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ON INTEGRATION IN
COMPLETE VECTOR LATTICES

JAN HALUSKA

ABSTRACT. For the Archimedean vector lattice X, the complete vector lattice
Y and the positive cone L of the vector lattice of all linear regular operators
L: X — Y, a Riemann-type construction of integral for L-valued measures is
discussed. Moreover, if Y is almost regular, a convergence theorem is proved.

Introduction

Riemann-type concepts, cf. [14], of the integral have their new Renaissance
in the vector integration theory. E.g., let X be a linear metric space but not
locally convex, and m(-)x = xA(-), x € X, where X is the Lebesgue measure
on the real line. It is clear that (because of the convergence of simple functions)
a Lebesgue integral cannot be principally defined for the measure m, although
Riemann integrals can be defined very well, cf. [6].

Denote by R, N the real line and the set of all naturals, respectively. Let
A: [a,b] — (0,00), a,b € R, a < b, be a real function. Let A(A) be the family
of all partitions D = {(E1,t1),...,(Es,ts)}, such that E; C (t; — At)),t; +
A(tj)) , where the sets F;,j = 1,2,...,J, are non-overlapping compact subin-
tervals of the interval [a,b] covering [a,b], and ¢; € E;, j = 1,2,...,J, are
chosen points. A function f : [a,b] — R is Kurzweil-integrable if there exists
a constant ¢ € R and for every € > 0 a real function A : [a,b] — (0,00),

J
such that for every D € A(A) the inequality [c— Y f(t;)A(E;)| < € holds, cf.
Jj=1

[7], Definitions 3.22, 3.24. It is known that a function is Kurzweil-integrable on
[a,b] if and only if it is Perron-integrable on [a,b] and a non-negative function
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is Kurzweil-integrable on [a,b] if and only if it is Lebesgue-integrable on |[a, b]
a,beR, a<b,ct [5].

S.I. Ahmed and W. F. Pfeffer, [1], and B. Riecan, [8], defined
a Kurzweil integral for real functions and for a non-negative Borel measure in
locally compact topological spaces. Further B. Rie&an, [9], [10]; B.Riecan
and M. Vrabelova, [11], [12], developed a generalized Kurzweil integration
to ordered spaces with some properties.

A.Sz4z, [15], proved a strong version of the fundamental theorem of calcu-
lus for his integral which generalizes the Kurzweil integral to an abstract setting.

There are few constructions of integral with respect to operator-valued mea-
sures without order structures, cf. [3]. These constructions are based on the no-
tion of semivariation (or variation) of a measure. However, this quantity cannot
be practically computed without any additional property, e.g. again considering
some order structure. Our idea is to choose suitable ideals of spaces in which
the semivariation coincides with an operator norm. The choice of these ideals
may depend on the function which we integrate. An integral is viewed in the
present paper as a linear map from a lattice of functions into another lattice.
For the Archimedean vector lattice X and the complete vector lattice Y , we
construct a Riemann integral with respect to an L-valued measure, where L is
the positive cone of the vector lattice of all linear regular operators L: X — Y .
Moreover, if Y is almost regular, a convergence theorem is proved.

1. Preliminaries

For notation and terminology concerning Riesz spaces we refer to monographs
2], [4], and [13].

Let X be an Archimedean vector lattice and Xt = {x € X; x = x V 0}.
A sequence (X;)ien is said to be (r)-convergent to x € X (we write x = (r)-
%ierrN; x; ), if there exists p € X+ (called the regulator), such that Ve > 0, 3ip € N,

Vi >ig: |x — x| < ep.

Each linear solid subspace of a vector lattice is called an ideal. If p € X T, then
the smallest ideal containing p is called an (p)-idealin X (denoted by X(p)). A
norm || - || defined on a vector lattice X is monotone if |x1| < [x2| = [[x1]| <
l|lxz2|| - It is easy to see, that X(p) = {x € X; X, 0 < A < o0, |x| < Ap} and the
Minkowski functional || - ||, of [—p,p], p > 0, is a monotone norm in X(p). In
normed lattices the convergence with a regulator implies the norm convergence,
cf. [2], p. 377. Evidently, if pe X, p> 0, x € X(p), then [x] < [|x[|, - p-

A vector lattice Y is said to be complete if every set bounded from above
has a supremum. An ideal in a complete vector lattice is a complete vector
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lattice, too. A complete vector lattice Y is said to be almost regular if the
(r)-convergence on Y is equivalent to the (o)-convergence on Y (defined as
usually). Note, that B. Z. Vulikh uses the adjective “almost regular” only for
complete vector lattices of countable type, cf. [13], VI, §4.

EXAMPLE 1.1. If Y is a complete finite dimensional vector lattice with unit,
then Y is almost regular, cf. [13], Th. VI. 4.2.

EXAMPLE 1.2. Let Y be the complete vector lattice of all sequences of reals,
such that (rp)peny € Y iff Jiq,...,9, € Niryy,...,r, #0 and 7, =0, @ €
N\ {#1,...,%}, k € N, (the positive cone of Y is defined as usually). Then Y
is almost regular and is not regular, cf. [13], VL. §5.

Let T be a non-trivial Hausdorff topological space which is to serve as a
basis space. We denote by cl(E) the closure of a set E C T. For E C T,
p € X, p> 0, define the following seminorm ||.||g, : X(p)T — [0, 0], where
€]l 2, = sup IE@)lp, £:T — X(p).

Let X,Y be two real Archimedean vector lattices. Let L(X,Y) be a space
of all linear regular operators L : X — Y, cf. [13], Definition VIIL.1.2. Let L be
the positive cone of L(X,Y), i.e., L €L if and only if for every x € Xt there
is Ixe Yt ={yeY;y=yV0}. Every additive and positively homogeneous
operator Lg: XT — YT has a unique extension to a linear operator L : X —
Y . This extension is defined by the formula L(x) = Lo(x*) — Lo(x™), where
x=xt-x", xt,x~ e X*+.

Let B be the Borel o-algebra of subsets of the set T'. Let m: B — L be an
additive reqular operator-valued measure, i.e.,

(i) E,FeB, ENF=0 = m(FEUF)=m(E)+m(F),
(ii) VE € B, Vx € X*,3r € Y*,Ve > 0,3C € B (a compact set),
30 € B (an open set), such that C C E C O and m(O \ C)x < em.

For pe X*, 7> 0, m € Y, we denote by ||m(E)|,» = |[m(E)p|», where

E € B and |- || is the Minkowski functional of [—m,n] in Y (7).

EXAMPLE 1.3. Let (S,Xs,v), (V, 2y, ), (£,Xz,9) be measure spaces with
o-finite nonnegative measures, (R,Xr,A) be the measure product of those
spaces, i.e., A = ¢ ® v @ 4 is a product measure on the generated o-algebra
Srp =YXz®®YXs®Yp on R=2x8xV.Let X, Y be two spaces of mea-
surable functions on (S,¥s,v), (V,Zy,n), respectively, X+ = {x € X; Vs €
S§:x(s) >0}, Yi={yeY;VoeV:y(v)>0}.Let »: ZXxSxV —R bea
A-measurable function. Then for every x € X,

(m(BE)x)(v) = //%(z,s,v) x(s)dv(s)de(z), E€ Xz
E S
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defines an integral operator and (m(E)x)(v) > 0 for every x € X7 if and only
if s(z,5,v) >0 Aae., (z,5,v) € ZxS XV (we consider Lebesgue integrals).
(For ‘the proof see [2], XI., p. 393.)

2. Definition of integral

A function U: T — 27 is said to be a neighborhood function if for every
te T, U(t) is a neighborhood of ¢t. By U we will denote a family of neighbor-
hood functions (it will be specified in Definition 2.2) and by Ug the set of all
restrictions Ulq(g) of functions U € U .

DEFINITION 2.1. By a partition of E € B we mean a finite set w of couples
J

{(Ej, tj); tj S Cl(Ej), U Ej = E, EiﬂEj = @, Ei,Ej € B, 7 75_], i,j =
=1

1,2,...,J}.For U € Ug , we will denote by Wg(U) the family of all partitions
w of E such that E; C U(t;), j=1,2,...,J.

Let w = {(Ez',ti); 1 = 1,2,...,[} € WE(U), p = {(Fj,zj); ] = 1,2,
...,J} € Wg(U), U € Ug . We say that p is a refinement of w if each E; i =
1,2,...,I,is a union of some members of {F;; j=1,2,...,J} and {t;; i =
L2,...,I} C{z; j=1,2,...,J}.

DEFINITION 2.2. A family U # § of neighborhood functions is said to be
satisfactory (with respect to the set system B and the topology 7 on T) if
Wg(U) # 0 for every E€ B and U €U.

EXAMPLE 2.3. The family of all neighborhood functions U is a satisfactory
family for T the compact topological space and the L-valued regular Borel
measure defined in Section 1 of this paper (can be proved analogously as Lemma
3.4 in [8]). However in general, U need not be the family of all neighborhood
functions and B the Borel o-algebra. Particularly, when considering connections
of the notion of integral and various types of integration bases, cf. [14], we
should take the corresponding families I/ of neighborhood functions and the set
systems B. For instance, in case of the classical Riemann integral, £ = [a,}],
U={U®t)=(t—r;t+r);r >0} and B={F CT; F= A\ N}, where a <b,
a,b,r,t € R, A is a finite interval and N the set of the Jordan measure zero on

R.

DEFINITION 2.4. Let a family U of neighborhood functions be satisfactory.
Let E € B. A function f: T — X is said to be w- (U, E)-integrable, m € YT,
if there exists y € Y, such that

Ve >0, 3U € Ug, Yw € Wg(U) : |S(w,0)(f, E) —y| < e, (1)
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J
where G(W,U)(f, E) = Z III(EJ) f(tj), w € WE(U), (Ej,tj) €E w, j =
Jj=1
L,2,...,J. A function f: T — X is said to be (U, E)-integrable, if there ex-
ists m € Y, such that f is - (U, E)-integrable. The value y will be called a

(U, E)-integral of the function f and denoted by y = J £ dm. The class of all
E
(U, E)-integrable functions will be denoted by Z(U, E).

In what follows, we suppose U to be a satisfactory family of neighborhood
functions U: T — 27T .

LEMMA 2.5. Let E € B, f € I(U,E). Then the integral y = [fdm in
E
Definition 2.4 is defined uniquely.
Proof. Trivial |

LEMMA 2.6. Let E € B. If f,g are (U, E)-integrable funct1ons, h=aof +¢g,
a €R, then h isa (U, E)—mtegrable function and

/hdmza/fdm—l—/gdm. (2)
E

E E

Proof. G(w,U) (h, E) = aG(w,U)(f, E) + 6(w,U) (g, E) O

LEMMA 2.7. Let E € B. The (U, E)-integral is a positive operator, i.e. if
g<gf, gf €I(U,E), then [gdm < [f dm, where g <p f if and only if
E E

g(t) < £(t) for every t € cl(E).

Proof. It is enough to show the implication 0 <g f = 0 < ff dm. This
follows from the implication 0 < f =0 < Sw,u)(f, E). § O
LEMMA 2.8. Let m be an additive regular L-valued measure defined on the
o-algebra B of Borel subsets of T. Let E € B. If f = ZJlXEJ‘Xj is a sim-

j=

ple function and U is a satisfactory family, then f € I(U,E) and [f dm =
E

J
Z m(Ej n E)Xj :
Jj=1

Proof. Same as in [9], Theorem 8. O
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LEMMA 2.9. Let Y be a complete vector lattice, E € B and the class U be
satisfactory. Then the following two assertions are equivalent:

(@) feI,E),
(i) IreYt, Ve>0,3U € Ug,Vw,ws € Wg(U):
IG(wx,U)(fa E) — &(w,,v)(f, E)| < em.

Proof. Same as in [9], Lemma 6. O
LEMMA 2.10. Let Y be a complete vector lattice. If E, F,G € B, E = FUG,
FNG=0, then

i) TU,E)CcI(U,F)NnITU,G),
(ii) for every f € I(U,E),

/fdm:/fdm—l—/fdm. (3)
F G

E

Proof. (i) Take f € Z(U, E) . By Definition 2.4, there exists 7 € YT such
that

Ve > 0, 3Ug € Ug, Yw € Wg(Ug): ’G(w,UE)(f, E) - /fdm‘ < em.
E
Then
I@(thE)(f, E) = G(MZ’UE)(f, E)I <27
for every wi,ws € Wg(Ug). Take vw',w” € Wg(Ur) and wy € We(Ug),
where Ur = Ug|ar), Us = Ug|ae) - Put w1 = w' Uwy, wp = w"” Uwp. Then
w1, wy € Wg(Ug) and |8y, vs)(, E) — Gu,,un)(f, E)| <e-m. But
1S wum) (£, F) = S ey (£, F)| = |6 wr,vp) (£, F) + S wo,v6) (£, G) —

-~ G(wo,Ug)(f7 G) — 6(w”,UF)(f7 F)| = |6(w17UE)(f, E) o G(WZ’UE)(f, E)|< 2e-m
for every w',w"” € Wg(Up). By Lemma 2.9, f is (U, F')-integrable. Similarly,
f e I(U,G). Hence, I(U, E) C T(U, F) NI(U,G).

(ii) Let w € Wg(Ug) be an arbitrary partition. Denote by wpue a re-

finement partition of w, such that wr Uwg = wpug, where wp € Wr(Ur),
wg € We(Ug) . Then wrug € Wg(Ug) and

6(wFuG,UE)(f1 E) - /fdm’ < eTr.
E
Now the equality (3) follows from (i) and the equality

6(wFUG7UE)(f’ E) = 6(wF7UF)(f’ E) -+ 6(wc;,Uc;)(fa E)

206



ON INTEGRATION IN COMPLETE VECTOR LATTICES

3. Convergence theorem

To prove a convergence theorem for our integral, Theorem 3.3, we need two
useful preparatory lemmas.

LEMMA 3.1 (R.Henstock,J. Kurzweil). Let Y be a complete vector
lattice. Let E € B, f € ZU,E), e >0, UelUg, me YT.If w e Wg(U),
w={(Ejt); j=12,...,J},

/fdm—(%(w,u)(f,E) <em
E
and AC{1,2,...,J}, then

> / fdm — Y " m(E;)f(t;)

i€Af, j€EA

<erm.

Proof. By Lemma 2.10, f € Z(Ug,, E;) . Choose w; € Wg,(Ug,) such
that

<—i7r,

/fdm_ 6(wj,UE].)(f’ E]) 23

E;

where 7 is an arbitrary positive number, 7 € {1,2,...,J} \ A = B. (From the
proof of Lemma 2.10 we see that we can take the same regulator 7.) Put

w* = {(Bj,t;): j € A}U | w;.
JjEB
Since w* € Wg(U),

/fdm— S, E)| <em.
E
We have: G« pn(f, E) = ) m(E;)f(t;) + > m(E;)f(t;). Therefore
JEA jEB
Z/f dm - Y m(E))f(t;)| < /f dm — Sy (£, E)| +
jeAp, jEA .
4 Z/f dm — 3" m(E)(t;)| < (e + .
jEBEj JjEB

Since the last inequality holds for every 1 > 0, we obtain the desired property.
O
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LEMMA 3.2. Let E € B. Let f € Z(U,E). Let there exist p € X, p > 0;
€Y, n >0, such that ||f||g, < oo, |m(E)|,r < oco. Then

/fdm

E

< flle.e - Im(E)lpm - - (4)

Proof. The cases |f|g, = 0 and ||m(E)|[,r = 0 are trivial. Let 0 <
Iflz,, 0< |m(E)|px. Let e>0, U€lUr, we Wg(U).

Observe that if |x;| < p, and E; € B are pairwise disjoint, j =1,2,...,J,

J
Ej = E, then
j=1

=

ém(Em @ m(E) ) o

= |m(E)p| < [|[m(E)p]|,, - 7 = ||m(B)||

J
> m(E;)x;
j=1
o T

Then the inequality {ff dm — &y, (f, E)} < e-m in (1) implies
E

/fdm
E

< + 16w, (f, B)| <

/ fdm — Sy p)(f, E)
E

J

Z m(EJ) f(tj)

2" s,

<em+|fllzp - I(B)lpm - 7= (€ +Ifllzo - [(E)lp,r) - -

<er+ |Gy, BE)| =em + Nflle,e <

Since the last inequality holds for every € > 0, we obtain the desired asser-
tion. O

THEOREM 3.3. Let X be an Archimedean vector lattice and Y be an almost
regular complete vector lattice. Let m be an additive regular L-valued measure
defined on the o-algebra B of Borel subsets of T'. Let the family U of neigh-
borhood functions be satisfactory. Let E € B. If there exists a sequence (f;)ien
of (U, E)-integrable functions, such that

(1) f; <gpfii1,1€ N,

(ii) there exists a function f: T — X, such that

(r) Jim £:(¢) = £(2) (5)

208



ON INTEGRATION IN COMPLETE VECTOR LATTICES

with the same regulator p € Xt for every t € cl(E),
(iii) there exists m € YT, such that for every i € N, the functions f; are
m-(U, E)-integrable and

/fidmgw, (6)

E

(iv) m(E)peY(n),
then f € Z(U,E) and [fdm = (r)-lim [f;dm.
E T E

Proof. The cases p =0, w = 0 are trivial. Suppose p > 0, m > 0. The
plan of the proof is the following. First we show that the limit (r)- lim [f;dm =
'L—”OOE

y exists. To given € > 0 we construct U € Ug. Then we take an arbi-
trary partition w = {(Fj,t;); 7 = 1,2,...,J} € Wg(U) and show that
1S W,y (£, E) =yl < (2+ |Im(E)||px) -7, ie, [fdm=y.

E

Step 1. (Existence of the limit.)
Consider the (p)-ideal in X and the (m)-ideal in Y. Let € > 0 be given.

The inequality (6) implies that the sequence (gfi dm) is bounded.
€N

Since the vector lattice Y is complete, there exists y € Y, such that y =
oo
V yi, where y; = [f;dm. The assumption (iii) implies y < 7. By Lemma 2.9
i=1 E
and (ii), (y¥:)ien is a nondecreasing sequence of elements in Y and, hence, it
(0)-converges to y, cf. [13], Th.IL.6.1. Since the complete vector lattice Y is
almost regular, the sequence (y;)ieny of integrals (r)-converges to y with a
regulator 7; € Y1 . Without loss of generality suppose m; = m (if not, deal
with m; V 7, which is a regulator which satisfies (iv), too). So, there exists
i1 € N, such that for every i > 141, 1 €N,

/fi dm—y

E

< Eem. (7

So, y = (r)-lim [f;dm (with the regulator 7).
l_’OOE

Step 2. (Construction of the neighborhood function.)
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Definition 2.4 implies that for every € > 0 and f; € Z(U, E), i € N, there
exists its U®) € Uy, such that Wg(U®) # @ and for every partition w(® €
WE(U(i)),

&
/fi dm — G(w(i),U(i))(fi, E) < ?W . (8)
E

From (5) we see that the following function ¢ : cl(E) — N is defined correctly:

p(t)=min{i e N; |f;(¢t) —f(t)]<ep and i>141}, t €cl(E). 9)

Construct a function U € Ug by the formula U(t) = U(‘a(t)) (t), tecl(E).
Step 3. (Splitting the inequality into three parts.)

Take an arbitrary partition w € Wg(U) . We have:

Zm(E) £(t5) = ey (t5)) | +

j=1

+ i[m(-’%’) foie;) () — / w(t;)dm}

Jj=1

1S, (f, E) —y| <

+

E;

5 / £y(s,) dm — y (10)

JlE

Step 4. (Use of Lemma 3.2.)

J
Denote by f(t;) — fo,)(t;) = x; and g = > xg;%;, j = 1,2,...,J. By
j=1

Lemma 2.8, g € I(U,E). By (9), |g(t)| < ep, t € cl(E). Since |- |, is a
monotone norm in X(p), ||g(t)|l, < e, t € cl(F). Thus, |gllg, < €. By

Lemma 3.2 and (iv),
/g dm

B
< (Bl - me -

< llgllz.p - lm(E)[lpx - <

Zm(E (£(t5) — £ (2 ))‘

Step 5. (Use of Lemma 3.1.)
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Put s = max{¢(¢;);7 =1,2,...,J}. Then by (8) and Lemma 3.1,
J

Z[m(Ej)f(tj)—/fso(tndm} Si: > [m(Ej)fi(tj)_/fi dm] &

]:1 Ej =1 j'.gD(tj):i Ej

S
€
gzi-ﬂ<57r.
i=1

Step 6. (Using Lemmas 2.7 and 2.10.)

Put 7 = min{p(¢;); j=1,2,...,J}, sothat s > r. By (i) and Lemma 2.7,

and Lemma 2.10,

J J J
ffrdm:Z/deng:/f@(tj)dmgZ/fsdm:/fsdmgy.
j=1Ej

E i=1g, i=1g, E

Consequently, by (7),

J
Z/fw(tj)dm—y;ély—/i} dm' <em.
E

—1
J=1E;

The proof is complete. O

Remark 3.4. Theorem 3.3 is a generalization (with slight modifications) of
Theorems 5.1 in [7], 2 in [5], and 2.2 in [8].
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