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FOURIER-WALSH SERIES OF VECTOR-VALUED
MEASURES AND FUNCTIONS

STEFAN DRAHOVSKY — GABIKA GONDOVA

ABSTRACT. Let {an} be a sequence of elements of a locally convex vector
space X . The paper settles the problem of the existence of such a vector-valued
function and a measure, that {an} are their Fourier-Walsh coefficients on the
unit interval.

0. Introduction

Recently the Walsh functions and their applications have drawn much at-
tention from both mathematicians and engineers alike. They form a complete
orthonormal system and since there are real-time algorithms for obtaining the
coefficient sequences of the Walsh series of any square integrable function f and
for recovering f from these sequences, their applications seems to be endless.

In 1949, Fine made the fundamental observation that the Walsh functions
can be viewed as characters of a dyadic group. A similar dichotomy prevails for
the classical Fourier analysis. One can investigate a trigonometric series on the
interval (O,2m) or an exponential series on the circle group T'. This identifica-
tion allows us to translate results from one system to other one.

Particularly, let {a,}SL, be elements of a vector space X and let I de-
note the interval (0,1) (mod 1). The purpose of this paper is to answer to the
following questions:

1. Does there exist a vector-valued measure on I such that an ’s are the Fourier-

Walsh-Stieltjes coefficients of this measure.

2. Does there exist a vector-valued function on I such that a, ’s are the Fourier-

Walsh coefficients of this function.

In the first, we consider the above problems for continuous orthonormal sys-
tems of characters on the dyadic group in terms of the Cesaro means. The
analogous problem for the Walsh system needs a reformulation since the Walsh
functions are not continuos on I. We shall proceed similarly as Fine in [1],
who solved a version of this problem for the scalar case.
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1. Notation and definitions

We shall use the notation of [2]. Let N denote the set of all non-negative
integers.

The dyadic group G consists of all sequences T = (z1,z2,...), x; € {0,1}
where addition is defined coordinatewise mod 2. We consider G with the product
topology. Hence, G is a totally disconnected compact topological group.

The terms “Walsh functions” refer to one of three orthonormal systems:
the Walsh—Paley system, the original Walsh system or the Walsh-Kaczmarz sys-
tem. This systems contain the same functions and differ only in ordering. Each is
a complete orthonormal system on (0,1) and contains the Rademacher system.

The Walsh—Paley system w := (w,, n € N) is defined as the product of
Rademacher functions in the following way. If n € N has binary coefficients

(ng, k € N), then

o o]
Wy = H ree
k=0
where 1
].7 T € <0,§)7
(E) = X
—1, S <§,1),

r(z+k)=r(z), ze€(0,1), keN,
re(z) =7(2%z), z€eR, keN.
We describe the characters of G. For n € N and T = (z1,z2,...) € G, the
collection (£,,n € N)
€n(z) == (—1)*"

generates all characters of the dyadic group G in the same way that the Rade-
macher functions generate the Walsh system.

PROPOSITION 1. For each n € N with binary coefficients (ny,k € N), let
o0
wn = H 5]2“ )
k=0

then v, is a character on G, and, conversely, every character is of this form
(see [2, Theorem 1]).

Define Fine’s map p: (0,1) — G by
pla) :=F = (1, By, <)

where z have the dyadic expansion
co
= Z z27%, 1z, € {0,1}.
k=1
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For each z € (0,1) \ @, where Q@ C I (Q C G) presents the set of all dyadic
rationals, there is only one expression of this form. The map p is well defined
by choosing the finite expansion in case of doubt. When z € @, there are two
expressions of this form, one which terminates in 0’s and one which terminates
in 1’s. By the dyadic expansion of z € () we mean the one which terminates in
0’s.

We make the inverse A: G — (0,1) via

A(f) - i.’ElQ—i .
i=1

The set of all Z in @, such that A(Z) terminates in 1’s, we denote by Q—I.
If f is real-valued on I, then there is a corresponding function f on G,
given by

-, f()\(f))’ EEG\GI,
f(=) = lir;_fgp?(ﬂ) ; Teq, )

where the approach is over those 7 corresponding to dyadic irrationals. We
indicate that (1) holds by writing f ~ f.
On the contrary, if we have f: G — R, then for f: I — R

f(.’E) = ‘7;(p(.'13)), TE (O) 1) .
If f is continuous so is f, but not conversely. That is wy ~ 1 and

wg =Yg 0 p, iEE(O,l),
Y = WL O A, EEG\_Q—,.

The characters 1 are continuous but the corresponding Walsh functions wy
are in Cw(I), i.e., continuous only at every dyadic irrational, continuous from
the right on I and have a finite limit from the left on I, all this in the usual
topology. For integrable functions f and f, f € L,(I) if and only if f € L,(G).

By a measure on G (on I) we shall mean a real finite signed measure p
(m on I) on the Borel setsin G (in I'). Every measure on G can be decomposed
uniquely into a usual measure, vanishing on all subsets of @I and an unusual
measure, vanishing on all Borel subsets of G \él (see [1]). There is a one-to-one
correspondence, denoted by g ~ m, between the usual measure on G and the
measure on I given by

#(A):{mA(A), ACG\Q,
0, ACTQ,
or_by

m(B) =pup(B), BcCI.
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If p is a measure on G and

o= [ed,
G

then S = 3" apty is called the Fourier- Walsh-Stieltjes series of the measure p
and we write S = S(du).
If m is a measure on I and

akz/wkdm,

I

then S = )" apwy is called the Fourier- Walsh-Stieltjes series of the measure m
and we write S = S(dm). In both cases the measure is determined uniquely on
Borel sets by the sequence ay .

If a series S and S have the same coefficients, we write S ~ S, or S~ S.

2. Fourier—Walsh series of X-valued measures

Let B(G) (B(I)) be the o-algebra of all Borel sets in G (in I).
THEOREM 1.
(i) Let f: I — X be Pettis-integrable, let f: G — X and f ~ f, then

f is Pettis-integrable and [ fdZ = [ fdz.
G T

Let f: I — X be Bochner-integrable, f:G— X and f~ f then f is
Bochner-integrable and [ ||f(Z)||dZ = [ ||f(z)|| dz, where dZ denotes
G I

the normalized Haar measure on G and dz denotes the Lebesgue
measure on I .

(ii) Let f: I — R be Bochner or Pettis-integrable, m: B(I) — X, z ~f,
m ~ p and [ fdm exists, then [ fdp exists as well, and [ fdu =
T G &

[ fdm.
T

(i) S(dm,) = S(dms) implies m; = my, and
S(duy) = S(dps) implies p; = s (on Borel sets).
(iv) S =S(dm) and p ~m implies S(dm) ~ S(du).
(v) S(dm) ~ S(du) implies p~m.
(vi) f is Pettis-integrable if only if f is Pettis-integrable.

Proof. All the assertions but (i) are easy to prove, because they have a
precise analogue in the real case.(See [1, Theorem 1}).

We prove (i). Let f: G — X be Pettis-integrable. Hence, there exists a
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functional y: X’ — R in second dual of X such that for all z’ in X’

y@)i= (7@, o).
G

Since f ~ f and the Haar measure vanishes on @I, we have by (ii) of this
theorem for a real case,

/ (F(E), o) di = / (F(0), o) dt.
G I

This implies that f is Pettis-integrable. The proof of the converse implication
is similar. _
Now we prove the other part of Theorem 1 (i). Let f: G — X be Bochner-
integrable. Hence [ |f(Z)||dZ exists. Since ||f(z)| = ||7(Z)| a.e., the proof is
G

finished. O

Now, let X be a quasi-complete, locally convex topological vector space,
C(G) be the space of all continuous functions on G with the supreme norm.
For each IV, let ®x5: C(G) — X be a linear map. The set of maps @ is said
to be weakly equi-compact if there is a weakly compact subset H of X such
that

{en(¥); v e CG), |¥]| <1, N=1,2...} C H.

Let on(T) be the (C,1) Cesaro sums of S(du). Let 1, be the sequence of
all characters on G. Then

n—1

7@ = 3 (1= 2 )ae® = [ Kn)ducd),
G

k=0
where Ky are the (C,1) kernels, for which
Kn(,3) = Kn(,0).
We shall use the following (see [2]):
PROPOSITION 2. The sequence of the characters 1y, is complete, and

/[KN(E,§)|d§gz, teG N=1,2,....
G

THEOREM 2. The necessary and sufficient condition for a series S to be a
Fourier-Walsh-Stieltjes series S(du) on G, i.e., that there exists a regular mea-
sure p: B(G) — X such that the given a, € X are the coefficients of y, is that
the set of maps ®n: C(G) - X, N =1,2,..., defined by

() = / s@Hon@®dE, $ e o), @)
G
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is weakly equi-compact.

Proof. Suppose that such a measure exists on G. Then for each % in
C(G)

B () = [ Kn(E3) uas) i~ [ ( [ExG@990) d%)mﬁ).
G

G G

Let R(p) = {u(A); A € B(G)}, (the range of 1) and let W be the closed,
absolutely convex hull of R(p). Then R(p) is relatively weakly compact in X
(see [3]) and so, by the Krein theorem, W is weakly compact. Now, for all ¢ in
C(G) with ||¢|| <1, we have, by Proposition 2,

j [Ex@9)v0 d%} <lvl [ (@3] dT <2
G G

but

/ $() u(dE) € W
G

for all measurable ¢ with |¢(%)| <1 and for all £ € G. Therefore @, is in 2W
for all N and all ¢ in C(G) with [[¢|| < 1. That is, the set of ®y is weakly
equi-compact.

Now suppose that the set of @y is weakly equi-compact. Then, by definition,
there exists a weakly compact subset H of X such that

{en(¥); v €C(@G), Y| <1, N=1,2,...} CH.
Take z' in X'. Then there exists a constant C,+ such that
[(@n(®), 2')| < Cur
for all N and v with ||3|| < 1. Therefore for each N

sup
Il <1

/ b @n (D), ') dE| < Oy
G

that is

/ [N (8), )| dE < Car .
G

From the scalar case (see [6, Theorem 1 (iii)]) it follows that there exists a scalar
measure [, such that

(am ') = [ n® (D). ®)
G
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Since there exists a regular, scalar Borel measure p' such that, for all € > 0
and all ¢ in C(G), there exists N such that

} [vom@a- [v@ w«m\ <e,
G G

for all ¥ € C(G)
lim( @ (), / B(E) o (&F) (4)

This implies, for each fixed v, (®x(),z’) is convergent for all z’ € X'.
Since {®n(v); N = 1,2, ...} is in the weakly compact set ||3||H and since
it is weakly Cauchy, it is weakly convergent. Denote the weak limit by ®(v).
Then ® isin H for all ¥ with |[¢|| < 1. Since H is weakly compact, ® is also
weakly compact. By the theorem of Bartle, Dunford, Schwartz (see [4]), there
exists a regular measure p: B(G) — X such that

o) = [ ¥ u()
for all ¢ € C(G). By taking ¥ = ¢, Gwe have for all z’ in X’
(@00),2") = [ a®(ud), 2).
But by (3) and (4) ¢
(2(¢n), T / ¥ (E) pior (dE) = (an, ')

hence

an = [ a(®) )
G

and the proof is complete. O
Now we shall show how to isolate the discrete component of p (m).
THEO_REM 3.
1. If S = S(dp), then the partial sums satisfy
Sn(T)
n

—u({z}), TEG.

2. If S = S(dm), then
Sn(z)

—-m({z}), zel.
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Proof. We have

S(Z) [ Dn(%,t) du(E
= 1(t) 5
n G/ n

where D, is the Dirichlet kernel. The integrand is bounded by 1 and converges
to1l at £ =T and to 0 elsewhere. The first assertion follows from Lebesgue’s
convergence theorem.

Let p ~ m. Applying Theorem 1(iv) gives

Sn(z) _ Sy (p(z))

n n

— u({p(@)}) = m({a}).
(]

THEOREM 4. A Walsh series S on I is a Stieltjes series S(dm) if and only
if the following two conditions are satisfied:
1. The set of maps ®n: Cw(I) — X, N =1,2,..., defined by

By (y) = / PBon()dt, € Cw(l),
I

is weakly equi-compact.
2.
Sn(q - 0)

— —0, ¢€Q. (5)

Proof. Let S~ S. By Fine’s map C(G) ~ Cw(I) and by Theorem 1 (i),

/@aﬁmaﬂ=/¢mm@mt
G I

So, by Theorem 2, the condition that (2) is weekly equi-compact is necessary
and sufficient for S = S(du). Again by Theorem 1 ((iv) and (v)), S = S(dm)
is equivalent to p being a usual measure and y ~ m . By Theorem 3, p is usual
if and only if _

Sa(@)

n

-0, 7€Qq,
for every dyadic rational §. S,(§') = Sn(q —0) and so the condition (5) holds
true. O

We can relax the assumption 1 in Theorem 4. It is not difficult to verify that
one can merely assume the weakly equi-compactness of the set of ® (1)) for all
YpeC().

THEOREM 5. Given a sequence a,, n = 0,1,..., of elements of X . There

exists a regular measure m: B(I) — X of finite total variation such that a,
are the coefficients of m if and only if there exists a constant D such that
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/naN(t)ndtsn, N=12,...,
I

where dt denotes the Lebesgue measure on I .
2.
n

, 9€Q.
Proof. Let
1.
[Ien@ldE<D, N=12...,
G
where df denotes the normalized Haar measure on G. We shall show that 1.
is equivalent to 1’. At first we prove this theorem on G and then it is easy to

return to the unit interval I. Suppose that there exists such measure p on G.
Then, for each N, by Proposition 2,

/ |on (B) || dE = / n / Kn(F,5) p(ds)| df <
G G G

< [ ([ 150,30 a8 ss) < 20ul=(G).
G G

Conversely, suppose that [ |[on(%)||dt < D for all N. If we define
G

B (®) = / v(@on(®d, € C(G),
G

then ||®y] < D for all N. For each n, h]{rn(I)N(l/Jn) = a,, and then li]{rnQN(zb)

exists for all 1 which are linear combinations of the characters ¢, and so as
|®n|] < D for all N, we conclude that liJ:{]n @y () exists for all ¥ in C(G).

Denote this limit by ®(¢). For each subset A of G, let C(G,A) denote the
space of continuous functions on G vanishing outside A. Define for each A4,

[[Falll = sup ) IF@3)lI,

where F: C(G) — X is a linear map and the supremum is taken over all finite
families ¢; in C(G, A) with Y |1;(%)| < xa(?) forall t in G.
To obtain required measure we use the following (see [5]): a
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PROPOSITION 3. If F': C(G) — X is a linear map, then there exists a regular
measure p: B(G) — X with finite variation such that

- / $(@) u(dl), ¥ € C(0),
G

if only if
I Falll < o0

for all A in B(G).
Proof. Let A bein B(G) and let {¢;; i =1,2,...n} be a finite family

of functions in C(G, A) with Y [¢;(%)] < xa(?), T € G. Then for each N,
i=1

n n

Z [@n ()| = Z

= Z/I% D llen@)||dE < D.

zlG

(Do (@) dzH <

n
Hence ) [|®(¢:)|| < D and so |||®4]|| < D. By Proposition 3, there exists such
1

a regular measure p: B(G) — X with finite variation that

- / PEu(D, ¥ eC(@).
G

Since . 1
/ Yn (BT (B) dE = / WD) Y (S asts (D =
:<N];n>an—>an, N — o0, (6)

if we substitute ¥ by the characters 1, , we have
an = [ a (B,

and the proof of theorem is complete for the dyadic group G . To return to unit
interval we use Theorem 1 (i). We have

/ [n (B dE = / lon(®lldt, N=1,2,...,

so 1. and 1’. are equlvalent and, by the proof on G, 1. is necessary and sufficient
for S = S(du). Again by Theorem 1 ((iv) and (v)), S = S(dm) is equivalent to
p being a usual measure and 4 ~ m. By Theorem 3, the partial sums satisfy
condition 2. and the proof is finished. O
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4. Fourier—Walsh expansion of X-valued functions

In this section, we will use the assertion of the following lemma.

LEMMA 2. If f isin Ly(G), 1 <p < oo, then the linear maps Ty : L,— L,
(for all p, 1 < p < oco) defined by

(TwT)(E) = / Kn(5)7()ds, Tely,
G

converge to f in the L,-norm. (see [6])

THEOREM 6. Given a sequence a,, n =0,1,2,..., of elements of X and a
Pettis integrable function f: B(I) — X, the a,, are the Fourier-Walsh coeffi-
cients of f if and only if

tim [ (0w () - fB)dt =0 (7
I

for all ¢ in Cw(I) with |[¢] < 1.
Proof. Let
tin [ (@) (ow (@) - @) di=0 (7)
&

for all 4 in C(G) with |[[9|| < 1. Suppose that the a, are the coefficients of
f:B(G) — X . Let V be an absorbing neighbourhood of 0 in X . For all ¥ in
C(G)

s@En® -FO) = [vO( [ KnE5)FE) d5— 7)) &

/ feol/ )
- [76) ( [ e d - ¢<~s~)) &s.
G G

There exists a constant € > 0 such that for all v with |y| <e

/ vf3)dseV.
G
Since there is an integer No(t) such that, for all N > Noy(v)
[ Bn G s - o) <<
£
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for each ¢ in C(G) with ||¢]| <1 we have that
[s@En@-T@)aev
@

if ¢ € C(G) with [[9|| <1, N > No(y).
Conversely, let us suppose that (7’) holds true. Put

Py = /zb(f)ﬁzv(f) dt, N=1,2,...,
G

and put
8(y) = / SOFD &, ¢ € 0G).
G

(7’) implies li]{[n Oy (1) = ®(¢) for all ¢ in C(G) with ||¢|| < 1. Then for all
z' e X'

l{l{ln <¢N(¢)a ml> = <(I)(T/))7 zl> .
Hence for every z’ in X’

N—n

! .
{pdl y = h]{[n

(an, ') = limn / bu (D@ (E), o')dE
G

= [s.@F®E).
G
and so

iy = / Un(DF(T) dE.
G

The proof is complete for dyadic group- G . _
Let S ~ S. Since Cw(I) ~ C(G), f ~ f, the normalized Haar measure
vanishes on Q—, and Lebesgue measure does on Q’, so, by Theorem 1 (i) and

(vi),
i [0 () (on () ~ T@) &=t [$a(0)(o(0) — £)) .
G I

Then f ~ f is equivalent to S = S(f) and the proof is finished. O

Similarly as in the comment after the Theorem 4, we can weaken (7) by
requiring the convergence only for ¢ € C(I).
Let X be a Banach space.
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THEOREM 7. Given a sequence a,, n = 1,2,..., of elements of X , there
exists an X-valued Bochner integrable function f: B(I) — X on I such that
the a,’s are the coefficients of f if and only if

Jim [llox® = os0llat=o. ®)
I
Proof. Let
i [ I7w@® -7 @l =o. ®)
G

Similarly as in previous theorem, (8) is equivalent to (8’). Suppose that f is
Bochner-integrable and the a,’s are the Walsh-Fourier coefficients of f. Let
{G;}? be a finite family of vectors in X and define g: G — X by

90) =Y Aixa.(®).
Then =

JIf K& 900105 - s®a = (38 [rn 90, (3345 - x0.,0) e <
G G s SN

<181 ] Ko 5w (5) 05 - (B )
=1 GG

which, by Lemma 2, tends to 0 as N — oo. Since the set of all such g’s
is dense in the space of all Bochner integrable functions and since Ty (%) =

J Kn(%,3)f(3)ds, we have
G
i [ o (®) - FDll € =0.
G

Conversely, suppose that {ox} is a Cauchy sequence in the norm of the
space of all Bochner integrable functions. Since this space is a Banach space,
on converges in the Bochner space norm to a Bochner integrable function f.
Hence

H/ Y (Z)EN(Z))“’H(E)CEH < [15® - aw @1 [va®)] ¢ <
@ G

< sup|Yn(?)| lon — fllz =0, N —oo.
t
Thus, by (6),
ey = / won () (E) dF .
G
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Put f(z) = 7(,0(33)) By returning to unit interval I, it is easy to see that f

is Bochner integrable if and only if f is Bochner integrable, since f ~ f. By
Theorem 1 (i),

Jim [ 1ow® -os@ldE= hm [ low(® - os) .
G I

N el
Since f ~ f, Haar measure vanishes on @ , so S = S(f). a
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