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STATES ON PROJECTION LOGICS
OF OPERATOR ALGEBRAS

JAN HAMHALTER

ABSTRACT. We summarize some recent results concerning measures on projec-
tion lattices of operator algebras. Especially we pursue extension properties of
operator algebras and description of states defined on projections.

1. Introduction and preliminaries

The structure of projections in operator algebra is one of the most important
examples of quantum logics as regards application in quantum physics [12, 19,
21, 22, 25, 27, 30]. Projection logics have inspired the theory of orthomodular
structures [18] and has been of particular importance for the theory of operator
algebras itself.

Our results have been motivated by the position of projection logics in the
general context of orthomodular structures (part 1) as well as by concrete ques-
tions of the noncommutative measure theory on projections (part 2). Before
formulating our results, let us recall a few notions and fix notation. (For the
general theory of quantum logic we refer to [27], for the theory of operator al-
gebras we refer to [17, 23, 33]).

By a (quantum) logic we mean a partially ordered set (L, <) with an ortho-
complementation operation, L, satisfying the following conditions (a,be L):

() L has a least and a greatest element 0y and 1y, respectively;
(i) @ <b implies b+ < at
(iii) a=att;
(iv) if a < bt then the supremum aV bt exists in L;
(v) if a<b, then b=aV (bAalt).
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Elements a,b € L are said to be orthogonal (in symbol a 1 b) if a < b*. A logic
K is a sublogic of a logic L if K C L and if the ordering, the greatest element,
the least element, the orthocomplementation operation and the formation of the
suprema of orthogonal elements coincide for K and L.

A complex-valued function m on a logic L is said to be a measure if m(aV
b) = m(a) + m(b) whenever a L b (a,b € L). By a state (probability measure)
of L we mean a measure s on L which is positive and s(1z) = 1. The state
space S(L) of L is the set of all states of L. A state s € S(L) is called pure
if it is an extreme point of S(L). A logic L is called unital if for every nonzero
a € L there is a state s € S(L) such that s(a) =1.

Throughout the paper, let M be a unital C*-algebra (resp. unital JB algebra)
with the unit I. By a projection in M we mean a self-adjoint idempotent, or an
idempotent, if M is a C*-algebra or a JB algebra, respectively. Let P(M) be
the set of all projections in M . When we endow P(M) with the partial ordering
defined by the positive cone of M , then P(M) becomes a logic (orthocomple-
mentation is given by pt = I —p). We say that P(M) is the projection logic of
M.

2. Universal state extension property

The central notion of this section is the following property of states. Let L
be a unital logic. We say that L has the universal state extension property if
the following condition is satisfied: Let L be a sublogic of a unital logic K.
Then every state of L extends to a state of K . Following [10, 11, 31, 32] we say
that a C*-algebra M has the Gleason property if every state on the projection
logic P(M) extends to a linear state (=positive normalized functional) on M .
Let us first observe that M has the Gleason property whenever P(M) has the
universal state extension property. Indeed, if M is viewed as a unital subalgebra
of the type I, von Neumann factor N, where n > 3, then P(M) is a sublogic
of P(N). Suppose that P(M) has the universal state extension property. Then
every state o of P(M) can be extended to a state ¢ on P(NN). According to
[10, 11, 31, 32], § extends to a linear state of V. Conversely, the main result of
this section says that for important class of C*-algebras the Gleason property
already implies the universal state extension property.

THEOREM 2.1 ([14]). Let M be a unital C*-algebra such that every maximal
abelian subalgebra of M is the norm closed linear span of its projections. If M
has the Gleason property, then P(M) has the universal state extension property.

As a corollary of the previous theorem we obtain, e.g., that every projection
logic of a von Neumann algebra not containing type Iy direct summand has the
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universal state extension property. This generalizes hitherto known results about
universal state extension property of Boolean algebras and Hilbert-space logics
[16, 26]. In physical interpretation Theorem 2.1. means that any enlargement
of the quantum system given by a von Neumann algebra formalism imposes no
restriction on its physically admissible states.

COROLLARY 2.2 ([14]). Let M be a von Neumann algebra not containing
type Is direct summand. Let J be a norm closed (two-sided) ideal in M . Then
the projection logics of both algebras J + I and M/J have the universal state
extension property. '

By further analysis it can be shown that the extensions guaranteed by The-
orem 2.1 can by taken always linear in some linear structure associated with a
larger logic. To this aim let us introduce the following notions. Let L be a logic
with the nonempty state space S(L). Let us denote by A®(L) the real Banach
space of all bounded real affine functions on S(L) with supremum norm. In
the sequel we will follow the general theory of order unit norm spaces (see, e.g.,
[3, 17, 29]). Endowed with the ordering f < g & f(s) < g(s) for all s € S(L),
the space Ab(L) forms a complete order unit norm space with the order unit
ur, (the constant function on S(L) equals 1). A linear functional p on A°(L)
is called a state if it is positive and if po(ur) = 1. Let e;, denote the canonical
evaluation mapping of L into A®(L) given by the formula ez (a)(s) = s(a) for
all a € L and s € S(L). (See, e.g., [6, 20, 28] for the convex theory of state
spaces of quantum logics.)

THEOREM 2.3 ([14]). Let M be a unital C*-algebra with the Gleason prop-
erty and let every maximal abelian subalgebra of M be a norm closed linear
span of the projections. Let L be a unital logic containing P(M) as a sublogic.
Then every state of P(M) extends to a state of L. Moreover, the latter state

is of the form foer,, where f is a state of A%(L).

According to Theorem 2.3, every state of P(M) can be viewed (up6n an
obvious identification) as a restriction of the linear state of A°(L). Analogously
we can reformulate Corollary 2.2, too.

Let us remark in the conclusion of this section that its results can be gen-
eralized by using [9] for all bounded measures with values in finite-dimensional
spaces.

3. Commutative properties of states

The second part of the paper deals with various types of states on von Neu-
mann algebras and JBW algebras. We provide a characterization of some prop-
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erties of states familiar within classical measure theory. It turns out that some
concepts of commutative measure theory have rather unexpected counterpart in
the noncommutative framework. All results in this section were proved jointly
by L. J. Bunce and the author (see [4, 5]).

At first we shall review some results on Jauch—Piron states. Let M be a von
Neumann algebra. A state o of P(M) is said to be Jauch—Piron if p(eV f) =0
whenever e, f € P(M) with g(e) = o(f) = 0 (see, e.g., [19] for a physical
explanation of this concept). We say that a state ¢ of P(M) is o-additive, if

o0 o0

g( . pn) =Y o(pn), whenever (p;) is a sequence of orthogonal projections in
=1 i=1 .

M.

THEOREM 3.1 ([4]). Let M be a von Neumann algebra without abelian and
type I part. A pure state of P(M) is Jauch-Piron if and only if it is o-additive.

A more detailed description of pure Jauch-Piron state is discussed in [2, 15]. A
oo

state o of P(M) is said to be regular if g( by en) = 0 whenever (e,) C P(M)
n=1

with p(en) =0 for all n € N. It turns out that a pure state is o-additive if and

only if it is regular. Using regularity instead of o-additivity we can generalize

Theorem 3.1. in the following way:

THEOREM 3.2 ([4]). Let M be a von Neumann algebra without type Iy part
satisfying one of the following conditions:

(i) M is a factor.
(il) M has no locally o-finite direct summand.
(ili) M is o-finite type III.
Then a state ¢ of P(M) is Jauch—Piron if and only if it is regular. Moreover,
if M is o-finite then p is Jauch—Piron if and only if ¢ has a support.

As can be demonstrated by examples, these results cannot be extended to all
von Neumann algebras. Nevertheless, there exists an intimate relation between
Jauch—Piron property and non-singularity of states on centers of hereditary sub-
algebras (for details see [4]).

In the conclusion of the paper we shall consider subadditive states on JBW
algebras. Let M be a JBW algebra. A state p of P(M) is said to be subadditive
if oleV f) < o(e)+ o(f) for all e, f € P(M). Let us observe that subadditivity
can be viewed as a stronger form of the Jauch—Piron property. While all states on
abelian algebras are trivially subadditive it turns out that the only subadditive
states on general P(M) are tracial states. We recall that a state o of M is said
to be tracial if o(Uz(y?)) = 0(Uy(z?)) for all z,y € M, where Uy : M — M is
the map defined by U,(y) =2zo0(zoy) —z?0y.
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THEOREM 3.3 ([5]). Let M be a JBW algebra and let o be a subadditive
state on P(M). Then g extends uniquely to a tracial state on M .

An analogous result can be derived also for completely additive semifinite
positive measures. We recall that a measure g: P(M) — [0,00] is semifinite, if
for each projection e there is a net of projections e, /' e with p(eq) < 00, for
all .

THEOREM 3.4 ([5]). Let M bea JBW algebra and ¢ a subadditive completely
additive semifinite measure on M . Then M extends uniquely to a normal semi-
finite trace on M .

Traces in JBW algebras have been extensively studied in literature [1, 13,
24] and, in particular, they are important for the structure theory of JBW as
well as von Neumann algebras. Our results provide purely lattice and measure
theoretical characterization of traces on JBW algebras.
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