

FINITE INDEFINITE MEASURES ON HYPERBOLIC LOGICS

MARJAN S. MATVEJCHUK

ABSTRACT. We present a generalization of Gleason's theorem for finite indefinite measures on hyperbolic logics related with W^* -factors in a Krein space.

Let H be a space with an indefinite metric $[\cdot,\cdot]$, a canonical decomposition $H=H^+\left[\dot{+}\right]H^-$, and with a canonical symmetry J. H is a Hilbert space with respect to the inner product (x,z)=[Jx,z]. There exist two orthogonal projections P^+ and P^- such that $P^++P^-=I$, $J=P^+-P^-$ and $P^+H=H^+$, $P^-H=H^-$, [x,z]=(Jx,z), for any $x,z\in H$. A W^* -factor A in H is called a W^*J -factor, if $J\in A$. A W^*J -factor A is said to be a $W^*\Pi$ -factor if at least one of projections P^+ or P^- is finite relative to A. Let A^Π be the set of all orthogonal projections in A and Π (= $\Pi(A)$) be the set of all J-selfadjoint projections in A, i.e., $\Pi=\{p\in A\colon p^2=p,\ [px,z]=[x,pz],$ for any $x,z\in H\}$. Let Π_f be the set of all projections $p\in \Pi$ such that the subspace pH is finite relative to A. Now let Π^+ (Π^-) be the set of all projections $p\in \Pi$, for which the subspace pH is positive ($\forall x\in pH,\ x\neq 0,\ [x,x]>0$) (respectively, negative, i.e., $\forall x\in pH,\ x\neq 0,\ [x,x]<0$). Any projection $e\in \Pi$ is representable in the form $e=e_++e_-$, where $e_+\in \Pi^+,\ e_-\in \Pi^-$.

A mapping $\mu\colon\Pi\to\mathbb{R}$ $(\mu\colon\Pi_f\to\mathbb{R})$ is called a measure if, for any representation $e=\sum_\iota e_\iota$ (the sum is understood in the strong topology), we have $\mu(e)=\sum_\iota \mu(e_\iota)$. A measure μ is said to be a semiconstant if $\mu(e)=c\tau(e_+)$ $\forall e\in\Pi$ or $\mu(e)=c\tau(e_-)$ $\forall e\in\Pi$, where τ is a faithful normal semifinite trace on \mathcal{A} ; indefinite, if $\mu|\Pi^+\geq 0$ and $\mu|\Pi^-\leq 0$ ($\mu|\Pi^+\cap\Pi_f\geq 0$ and $\mu|\Pi^-\cap\Pi_f\leq 0$, respectively). An indefinite measure $\mu\colon\Pi_f\to\mathbb{R}$ is said to be finite if, for any projection $p\in(\Pi^+\cup\Pi^-)$, the inequality $\sup\{|\mu(q)|\colon q\leq p,q\in\Pi_f\}<\infty$ holds.

AMS Subject Classification (1991): 46G12, 46N50. Key words: hyperbolic logic, indefinite metric, measure, indefinite measure, trace.

MARJAN S. MATVEJCHUK

THEOREM. Let \mathcal{A} be a W^*J -factor different of I_2 . Then for any finite indefinite measure $\mu\colon \Pi_f\to\mathbb{R}$ there exist a J-selfadjoint trace-class operator T and a semiconstant measure μ_* such that $\mu(p)=\tau(Tp)+\mu_*(p)$, $\forall p\in\Pi_f$. If the projections P^+ and P^- are infinite relative to \mathcal{A} , then $\mu^*\equiv 0$.

Proof. One can suppose that there exists a partial isometry $v \in \mathcal{A}$ such that $vp^+v^* \leq p^-$. Let $g \in \Pi_f$ be an orthogonal projection and let $g_+ > 0$, $g_- > 0$. From the theorem of the paper [1] it holds that there exist a unique J-selfadjoint trace-class operator T_g ($T_g = gT_gg$) and a number c_g such that $\mu(e) = \tau(T_ge) + c_g\tau(e_+)$, $\forall e \leq g$. If the projections g_+ and g_- are both infinite relative to \mathcal{A} , then $c_g = 0$ ($0 \cdot \infty = 0$).

Hence, if $p \in \Pi_f$ is an orthogonal projection and $g \leq p$, then $gT_pg = T_g$ and $c_p = c_g$. Put $c = c_p$.

Now we prove that c=0 if the projections P^+ and P^- are both infinite relative to \mathcal{A} . Let $\{e_\iota\}_{\iota\in I}$ be an infinite set of pairwise orthogonal finite projections from \mathcal{A} , and $\sum e_\iota = P^+$. Put $\varphi_\iota \equiv ve_\iota v^*$. The operators

$$q\left(\frac{3}{2}\varphi_{\iota}\pm v^{*}\varphi_{\iota}\right)\equiv\frac{1}{2}(3\varphi_{\iota}\pm\sqrt{3}v^{*}\,\varphi_{\iota}\mp\sqrt{3}\varphi_{\iota}v-v^{*}\varphi_{\iota}v)$$

are projections from Π^- . Let $T_\iota \equiv T_{\varphi_\iota + e_\iota}$. The operator T_ι is J-selfadjoint. Hence,

$$\mu\left(q\left(\frac{3}{2}\varphi_{\iota}\pm v^{*}\varphi_{\iota}\right)\right) = \frac{1}{2}\left(3\tau(T_{\iota}\varphi_{\iota})\pm\sqrt{3}\tau\left(T_{\iota}(v^{*}\varphi_{\iota}-\varphi_{\iota}v)\right)-\tau(T_{\iota}e_{\iota})\right) =$$

$$=\frac{1}{2}\left(3\mu(\varphi_{\iota})\pm2\sqrt{3}\operatorname{Re}\tau(T_{\iota}Jv^{*}\varphi_{\iota})-(\mu(e_{\iota})-c\tau(e_{\iota}))\right)\ (\leq 0).$$

Let

$$X \equiv \left\{ \iota \in I : \left(\mu(e_{\iota}) - c\tau(e_{\iota}) \right) \operatorname{Re} \tau(T_{\iota}Jv^*\varphi_{\iota}) \le 0 \right\}.$$

The projections from $\left\{q\left(\frac{3}{2}\varphi_{\iota}\,v^{*}\varphi_{\iota}\right)\right\}_{\iota\in X}\cup\left\{q\left(\frac{3}{2}\varphi_{\iota}\,v^{*}\varphi_{\iota}\right)\right\}_{\iota\in I\setminus X}$ are by the construction pairwise orthogonal. Hence there exists the projection

$$q \equiv \sum_{\iota \in X} {}^{\bullet}\!\! q \Big(\tfrac{3}{2} \varphi_{\iota}, v^* \varphi_{\iota} \Big) + \sum_{\iota \in I \backslash X} q \Big(\tfrac{3}{2} \varphi_{\iota}, -v^* \varphi_{\iota} \Big) \in \Pi^- \,.$$

This implies

$$M \equiv \frac{1}{2} \left(\sum_{\iota \in X} \left| \mu \left(q(\frac{3}{2} \varphi_{\iota}, v^* \varphi_{\iota}) \right) \right| + \sum_{\iota \in I \setminus X} \left| \mu \left(q(\frac{3}{2} \varphi_{\iota}, -v^* \varphi_{\iota}) \right) \right| \right) < +\infty.$$

FINITE INDEFINITE MEASURES ON HYPERBOLIC LOGICS

From this it follows

$$0 \leq \frac{1}{2} \sum_{\iota \in I} \left| \mu(e_{\iota}) - c\tau(e_{\iota}) \right| \leq \frac{1}{2} \left(\sum_{\iota \in X} \left| 2\sqrt{3} \operatorname{Re} \tau(T_{\iota} J v^* \varphi_{\iota}) - \left(\mu(e_{\iota}) - c\tau(e_{\iota}) \right) \right| +$$

$$+ \sum_{\iota \in I \setminus X} \left| -2\sqrt{3} \operatorname{Re} \tau(T_{\iota} J v^* \varphi_{\iota}) - \left(\mu(e_{\iota}) - c\tau(e_{\iota}) \right) \right| \right) \leq M + \frac{3}{2} \sum_{\iota} \left| \tau(T_{\iota} \varphi_{\iota}) \right| =$$

$$= M - \frac{3}{2} \mu \left(\sum_{\iota} \varphi_{\iota} \right) < +\infty.$$

In addition, $0 \le \sum_{\iota} \mu(e_{\iota}) < +\infty$. Hence

$$|c| \sum \tau(e_\iota) = |c|\tau(p^+) = |c| \cdot +\infty < +\infty$$
.

This implies c = 0.

Now we show there exists a J-selfadjoint trace-class operator T such that $gTg=T_g$ for any orthogonal projection $g\in\Pi_f$. Any measure μ can be represented as the sum of a Hermitian component $\mu_h(e)\equiv\frac{1}{2}\big(\mu(e)+\mu(e^*)\big)$, $\forall e$ and a skew-Hermitian component $\mu_s(e)\equiv\frac{1}{2}\big(\mu(e)-\mu(e^*)\big)$, $\forall e$. Hence $\mu_h(e)=\tau\left(\frac{1}{2}(T_g+T_g^*)e\right)+c\tau(e_+)$ and $\mu_s(e)=\tau\left(\frac{1}{2}(T_g-T_g^*)e\right)$, $\forall e\leq g$. The operator $T_{hg}=\frac{1}{2}(T_g+T_g^*)$ is selfadjoint and J-selfadjoint and the operator $T_{sg}=\frac{1}{2}(T_g-T_g^*)$ is skew-adjoint and J-skew-adjoint (such as $T_g=JT_g^*J$). This implies

$$T_{hg} = P^+ T_{hg} P^+ + P^- T_{hg} P^-$$
 and
$$T_{sg} = P^+ T_{sg} P^- + P^- T_{sg} P^+ = U |P^- T_{sg} P^+| - |P^- T_{sg} P^+| U^+,$$

where $P^-T_{sg}P^+=U\,|\,P^-T_{sg}P^+|$ polar decomposition of the operator $P^-T_{sg}P^+$.

By the theorem of the paper [3], there exist selfadjoint trace-class operators A^+ , A^- such that $A^{\pm} = P^{\pm}A^{\pm}P^{\pm}$ and

$$\mu_h(e) = \tau(A^+e) + c\tau(e), \quad \forall e \le P^+,$$

 $\mu_h(e) = \tau(A^-e), \quad \forall e \le P^-.$

Hence, there exist sequences of finite orthogonal projections $\{e_n^+\}$ and $\{e_n^-\}$, $e_n^+ \leq P^+$, $e_n^- \leq P^-$, $\forall n$, $e_n^\pm \downarrow 0$ such that the operators $(e_n^+)^\perp A^+(e_n^+)^\perp$ and $(e_n^-)^\perp A^-(e_n^-)^\perp$ are bounded. Then by the Lemma 1 [1], the following inequality

$$\left| \tau \left((e_n^+ + e_n^-)^{\perp} T_{sg}(e_n^+ + e_n^-)^{\perp} (r - r^*) \right) \right| = 2 \left| \mu_s(r) \right| \le$$

$$\le 48 \|r\| \sup \{ \mu(e^+) - \mu(e^-) \colon e^+ \le P^+, e^- < P^- \},$$

MARJAN S. MATVEJCHUK

where $r\in\Pi_f$, $r\leq g\leq (e_n^++e_n^-)^\perp$, holds. From this it follows that there exists a constant t such that $\|T_{sg}\|\leq t$ for any projection $g\leq (e_n^++e_n^-)^\perp$. Hence there exist a skew-adjoint and a J-skew-adjoint bounded operator T_s^n for which $(e_n^++e_n^-)^\perp T_s^n(e_n^++e_n^-)^\perp = T_s^n$ and $gT_s^ng=T_{sg}$, $\forall g$, $g\leq (e_n^++e_n^-)^\perp$, $T_s^n=(e_n^++e_n^-)^\perp T_s^m(e_n^++e_n^-)^\perp$, where m>n. Hence, $\lim_{n\to\infty}T_s^n=T_s$ exists in τ -topology. Let now $T\equiv T_s+A^++A^-$. The operator T is that in question. \square

REFERENCES

- [1] MATVEJCHUK, M. S.: A description of indefinite measures in W*J-factors, Dokl. Akad. Nauk SSSR 38 (1991), 558-561. (In Russian)
- [2] MATVEJCHUK, M. S.: A description of indefinite measures in W*J-factors, Engl. transl., Soviet Math. Dokl. 44 1 (1992), 161-165.
- [3] MATVEJCHUK, M. S.: Description of finite measures on semifinite algebras, Funkt. Anal. Priloz. 15 (1981), 41-53. (In Russian)
- [4] MATVEJCHUK, M. S.: Description of finite measures on semifinite algebras, Functional Anal. Appl. 15 3 (1981), 187–197.

Received February 1, 1993

Kazan University
Math.-Mech. Faculty
Lenin str. 18
SU 420008 Kazan
RUSSIA