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ON SOME AUTOMORPHISM GROUPS OF LOGICS

FRANTISEK KATRNOSKA

ABSTRACT. In this paper, we deal with a group of automorphisms of logics.
The results concern mainly with the logics of idempotents of rings. A binary
operation with orthocomplementation on the logic U(R) of all idempotents of an
associative ring R with identity are defined. The binary operation is in general
non associative and non commutative. The properties of the left Jordan groupoid
are then studied.

1. Introduction

The study of automorphisms of logics and orthomodular lattices has its origin
in explanation of the role of some symmetry groups appearing in quantum the-
ories. The first attempt was made in the paper [2] of Emch and Piron
and later (1977) for denumerable Boolean algebras by Mc Kenzie [11].
G. Kalmbach [7] has shown that for each group G there exists such logic
L that the group Aut(L) of all automorphisms of L is isomorphic with G.
A similar result for finite groups was obtained by G. Schrag [15]. Kallus
and Trnkova [8] exhibit a construction of logics with given automorphism
groups and given atomistic sublogics. M. Navara [12] presents a construc-
tion of logics with given centers state spaces and sublogics. The paper [13] of
M. Navara and I. Tkadlec contains similar results as will as a section
which is devoted to the automorphism group of concrete logics. Further papers
(1], [3]-[5] and [14], [16] concern also the automorphism groups of the set of all
states of the logic L.

The present contribution is devoted to the study of the automorphism groups
of logics of idempotents (or projectors) of the rings. The last section includes
also the considering of the operations which have been introduced on the logics
U(R) (or P(R)) of all idempotents (or projectors) of the ring R.

The familiarity with such notions as logic, orthomodular lattice, Boolean
algebra, block, orthoisomorphism is assumed (see also [6]).
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2. Basic notions

Let (L,<,0,1,) denote an orthoposet.

DEFINITION 1. An automorphism of L is a bijection o« : L — L such that
both a and o' preserve the orthocomplements and partial ordering. (Thus
they preserve also all joins and meets which exist in L.)

DEFINITION 2. Let (L,<,0,1,”) be an orthoposet then two elements p,q € L
are compatible if they are contained in a Boolean subalgebra of L. In this case
we write p «+ q. By C(L) we denote the center of L, i.e., the set C(L) =
{c€ L;c+ d foreach d € L}.

DEFINITION 3 ([9]). Let (L,<,0,1,) be an orthoposet. The non-empty sub-
set B, 0# B C L is called an M-base if

(Bl) pe B, p<q implies q € B,

(B2) card{{p,p'} N B} =1 foreach p€ L.

If p < ¢ we say that p, ¢ are orthogonal and we write then p L ¢.

In [9], I have shown that the A —base is identical with the maximal subset
of mutually non-orthogonal elements of L and I have given also some other
characterization of the M-base. In the present paper, I will consider the logics
of all idempotents (or projectors) of the ring R.

All the considered rings are supposed to be associative and have identity.

DEFINITION 4. Let R be aring. An element e € R is said to be an idempotent
of R if e? =e. If thering R is a *ring with the involution #, then the element
e € R is said to be a projector if e = €% = e*.

Now the symbol U(R) stands for the set of all idempotents of R. In case
that R is a *ring, let P(R) be the set of all projections of R. It is clear that
P(R) C U(R).

When R is the field or integral domain, then U(R) = {0,1} and if R is a
Boolean ring, then U(R) = R. It is well known [10] that the set of all idempo-
tents of a ring R (or the set P(R) of all projectors of *ring) is an orthocomple-
mented orthomodular poset with respect to the order p; < ps & pipz = pop1 =
p1, and the orthocomplement p’ =1 —p, where p;,ps,p € R.

Now we will consider the logics of all idempotents (or projectors) of the
*xring R. First we introduce some necessary lemmas.

LEMMA 1. Let R be an associative ring with identity and let e € R be an
idempotent of R. Then the element a =1 — 2e is regular and a =a~1 .

Proof. It is clear that a™! = (1 —2e)(1 —2¢) =1 —4e+4e? =1. O
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DEFINITION 5. Let R be an associative ring with identity. The bijective map-
ping o : R — R is said to be an automorphism of R if
(i) o(1)=1,
(i) a(a+0b) =ala)+a(b), a,b € R,
(iii) a(ab) = a(a)a(db), a,b € R.Ifthering R is a *ring, then we moreover
require,

(iv) afa*) = [a(a)}*.

LEMMA 2. Let R be an associative ring with identity and let a € R be a
regular element of R. Then the mapping o, : R — R defined by the identity

aq(z)=a"'za, z€R, (1)

is an automorphism of the ring R.
Proof. The proof is simple and clear. O

LEMMA 3. Let R be an associative ring with identity, further let p € U(R)
and a be an automorphism of the ring R. Then a(p) € U(R). In the case

when a is a regular, selfadjoint element of the *ring R, such that a®? =1, then
aq(p) € P(R) provided, that p € P(R).

Proof. The proof is clear. O

Let a be an automorphism of the ring R. We denote by a|U the restriction
of a onto U(R).

LEMMA 4. Let R be an associative ring with identity. If o is a ring automor-
phism of R, then «|U is an automorphism of the logic (U(R), <, 0, 1,’) onto
itself.

Proof. It is clear that (a|U)(1) =1 and («|U)(0) = 0. Let p,q € U(R)
and suppose that p L ¢. Then according to [10], it follows that pg = gp = 0,
and we have a(pg) = a(gp) = a(p)a(q) = a(q)a(p) = a(0) = 0. Therefore
a(p) L a(q) and (a|U)(pV q) = (a|U)(p+q) = (|U)(p) + («|U)(q) (See [10)).

Let p € U(R), then pX = 1 —p € U(R), and we have (a|U)(pt) =
(@U)(1 —p) = (@U)(1) = (a|U)(p) = 1 = (a|U)(p) = [a(p)]* O

)

Similar proposition turns out to be valid also for the logic (P(R), <,0,1,
of projections of a *ring R. We denote now by Aut(U(R)) the group of all au-
tomorphisms of the logic U(R) (or Aut (P(R)) the group of all automorphisms
of the logic P(R) of a *ring R). The subgroup Aut;(U(R)) of the group
Aut(U(R)) is defined by setting Aut;(U(R)) = {ca; a is a regular element of
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R, and the identity (1) holds}. It is obvious that Aut;(U(R)) C Aut(U(R)).
The subgroup Aut;(U(R)) is called the subgroup of all inner automorphisms
of U(R). The following example shows that it may happen that Aut;(U(R)) C
Aut(U(R)).

EXAMPLE 1. Let F; be a field consisting only of two elements 0 and 1. One
can show that the set

(3 9o (3 2)n ()
(B D)r (D)0 (2 D)o

is a lattice of idempotents of the ring Mass(F3) of all (2,2) matrices over Fjy.
The set Aut;, (U (]szg)) contains only two elements: the identity and «g, where

(01
S \1 0)"
But the group Aut(U(Ms2)) has also such element 3 that 3(0) =0, (1) =1,
B(P) = P*, B(Q) = Q. This shows that 3 € Aut (U(ﬂ/[gg)) \Auti(U(ﬂ;/[gz)) :
If R is a ring, then we remember that C(U(R)) denotes the center of the
logic U(R) of all idempotents of R. The set Z(R) ={c€ R; ac=ca, a € R}

will be called the center of R. Evidently Z(R)NU(R) C C(U(R)) . The following
assertion gives a sufficient condition for Z(R) NU(R) = C(U(R)).

PROPOSITION 1. Let R be an associative ring with the identity. If the set
U(R) is the set of all generators of R, then Z(R)NU(R) = C(U(R)).

Proof. Let p € C(U(R)), then g < p for each ¢ € U(R). Therefore
gp = pq . From the condition of this proposition it follows that ap = pa for each
a € R. But this implies that p € Z(R)NU(R). O

COROLLARY. Let M,,(K) and U(]\Lm(K)) be the ring of all (n,n)-matrices
over the field K , respectively and the set of all idempotents of M, (K). The
Proposition 1 implies that C(U(Mnn(K))) = {0,1}, i.e., the logic U(Mpn(K))
is irreducible. The same result is obtained for the logic P(H) of all closed
projections of the Hilbert space H .
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DEFINITION 6. Let R be an associative ring with identity. The ideal I of R
is said to be a completely prime ideal, if ab € I, a,b € R implies that a € I or
b € I. The set Spec(R) of all completely prime ideals of R is called a completely
spectrum of R.

Now we can characterize some of the AM—bases of the logic U(R).

PROPOSITION 2. Let R be an associative ring with identity and let I be a
completely prime ideal of R. Then the set B = (R\ I)NU(R) is an M-base
of the logic U(R).

Proof.

(i) Clearly 1 € B.

(ii) Let p € U(R). Because p(1 —p) =0 € I and I is a completely prime
ideal, we must have p € I or 1 —p € I. But at the same time it cannot
be pe€ I, 1 —p € I because we would then have p+ (1 —p)=1¢€1I.
From this it follows that for each p € U(R) card({p,1 —p} N B) =1.

(iii) Let p; € B, p2 € U(R) and let p; < py. Then it holds that pips =
pap1 = p1 and we have 1 — p; € I. Therefore ps —p; = pa(1 —p1) € I
and we obtain 1 —py = (1 —p;1) — (p2 — p1) € I. But this means that
p2 ¢ I and py € (R\I)NU(R) =B and B is an M-base. O

COROLLARY. According to Proposition 2, there is a mapping s from the set
Spec(R) of the ring R into the set B(U(R)) of all M —bases of the logic U(R).
A mapping s: Spec(R) — B(U(R)) is defined by setting s(I) = (R\I)NU(R),
for each I € Spec(R).

PROPOSITION 3. Let (L,<,0,1,') be a logic and let a be the automorphism
of this logic. Then the following assertions turn out to be valid:

(i) If p,ge L, p L q then a(p) L a(q).

(ii) If B is an M—base of P, then «(B) is also an M-base of P.

(ii1) If M(L) is the set of all M-bases of L, then the mapping a~ :
M(L) — M(L) defined by setting o~ (B) = a(B), B € M(L) is a
homeomorphism of the topological space M(L).

(iv) If p« q,p,q € L, then a(p) < a(q). If C(L) is the center of L, then
a(C) =C. If A is a block of the logic L, then a(A) is also a block
of L.

Proof. The proof is straightforward. O
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3. Some remarks concerning the direct products

Given a family L;, ¢ € I, of logics, then the set L of all sequences p =
{pi, i € I} where p; € L; for every i € I, represents the Cartesian product of
the logics L;. We will then write L = [[ L; . Now if we define the ordering and

icl
orthocomplementation in L pointwise and if I = {I;} and 0= {0;}, where I;
and 0; are the unity and the null-element in L;, respectively, then L is also a
logic.

Now we introduce two propositions.

PROPOSITION 4. Let U(R;), i € I, be the logic of idempotents of the ring
R;, and let G; = Aut(U(R;)) be the automorphism group of the logic U(R;).
Then || G; is a group of automorphisms of the logic [ U(R;).

icl iel
Proof. The proof is easy. O
Let [] U(R;) be the logic of idempotents of the ring [] R;. Put E! = {p =
i€l i€i

{pitier; pi €U(Ry), pj =05, if j#i},iel.
Now we have the following proposition:

PROPOSITION 5. Let [[ U(R;) be the logic of idempotents of the ring R =
i€l
Il R;. The sets E!, i € I, are logics of idempotents of the ring [][ R;. If
i€l i€l
p € El, g€ E}, i # j, then p L q. The sets E}, i € I, need not be the
sublogics of [] U(R;). If o is an automorphism of [] U(R;) and K is a finite
i€l €K

set of indices, then each p € [][ R; has the form p = \/ p;, p; € E!, and

i€k €K
a(p) = 3 alpy)-
i€k

Proof. It is clear that the elements p € E}, ¢ € E7, i # j are mutually
orthogonal, and that the sets E;, ¢ € I, are the logics. Now, let p € [] U(R;).

i€l
Then p can be written as p = \/ p;, p; € E;, i € I. Let a be an automor-
il
phism of [] U(R;), then a(p) = a( V p;) = > ap;). O
i€K i€K i€K

We remark only that a| E] need not be an automorphism of E!. Therefore,

if a € Aut( I U(Ri)) , then a need not have the form a = {«;}, where «;
€K

is an automorphism of U(R;).
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4. Operations on U(R) and P(R)

Let R be an associative #*ring with identity and let U(R) and P(R) be the
logics of all idempotents and of all projectors of R, respectively.

By Lemmas 1 and 2 of the second section it is possible to define the inner
automorphism «, : R — R, p € U(R) setting

ap(z) =(1-2p)z(1—-2p), z€R.

This ring automorphism induces on U(R) an automorphism a”: U(R) —
U(R).
Indeed. If ¢ € U(R), p € U(R), then we have

ag?(p) = a2(p)=[(1—2¢)p (1 —2q)* = [(1 — 2q) p (1 — 2¢)(1 — 2¢) p (1 — 2q)] =
= (1-29)p*(1 —2¢q) = (1 —2¢)p(1 — 2¢) = o/ (p).

Therefore oy (p) is an idempotent. If p,q are the projectors of the #ring R,
then a7 (p) is also a projector.

Remark. Let p,g € U(R) then it is possible to define on U(R) the following
binary operations o; and os: We put

po1q=(1-2q)p(1—2q) =p—2pq — 2qp + 4qpg,
po2q=(1—-2p)q(l—2p)=q—2pqg—2qp+4pgp.
Now we can formalize the whole situation in the following definition:

DEFINITION 7. The non-empty set X # 0 will be called a left Jordan
groupoid, if on X two operations are defined: a binary operation o : X x X — X
and a unary operation ' : X — X so that

(i) pop=pifpeX,

(i) (pog)op=po(gop), p,q€ X,

(ii) (poq)og=pif pge X,

(iv) () =p,peX,

(v) (poq) =p'oqd, pqgeX,

(vi) poq =pogq, pge X,

(vil) X has elements 0 € X and 1 € X such that pol =p, lop=1,
poO0=p, 0op=0and 0'=1.

Remark. From (i) and (iii) of Definition 4 it follows that p* o (gop) =
[(pop)og]op, if p,q € X . In general, the left Jordan groupoid is non-commutative
and also non-associative.
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EXAMPLE 2. .

1. Logics U(R) and P(R) with respect to the operations o; and orthocomple-
mentation / are the left Jordan groupoids.

Indeed. The operations o and ' are defined in Proposition 9 (see the last page).

2. The set expX, X #0, where AoB=A, A/BecexpX and ' :expX —
exp X is the set-theoretical complementation in X .

3. Let B={0,1} and let X = BT | T is a non-empty set. We define fog = f
and f'=1—f if f,g € X and let 1 be a function such that 1(¢) = 1 for
each t € T and 0 be a function such that 0(¢) =0, t € T, then X is a left
Jordan groupoid.

DEFINITION 8. Let (X,0,”) be a left Jordan groupoid and let Y be a non-
empty subset of X. If (Y,0,’) is also a left Jordan groupoid with the same
operations as X, then Y is called the Jordan subgroupoid of X .

EXAMPLE 3. Let U(R), P(R) be left Jordan groupoids, and P(R) C U(R).
Then it is clear that P(R) is a subgroupoid of U(R) according to the operations
o; and orthocomplementation ' in U(R).

PROPOSITION 6. Let X,, be a left Jordan groupoid for each 7 € T'. Then

Il X+ is a left Jordan groupoid, if the binary operation o and the unary
el
operation ' are defined coordinatewise. Let Ry and Ry be the rings (associative

and with identities) and let h : Ry — Ry be a homomorphism of Ry on R,
then h(U(Ry)) C U(Rs), but it may happen that h(U(R1)) # U(Rz).

/

PROPOSITION 7. Let (X,0,) be a left Jordan groupoid, then G is an asso-
ciative Jordan groupoid iff poq =p for each p,q € X

Proof.
a) If pog=p for p,¢g € X, then (X,0,/) is associative.
b) Let (X,0,”) be associative, then we have, according to (iii) of Definition 4,
p=(pogqlog=po(gog)=pogq. O
PROPOSITION 8. Let (X,0,) be a commutative left Jordan groupoid. If
p,q € X, then po(pogq) =g.
Proof. po(pog)=po(qop)=(pog)op=(gop)op=gq. O

COROLLARY. Let (X,0,”) be a left Jordan groupoid, then X need not be
commutative, and if it is commutative, it is not associative.

Indeed. According to Proposition 7, the associativity implies po g = p, for
p,q€ X, p#q.If X is also commutative, then p =pog=qgop = q. But this
would be in contradiction with p # q. O

20



ON SOME AUTOMORPHISM GROUPS OF LOGICS

PROPOSITION 9. Let (U(R). <,0, 1,’) be the logic of all idempotents of the
ring R. Then U(R) is a left Jordan groupoid if the operations o and ' are
defined as follows:

pog=p—2pq—2gp+4qpq for p,q € U(R) and p' =1—p, pe U(R).
Moreover, we have poqy =pogqy if qig> =qaq1 and p,q1,q € U(R).

Proof.

a) If pog; =pogy, then (1—2¢1)p(1—2g1) = (1 —242) p(1 — 2¢2) . From this
it follows that (1 — 2¢; — 2¢2 +4¢1¢2)p = (1 — 2g1 — 22 + 4g2q1)p . Suppose
that p=1, then qi1g2 = q2q1 .

b) If for p,q1,q2 € U(R) is q1g2 = g2q1, then one can show that pog; = pogs.
0

COROLLARY. Let U(R) be the logic of all elements of a ring R, and let B
be a Boolean subalgebra of U(R). Then for each p € U(R) and qi,q, € B, it
follows that pog; = pogqs.

Proof. If q1,q2 € B, then ¢; < ¢o and this implies that ¢iq2 = ¢2q; .
Now from Example 1 it follows that pog, = poq,.
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