called the relative complement of the element z on the interval

[a,b].

DEFINITION 3. A lattice L is called a sectionally complemented lattice if, for
each element x from any interval [0, b], there exits an element y such that

zVy=>b and zAy=0.

Remark 1. The complement, in general, is not unique. For distributive lat-
tices with relative complement the complement is unique for each element. So
for Boolean algebras the complement always exists and it is unique.

We shall suppose in the whole paper that L is a o-complete, sectionally
complemented lattice.

THEOREM 1. If {z,} is a sequence from L such that , | =, then
infy, =0,
n

where y, is a relative complement of = on [0,z,], in addition, there exists a
sequence {yn} such that y, £ yn41 (n €N).
If L is a distributive lattice, then y, | 0.

Proof. Let y, be a relative complement of z on [0,z,] (n € N), i.e.,
TVY, =z, and Ay, = 0. Since z, | =, we have infz,, = z and so that
n
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¢ =inf(zVy,). L is a o-complete lattice and y,, > 0, so infy, =y always
n n
exists. We have
r=inf(zVy,) >zVinfy, =2 Vy,
n n

e, z>y. Since £ Ay, =0; (n € N) holds, we obtain
inf(x Ayn)=0.
n
Hence
zANy=zAinfy, =inf(zAy,)=0.
n n

Since z > y, we obtain y = 0. Now, let I be a distributive lattice. Then we
have

TV (Un AYnt1) = (@Vyn) A(zV Ynt1) = Tn A Tpgy = Trys -

Hence by
A (Yn AYnt1) =0,

we obtain that y, Ay,+1 is also a relative complement of z on [0, Zp+1]. Since
L is a distributive lattice, the relative complement is unique and so we have

Yn+l = Yn+1 AN Yn < Yn -
O

DEFINITION 4. A lattice semigroup S is lower complete if every majorised
increasing net (z,) in S has the least upper bound, i.e., Vzo, €S.
«

We suppose in the whole paper that S is a lower complete lattice and that

inf(AQz) = (infA)Oz (ACS, z€S) (

*

)

holds.

DEFINITION 5. A mapping m:L — S satisfying

m(0) =0,

m(z Vy) = m(z) Om(y)

for, z,y € L such that z Ay =0, is called a O-decomposable measure on L.

149



ENDRE PAP
THEOREM 2. Let m, m: L — S, be a non-trivial (J-decomposable measure
in the sense that y v =1y for each y € m(L), y # 0, and v € m(L) implies
v=0. Then m is continuous from above, i.e., T, | © implies
inf m(z,) = m(z),
n
iff
inf m(y,) =0,
n
where y,, is a relative complement of = on [0, z,].

Proof. Let {z,} be a sequence from S such that z, | z. Let y, be a
relative complement of = on [0, z,], ie.,

zVy,=z, and xAy,=0.

We suppose
inf m(y,) =0.

Then we obtain

i%f il ) = i%f m(yn, V) = 'IITlLf m(y,) 0 m(z) = m(z).

Suppose now that z, | = implies inf m(z,) = m(z). If y, (n € N) is a relative

complement of z on [0, z,], then we have
m(z) = inf m(z,) = inf m(z V y,) = inf m(y,) Om(z) .
Hence inf m(y,) =0. : O
n

The set of all non-trivial (in the sense of Theorem 2) [-decomposable map-
pings on L into S will be denoted by D(L,S) and their subset of all continuous
from above mappings will be denoted by D, (L,S). We endow the set D(L,S)
with the usual pointwise order, i.e., for my,ms € D(L, S)

my <mg iff mi(z) <ma(z) (zel),

and with the operation [0 defined by

(m10my)(z) = myi(z) Ome(z) (zel).
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EXAMPLE 1. Let L be an Archimedean ¢-conorm, i.e., a function L: [0,1] x
[0,1] — [0,1] which is nondecreasing in each argument, commutative, associa-
tive, 0 is the unit element, continuous and L (z,z) > z for all = € (0,1). Then
by S.Weber [14], taking S =[0,1], O=_1 and L = £ a o-algebra of subsets
of a set {2, we obtain that D(X, [0,1]) is the set of |-decomposable measures
and that D\ (X, [0,1]) is a subset of the set D, (%, [0,1]) of o- L-decomposable
measures. For the case (NSA) (see for the notation [14])

Dl(zﬁ [0,1]) = Dy(%, [0, 1)

EXAMPLE 2. Let L be the ¢-conorm max on [0,1]. Then the elements of
D((%,[0,1]) are continuous from below and so

Dl(za [07 1]) C DO’(Ea [07 1]) 2

3. Hewitt—Yosida decomposition

We suppose in this section that S satisfies (x) and also the following condi-
tions:
(a) it is of the countable type, i.e., every subset A of L that has a supre-
mum in L, contains a countable subset A; such that sup A = sup A4; .
(b) z0Osup A =sup(zA), whenever there exist suprema.
(c¢) If ai, € S such that i%f ain =0 (2 €N) and ain £ ajny1) (5,n €N),
then
infsupa;, =0;
[
or instead of (c)
(c1) L is a distributive lattice and if a;, € S such that a;, | 0 (i e N),
then
infsupa;, =0.

noq

Remark 2. Similar conditions as (c;) can be find in papers of B. Rieéan
[12] and D. Maharam Stone [7].

DEFINITION 6. A non-empty subset S; of S is a band of S if it satisfies the
following conditions:
(i) z,y € S; implies 0y € S;;
(ii) z<y and y€ S; imply z € S;;
(ili) For any increasing net in S its least upper bound (if it exists) belongs
to Sl .
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THEOREM 3. Let D(L,S) be a lattice. Then
D|(L,S) is a band of the lower complete lattice semigroup D(L,S).

Proof. Weshall prove that D(L,S) is a lower complete lattice semigroup.
Let (m;)ier be an increasing net in D(L,S) such that for every z there is
b €S such that m;(z) <b and

m =supm;, ie., m(z)=supm;(z)(zel).
i€l i

Then for all z,y € L such that £ Ay =0 we have

m(zVy) = Slp mi(zVy) = sgp(mi(w) Omy(y)) < L m;(z) O Ly m;(y) -

Let 4,7 be any pair of indices from I. There exists & € I such that 7 < & and
j < k. Then we have
m;(z) Om;(y) < me(z) Omi(y) = me(zVy) <m(zVy).
Hence by the first inequality
m(z)Om(y) =m(zVy).

We shall prove that D|(L,S) is a band of D(L,S). It is obvious that
my,mg € D|(L,S) implies

my Omg € D|(L,S).

Suppose m € D(L,S) and p € D|(L,S) such that m < p. Let {z,} be a
sequence in L such that z, | =, and y, a relative complement of z on [0, z,],
then by Theorem 1, infy, = 0 and since p € D|(L,S) by Theorem 2,

inf u(y,) = 0.

Hence
infm(y,) =0.

Then by Theorem 2, m(zy,) | m(z), i.e., m € D|(L,S). Let (m;)ier be an
increasing net in D{(L,S) and

m =supm; € D(L, S).
i€l

Let z, | . Since m; € D|(L,S) we have by Theorem 2,

inf m;(y,) =0,
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where y,, is a relative complement of z on [0,z,]. Now we have by properties
(a) and (c) or (c1) (if L is a distributive lattice), using Theorem 1,

inf m(yn,) = inf supm;(yn) = inf supm;(y,) =0,
n n i n iEC
where C is a countable subset of I. Using properties (%) and (b) we obtain
inf sup m;(z,) = inf supm;(z V yn) = inf sup(m;(z) Om;(yn)) <
"4 n ieC n ieC
inf sup m;(z) O inf sup m;(y,) = inf sup m;(z) = inf m(z) = m(z).
" ieC n ieC nog n
Hence by monotonicity of m;, m € D|(L,S). m|

We suppose further that the operation [ and the partial ordering < in S
satisfy the conditions:
(i) z,yeS, z0y=2z0z imply y = z;
(i) z,y€S, z0y =0 imply z =y =0;
(iii) w < v if there exists an element w € S such that v = v Hw;
(iv) if zo T, then

sup(zq Ay) = (supze) A y.
@ o

Remark 3. By Nakada’s theorem [4], conditions (i) and (iii) imply that
S is a positive cone of an p. o. group.

DEFINITION 7. For S; C S, S; # 0, we define
Si={z:z€8,zAy=0 forevery yeSi}.

LEMMA 1. Si isa band of S.

THEOREM 4. ([2], [11]) If S; is a band of a lower complete lattice semigroup
S, then for any u € S, there exist unique v’ € S; and u" € Si such that

uw=u'Ou",
and
v =sup{v:ve Sy, 0<v<u},
v =sup{v:ve S, 0<v<u}.
THEOREM 5. (Hewitt—Yosida decomposition) Let D(L,S) be a lattice. For
every m € D(L,S), there exist unique m; € D|(L,S) and my € D|(L,S)*

such that
m=mimsy.

Proof. By Theorem 3, D|(L,S) is a band in D(L,S), then by the pre-
ceding Theorem 4, it follows the desired decomposition. O
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