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YOSIDA-HEWITT DECOMPOSITIONS
OF RIESZ SPACE-VALUED
MEASURES ON ORTHOALGEBRAS

Paoro DE Lucia — ANATOLIJ DVURECENSKIJ

ABSTRACT. We prove generalizations of the Yosida-Hewitt decomposition the-
orem for positive finitely additive measures defined on orthoalgebras (generalizing
Boolean algebras and orthomodular posets = quantum logics) with values in a
Dedekind complete Riesz space.

1. Introduction

The classical result of Yosida-Hewitt [15] has received attention of
many authors [1, 4, 14, 2, 5, 6, 3] studying finitely additive measures on or-
thomodular posets. In [4, 3], Yosida-Hewitt-type decomposition theorems for
Dedekind’s complete normed Riesz space-valued measures have been presented.

In the last years, axiomatic models describing the propositional system of
quantum mechanics are very important. Such are quantum logics (= ortho-
modular posets), or, more generally, orthoalgebras, originally introduced by
Randall and Foulis [12, 13].

In the present note, we generalize the Yosida-Hewitt decomposition theo-
rems for Riesz space-valued measures on orthoalgebras. These decompositions
generalize those ones from [3, 4].

2. Orthomodular posets

An orthomodular poset (OMP) is a partially ordered set L with an ordering
<, the smallest and greatest elements 0 and 1, respectively, and an orthocom-
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plementation L: L — L such that
(1) atl =aq forany a € L;
(i) aVal=1foranya€L;
(iii) ifa <b, then bt <a';
(iv) ifa <b* (and we write a L b), thena Vb€ L;
(v) ifa<b,thenb=aV (aVb')L (orthomodular law).
We recall that from the above axioms we have de Morgan laws

(\/cu)L = /\a;L and (/\ ai)l = (\/azl) (3.1)
(2 K3 k3 k3

saying that if one side of an equality exists in L, so exists the second one,
and both are equal. If in an orthomodular poset L the join of any sequence
(any system) of mutually orthogonal elements exists, we say that L is a o-
orthomodular poset (a complete orthomodular poset). An orthomodular lattice is
an orthomodular poset L such that, for any a,b € L, a Vb exists in L (using
de Morgan laws, a A b exists in L, too). A distributive orthomodular lattice is
called a Boolean algebra. We recall that an orthomodular lattice L is a Boolean
algebra iff for any pair a,b € L there are three mutually orthogonal elements
ai,bi,c € L such that a = a3 Ve, b = by V c. For more details concerning
orthomodular posets and lattices see, e.g. [9, 11].

One of the most important cases of orthomodular lattices is the system of
all closed subspaces, L(H), of a real or complex Hilbert space H, with an
inner product (-,-). Here the partial ordering, <, is induced by the natural
set-theoretic inclusion, and M+ = {z € H: (z,y) =0 for any y € M}. Then
L(H) is a complete orthomodular lattice, which is not a Boolean algebra, if
dimH #1.

If S is an inner product space (not necessarily complete), denote by FE(S)
the set of all splitting subspaces of S, i.e., the set of all M C S such that
M 4+ M+ = S. Then E(S) is an orthomodular poset which is not necessarily
a c-orthomodular poset. We recall that according to [7], S is complete if and
only if E(S) is a o-orthomodular poset.

3. Orthoalgebras

An orthoalgebra is a set L with two particular elements 0, 1, and with a
partial binary operation @ : L x L — L such that for all a,b,c € L we have
(i) f adbe L,then bda€ L and a®b=0Da;
(ii) if bdce L and a® (bd®c) € L,then a®dbe L and (a®b)Pce L,
and a® (b®c)=(a®b)Dc;
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(iii) for any a € L there is a unique b € L such that a @b is defined, and
a®b=1;
(iv) if a @ a is defined, then a = 0.
If the assumptions of (ii) are satisfied, we write a @ b @ ¢ for the element
(a@b)®dc=ad® (b®c) in L.

Let a and b be two elements of an orthoalgebra L. We say that (i) a is
orthogonal to b and write a L b iff a®b is defined in L; (ii) a is less or equal b
and write a < b iff there exists an element ¢ € L such that a L ¢ and a®c =5
(in this case we also write b > a); (iii) b is the orthocomplement of a iff b is a
(unique) element of L such that b 1 @ and a ®b =1 and it is written as a= .

In (8], there are proofs of the following statements:

PROPOSITION 3.1. Let a,b and c be elements of an orthoalgebra L. Then
() alb<e bla.
(i) ala = a=0.
(i) all & a=0.
(iv) ottt =a.
(v, 1t=0 and 0+=1.
(vi) albdb = al(a®db?t, ad®(a®b)t=0b".
(vii) alb & a<bt.
(viii) a<b = b=a® (a®bl)L.
(ix) a®b=ad®c = b=c.
(x) a®b<a®c = b<e.
(xi) 0<a<1,and < is a partial ordering on L.
(xil) a<b =bt<at.
(xiii) aAat=0, aVat=1.
(xiv) alb aVbeEL =a®b=aVh.

We see that if L is an orthomodular poset and a®b := a\Vb whenever o L b
in L, then L with 0,1,® is an orthoalgebra. The converse statement does not
hold, in general, as it follows from the example of R. Wright [8]:

EXAMPLE 3.2. Let L ={0,1,a,b,c,e, f, al,bl,cL,dJ‘,eJ‘,fL} with a ® b
dde=ct, bPc=edf =al, cpd = fOa=¢el, cpe=dt, adc=
bl, e®a = fl is an orthoalgebra that is not an orthomodular poset.

We recall that an orthoalgebra L is an OMP iff a L b implies aVbe L.

For a,b € L with a < b, we define the difference of a in b as the unique
element ¢ in L such that a ®c=b, and we write ¢ = b a. It is evident that
bSa=(a®bt)t.
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4. Riesz spaces

Let V be a real vector space with a partial ordering < such that
(i) ifz,yeV,thenxzAyeV, zVyeV;
(i) ifz<y,then z+z<y+z,forany z € V;
(ii) if z <y, then ar < ay for any a € Ry,
then V is said to be a Riesz space. We define for any z € V:2T =z Vv 0,
7 =(-z)VO0, |z|=2"+2z~. Wehave for all z,y € L (i) z =27 —z~; (i)
|z| =0 iff z =0;(iii) |z4+y| < |z|+]|y|. By V4 we denote the set of all positive
elements of V', ie., Vy ={z€V:z>0}.
It is well-known that V is a distributive lattice, where the following equalities
hold:

a+\/ai:\/(a+ai), a+Aai:/\(a,+ai), (4.1)

a—\/ai:/\(a—a,,;), a—/\ai:\/(a—ai), (4.2)
K3 (2 (3 K3

providing that if one side of above equalities exists in V', so exists the second
one, and both coincide.

A Riesz space V is said to be Dedekind complete if, for any non-void ma-
jorized subset B of V', \/B: =\/{b: b € B} existsin V.

A non-empty set D of V is directed downwards (upwards), and we write
D | (D1),if for any z,y € D there exists z € D such that 2 <z, 2 <y
(z >z, 2z >y). Two downwards directed sets {z;: ¢t € T} and {y,: t € T}
indexed by the same index set T' are called equidirected if, for any s,t € T,
there exists v € T such that z, < z; and z, < z; as well as y, < ys and
Yp <y . A similar definition holds for upwards directed sets.

Let €V and D CV.Wesaythat D Tz if D1 and =z =\/D. Dually we
define D | z,ie, D | and z = AD.If {f;} and {g;} are equidirected, then
[10, Theorem 15.8]: .

{31 £ {9} tg = {fi+a}Tf+y, (4.3)
3l fidarleg = {fita}rlf+g. (4.4)

5. Measures on orthoalgebras

Throughout this paper by L we understand an orthoalgebra, and V is a
Dedekind complete Riesz space. Define the following natural ordering <, on
VL uy <o po iff pa(a) < po(a) forany a € L.

104



YOSIDA—HEWITT DECOMPOSITIONS OF RIESZ SPACE-VALUED MEASURES

We say that an element p € V% is a finitely additive measure if p(a @ b) =
(a) + p(b) whenever a @b is defined in L. Then p(0) = 0, and p(at) =
w(l) —pla), a€ L. If u: L — Vi, then a <b implies p(a) < u(b).

To define o-additive and completely additive measures on L, we introduce
the following notions.

Let F ={a1,...,an,} C L. Recursively we define for n > 3

a1 ® - Bap: =1 D Dap—1) D an, (56.1)

supposing that a; @ - - ®a,_1 and (a1 D - Dan—1) Day, exist in L. From the
associativity of @ in orthoalgebras we conclude that (5.1) is correctly defined.
Definitorically we put a1 ® - ®ap, = a1 if n =1, and a1 ®---Da, =0
if n = 0. Then for any permutation (i1,...,%,) of (1,...,n) and any k with
1 <k <n we have

a1 ® - Bap=aiy B Day,, (5.2)
a1 @D Ba,=(a1 P - Dag)® (apt1 D Pan). (5.3)

We say that a finite set F' = {a1,...,a,} of L is € -orthogonalif a1®---®a,
exists in L. In this case we say that F' has @-sum, € a;, defined via
i=1

n

Da=a & Gay. (5.0

i=1

It is clear that two elements a and b of L are orthogonal, i.e., a L b, iff
{a,b} is E-orthogonal.

An arbitrary subset G of L is @-orthogonal if every finite subset F' of G
is @-orthogonal. If G is EP-orthogonal, so is any its subset. An D-orthogonal

subset G = {a;: i € I} of L has @-sumin L, written as € a;, if in L there
i€l
exists the join

@ai ::\/®ai, -(5.5)

iel F 4eF

where F' runs over all finite subsets in I. In this case, we also write G =
@ a; .
i€l

It is evident that if G = {ay,...,a,} is @ -orthogonal, then the -sum
defined by (5.4) and (5.5) coincide.

We say that an orthoalgebra L is a complete orthoalgebra ( o-orthoalgebra)
if, for any @D-orthogonal subset (any countable @-orthogonal subset) G of L,

105



PAOLO DE LUCIA — ANATOLIJ DVURECENSKIJ

there exists the @D-join in L. It is straightforward to verify that an orthoalgebra,

L is a o-orthoalgebra if, for any sequence {a;} in L with a; < as < ---, the
o0

join \/ a; exists in L. In addition, the following statement holds:
i=1
PROPOSITION 5.1. (1) If L is a complete orthoalgebra, then any chain C
in L has the join \/C in L.
(2) If L is an orthoalgebra such that any upwards directed system D C L
“has a join in L,! then L is a complete orthoalgebra.

Proof. (1) Let C be a chain in L. Denote by D the set of all poss-
ible differences b © a, where a < b, and a,b € C U {0}. Since a = a© 0,
it follows that C' € D. We claim that D is an @-orthogonal family in L.
Indeed, let di,...,d, € D be given. Then d; = b; © a;, where a; < b;,
a;,b; € C U {0}. Therefore, there exists a set {d},...,d5,} € C such that
{a1,...,an, by,... b} ={d},...,d5,},and df <d} <..- < ds,.

Put e, =dfed;_,, i =1,...,2n, where dy := 0. Then, for any k with
1 <k <2n, we have

di=e1® --Dey €L,

and, if 1 <j < k <2n, then
d,’;@d;:ejﬂ@---@ek. (5.6)

Consequently, for any d; = b; S a;, 1 = 1,...n, there exists a finite subset Fj
n
of {1,...,2n} such that d; = @ e;, which by (5.6) implies @ d; € L.
JEF; i=1
Since L is a complete orthoalgebra, there exists ag = € D . Because C C D,
we have, for any a € C', a < ag. Now, for some c€ L, let a <c forany a € C.
Then for all a,b € C with a < b we have b© a < b < c. Therefore, from the
first part of the present proof, we conclude

=1

which means ag < ¢, and, finally, \/ C = aq.

(2) The second statement follows easily from the observation, that if

{a;: i € I} is an @-orthogonal set in L, then {bp := @ a;: F is a finite
ieF

subset of I} is an upwards directed family in L having a join in L. O

1See the same definition as that for Riesz spaces.
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A mapping u € Vf is said to be a completely additive measure on L if, for
any @D-orthogonal system {a; : i € I}, for which the P-sum €P a; exists in

i€l
L, we have for any finite subset F' of I
1#(@ ai) — Zﬂ'(ai) < b, (5.7)
il icF

where {br} | 0 and bp, < bp, whenever F; C F;. Due to (4.4), (5.7) is defined
correctly, and we shall write u(@ ai> = ula;).

i€l i€l
If the index set I in (5.7) is only countable, we say that p is o-additive, and
o0 o0
we write /.L(GB ai) = > pla;).

Since any Dedekind complete Riesz space is Archimedean, i.e., if, for some
z,y € V with nz <y for every integer n, we have z < 0, we conclude that
1(0) = 0. Indeed, for any finite subset F' of I with ‘u(@ a,z-) — > pla)| <bp,

i€l i€F
where a; = 0 for any ¢ € I, we have (card F — 1) | u(0)] < b | 0, so that
u(0) =0.

Moreover, any completely additive measure is o-additive, and any o-additive
measure is finitely additive.

We denote by a(L,V)4+, 0a(L, V)4, and ca(L, V) the sets of all positive fi-
nitely additive, o-additive, and completely additive measures, respectively, from

L
Ve

It is not hard to prove that a positive additive measure p on L is g-additive,

or completely additive, iff

{g““”)} s (@ “) (5.8)
{E:MWJ}FTM(GBQ>, (5.9)

i€EF i€l

or

o0

where F' runs over all finite subsets of I, whenever @ a;, or € a;, respectively,
i=1 i€l

exists in L.

6. Yosida—Hewitt decomposition
In the present section, we prove the main results of the paper — generalization

of the Yosida-Hewitt decomposition theorem for Dedekind complete Riesz space-
valued measures on orthoalgebras. This result generalizes that one in [3] and [4].
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We recall that our decompositions do not yield the uniqueness of that one.
Some partial results concerning the uniqueness are presented in [3]. An element
p € a(L,V); is said to be weakly purely additive if

N<nh n€ca(l,V)y = n=0. (6.1)

If (6.1) holds for n € oa(L,V)4, p is said to be purely additive. An element
u € ga(L, V) is said to be purely o-additive, if (6.1) holds.

THEOREM 6.1. Every positive finitely additive measure p on an orthoalgebra
L with values in a Dedekind complete Riesz space V can be expressed as a sum

p=E&+mn,
where £ € ca(L,V)+, and 7 is a positive weakly purely additive measure on L.

Proof. First we observe that if y; and po are elements of ca(L, V), , then
w1+ pe € ca(L, V)4, where (u1 + pe2)(a): = pi(a)+ p2(a), a € L. Indeed, this
follows from (5.9) and (4.3).

Define 'y, = {vy € ca(L,V)4+: v <, p}. Then I', is non-empty because it
possesses the zero function. Let I'g = {;} be a chain inT',, with respect to the
natural ordering <, , and define

Yo(c) = \/'yi(c), ce L.

Since 0 < 7;(c) < 7i(1) < (1), and V is Dedekind complete, vo(c) is defined
correctly on L. Moreover, vy € a(L,V), . Indeed, let a ® b be defined in L.
Then {v(a)} and {7;(b)} are equidirected, and ~;(a) T v0(a), ¥i(b) T Yo(b)-
By (4.3) we conclude that v;(a ®b) = ((vi(a) + (b)) T (vo0(a) +v0(b)) . Since
7i(a @ b) T vo(a ®b), we obtain vo(a ® b) = vo(a) + 70(b) -

From the definition of o we conclude that {vo(c)—7i(c)} | 0 forany c€ L.
Now let ¢ € L be arbitrary. Due to inequalities

0 < 70(c) — 7i(e) = 10 (1)%(1) — (yolct) — yilch)) <
<(1)—v(1) !0,

we conclude that {fyo(c) — vz-(c)} 1 0 uniformly for any c€ L.
We claim to show that vy € ca(L,V)+. Let a = @ a; exists in L. Then,

for any finite subsets F' of I, have <
0 < (@) — > 70(a;) = (a o (P aj)) =
JjeEF jEF
= (’Yo (a o (P aj)) — % (a o (P aj))) + 7 (a o (@ aj)) <
JEF JEF JEF
< pi+ b,
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where {p;} | 0, {b%}F | O for every ¢, and F is any finite subset of I. Then

0 < Yo(a \/Z70(a])<p1l0

F jeF

so that yo(a) = Z Yo(a;) .

Therefore, thls W1th Yo <n p means that 7o is a majorant of I'g in I',. It
follows from Zorn’s lemma that I',, contains a maximal element ¢ which belongs
to ca(L,V)+ and & <, p.

Put n = u— &, clearly that n € a(L, V), . To finish the proof, we show that
n is weakly purely additive. Let v € ca(L,V)4 be such that vy <, n=p—¢,
so that v+ & <, p. Because v+ ¢ € ca(L, V)4, the maximality of £ in T,
implies v = 0. O

THEOREM 6.2. Every positive finitely additive measure p on an orthoalgebra
L with values in a Dedekind complete Riesz space V' can be expressed as a sum
p=¢&+mn, where £ € oa(L,V),, and 7 is a positive purely additive measure
on L.

Proof. It follows the same ideas as the proof of Theorem 6.1, it suffices to
change ca(L,V)+ to oa(L,V)4. O

THEOREM 6.3. Every positive o-additive measure p on an orthoalgebra L
with values in a Dedekind complete Riesz space V can be expressed as a sum
uw=¢&+mn, where £ € ca(L,V)4, and n is purely o-additive.

Proof. It is identical with that in Theorem 6.1 changing a(L,V)y to
O'd(L, V)+ . O

Acknowledgement. The second author is very indebted to Mathematical Insti-
tute of the University of Naples for their hospitality during his stay in September,
1992, when the present paper has been initiated.

This research is partially supported by Ministerio dell’ Universita e della
Ricerca Scientifica e Technologica, Italy, and by the grant G-368 of the Slovak
Academy of Sciences, Slovakia.

REFERENCES

[1] AARNES, J. F.: Quasi-states on C*-algebras, Trans. Amer. Math. Soc. 149 (1970),
601-625.

[2] D’ANDREA, B. A.—De LUCIA, P.—MORALES, P.: The Lebesgue decomposition and
the Nikodym convergence theorem on an orthomodular poset, Atti Sem. Mat. Fis. Univ.
Modena 39 (1991), 137-158.

109



PAOLO DE LUCIA — ANATOLIJ DVURECENSKIJ

[3] De LUCIA, P.—DVURECENSKIJ, A.: Decompositions of Riesz space-valued measures
on orthomodular posets, Tatra Mountains Math. Publ. 2 (1993), 224-239.

[4] De LUCIA, P.—MORALES, P.: Decomposition theorems in Riesz spaces, Preprint Univ.
di Napoli (1992).

[5] DVURECENSKIJ, A.: Regular measures and completeness of inner product spaces, Con-
tributions to General Algebras, Vol. 7, Holder-Pichler-Tempski Verlag, 1991, 137-147.

[6] DVURECENSKIJ, A.: Regular charges and completeness of inner product spaces, Atti
Sem. Mat. Fis. Univ. Modena 41 (1993), 269-285.

[7] DVURECENSKIJ, A.: Completeness of inner product spaces and quantum logic of split-
ting subspaces, Lett. Math. Phys. 15 (1988), 231-235.

[8] FOULIS, D. J.—GREECHIE, R. J—RUTTIMANN, G. T.: Filters and supports in or-
thoalgebras, Internat. J. Theoret. Phys. 31 (1992), 787-807.

[9) KALMBACH, G.: Orthomodular Lattices, Academic Press, London, New York, 1983.

[10) LUXEMBURG, W. A. J.—ZAANEN, A. C.: Riesz Spaces I, North-Holland, Amsterdam,
London, 1971.

[11] PTAK, P.—PULMANNOVA, S.: Orthomodular Structures as Quantum Logics, Kluwer,
Dordrecht, Boston, London, 1991.

[12] RANDALL, C.—FOULIS, D.: New definitions and theorems, University of Massachusetts
Mimeographed Notes, Amherst, Massachusetts, Autumn 1979.

[13] RANDALL, C.—FOULIS, D.: Empirical logic and tensor products, Interpretations and
Foundations of Quantum Theory (H. Neumann, ed.), Vol 5, Wissenschaftsverlag, Bibli-
ographisches Institut, Mannheim, 1981, 9-20.

[14] RUTTIMANN, G. T.: Decomposition of cone of measures, Atti Sem. Mat. Fis. Univ.
Modena 38 (1990), 109-121.

[15] YOSIDA, K.—HEWITT, E.: Finitely additive measures, Trans. Amer. Math. Soc. 72
(1952), 44-66.

Received March 10, 1993 Dipartimento di Matematici e Applicazioni “R. Caccioppoli”

Universita degli Studi di Napoli “Federico I1”
Complesso Universitario, “Monte S. Angelo”
Via Cintia

1-801 26 Napoli

ITALIA

Mathematical Institute
Slovak Academy of Sciences
Stefdnikova 49

SK-814 73 Bratislava
SLOVAKIA

E-mail: matedvur@savba.sk

110



