

ON THE STRUCTURE OF T_s -TRIBES

RADKO MESIAR

ABSTRACT. We extend the results of N a v a r a [8] for tribes of fuzzy sets closed under product to the case of a general strict t-norm. We show that any T_s -tribe, $s \in (0, \infty)$, is a weakly generated tribe and, consequently, a T-tribe for any measurable t-norm T.

1. Preliminaries

Let X be a non-empty set. A function $f\colon X\to [0,1]$ has been called a fuzzy subset of X (Z a d e h [11]). This generalizes the concept of a (Cantorian) subset A of X which can be identified with its characteristic function $1_A\colon X\to \{0,1\}$ defined by $1_A(x)=1$ if $x\in A$, and $1_A(x)=0$ if $x\notin A$. 1_A is called a crisp subset of X. If f is a fuzzy subset of X, then f(x) is interpreted as the degree of membership of the point x in f. The collection of all fuzzy subsets of X is denoted by $\mathscr{F}(X)$, $\mathscr{F}(X)=[0,1]^X$. For a constant $d\in [0,1]$, we denote by d the fuzzy subset d(x)=d for all $x\in X$.

The extension of set-theoretic operations of intersection, union and complementation to the fuzzy set operations is done pointwise,

- (i) $(\boldsymbol{f} \cap \boldsymbol{g})(x) = T(\boldsymbol{f}(x), \ \boldsymbol{g}(x)),$
- (ii) $(\boldsymbol{f} \cup \boldsymbol{g})(x) = \boldsymbol{S}(\boldsymbol{f}(x), \boldsymbol{g}(x)),$
- (iii) $f^c(x) = C(f(x))$,

for any $x \in X$, f, $g \in \mathcal{F}(X)$. Here C is a complementation operator, T is a t-norm, and S is its C-dual t-conorm. Hence

$$C(a) = g^{-1}(1 - g(a)), \quad a \in [0, 1].$$

For more details see [6] or [9].

The concept of t-norm based tribes (on X) is a natural generalization of the notion of a σ -algebra of subsets (of X).

DEFINITION 1.1. Let T be a t-norm. A system $\mathscr{T} \subset \mathscr{F} \equiv \mathscr{F}(X)$ is called a T-tribe if

(i) $0 \in \mathscr{T}$,

AMS Subject Classification (1991): Primary 03E72; Secondary 94D05. Key words: generated tribe, measurability, t-norm, T-tribe.

 $\begin{array}{ll} \text{(ii)} & f \in \mathscr{T} \text{ implies } f' = 1 - f \in \mathscr{T} \,, \\ \text{(iii)} & \{f_n\}_{n \in N} \subset \mathscr{T} \text{ implies } T_{n \in N} f_n \in \mathscr{T} \,. \end{array}$

For more details see [1, 2, 6]. Note that a T-tribe is closed also under countable unions induced by a dual t-conorm S.

DEFINITION 1.2. Let $\mathscr{S} \subset 2^X$ be a σ -algebra of crisp subsets of X. The system $\mathcal{I}(\mathcal{S})$ of all \mathcal{S} -measurable fuzzy subsets of X is called a generated tribe.

It is easy to see that a generated tribe is a T-tribe for any measurable t-norm T. However, the converse is not true, in general. The aim of this paper is to study the structure of T-tribes for some special types of t-norms.

DEFINITION 1.3. A t-norm T is called a strict t-norm if it is continuous and strictly increasing on $(0,1) \times (0,1)$.

Note that the continuity of a t-norm T implies its measurability (with respect to Borel sets) and that it is a natural requirement adopted in almost all applications. Further, a continuous t-norm T is said to be Archimedean if T(a,a) < a for all $a \in (0,1)$. Any continuous Archimedean t-norm T is generated by an additive generator $f: [0,1] \to [0,\infty]$, f is continuous, strictly decreasing and f(1) = 0, [5], i.e.,

$$T(a,b) = f^{-1}\Big(\min(f(0), f(a) + f(b))\Big), \quad a,b \in [0,1].$$
 (1)

A t-norm is strict if and only if it has an unbounded additive generator f, $f(0) = \infty$. In this case, $T(a,b) = f^{-1}(f(a) + f(b))$. If f(0) is finite, then T generated via (1) is called a nilpotent t-norm. Note that the generators are determined by the corresponding t-norm uniquely up to a positive multiplicative constant. For the dual t-conorms S, several properties of T (continuity, strictness, nilpotency) are preserved. More details can be found in [1, 2, 5, 6, 9].

2. T_s -tribes

One of the most important families of t-norms is the Frank family [3] of fundamental t-norms $\{T_s; s \in [0, \infty]\}$, where

$$T_s(a,b) = \left\{ egin{array}{ll} \min(a,b), & ext{for } s=0, \ a\cdot b, & ext{for } s=1, \ \max(0,a+b-1), & ext{for } s=\infty, \ \log_s \left(1+(s^a=1)\cdot (s^b-1)/(s-1)
ight), & ext{otherwise} \,. \end{array}
ight.$$

Their corresponding t-conorms are

$$S_s(a,b) = \left\{ egin{array}{ll} \max(a,b), & ext{for } s=0, \ a+b-a\cdot b, & ext{for } s=1, \ \min(a+b,1), & ext{for } s=\infty, \ 1-\log_sig(1+(s^{1-a}-1)\cdot(s^{1-b}-1)/(s-1)ig), & ext{otherwise} \,. \end{array}
ight.$$

ON THE STRUCTURE OF T_s -TRIBES

Recall that the pairs (T_s, S_s) , $s \in (0, \infty]$, are the only continuous Archimedean solutions of the functional equation (see [3])

$$T(a,b) + S(a,b) = a + b$$
 for any $a, b \in [0,1]$.

Further, T_s is a strict t-norm for any $s \in (0, \infty)$. T_{∞} is a nilpotent t-norm and T_0 is the maximal t-norm, i.e. for any t-norm T and any $a, b \in [0, 1]$ it holds $T(a, b) \leq T_0(a, b)$.

We recall some results of Klement and Butnariu [1, 2, 4] for T_s -tribes.

THEOREM 2.1. For any fundamental t-norm T_s with s > 0, and for each T_s -tribe $\mathscr T$ on X we have $\mathscr T \subset \mathscr F(\mathscr S)$, where $\mathscr S$ is the σ -algebra of all crisp subsets of X contained in $\mathscr T$.

THEOREM 2.2. For any fundamental t-norm T_s with s>0, a T_s -tribe $\mathcal T$ on X is a generated tribe if and only if $\mathcal T$ contains all the constant fuzzy subsets of X.

THEOREM 2.3. For any fundamental t-norm T_s with $s \in (0, \infty)$, each T_s -tribe on X is a T_{∞} -tribe on X, too. Further, each T_{∞} -tribe on X is also a T_0 -tribe on X.

In [7], we have shown the following property of T_s -tribes.

THEOREM 2.4. Let X be countable. Then for any fundamental t-norm T_s with $s \in (0, \infty)$, each T_s -tribe $\mathscr T$ on X is a semigenerated tribe on X, i.e., there is a crisp partition (Y, Z) of X such that $\mathscr T|Y$ is a generated tribe on Y and $\mathscr T|Z$ is a σ -algebra of crisp subsets of Z.

It is obvious that a semigenerated tribe $\mathscr T$ is a T-tribe for any (measurable) t-norm T. Our question about the structure of T_s -tribes, $s \in (0, \infty)$, on a general universe X (c.f. see [6, 7]) was recently solved by N a v a r a [8] in the case s = 1, i.e., when T_s is the usual product on the unit interval [0, 1].

THEOREM 2.5. Each T_1 -tribe $\mathscr T$ on X is a weakly generated tribe on X, i.e., there is a σ -ideal Δ in $\mathscr S$ (crisp subsets from $\mathscr T$) such that

$$\mathscr{T} = \left\{ \boldsymbol{f} \in \mathscr{T}(\mathscr{S}); \ \boldsymbol{D}\boldsymbol{f} \in \Delta \right\},\$$

where $Df = \{x \in X; f(x) \in (0,1)\}$.

We can show again that a weakly generated tribe is a T-tribe for all (measurable) t-norms T. It is easy to see that a reverse assertion is also true because of the measurability of the t-norm T_1 , i.e., a system $\mathscr T$ of fuzzy subsets of X is a T-tribe for all (measurable) t-norms T if and only if $\mathscr T$ is a weakly generated tribe. Note that any generated tribe is a semigenerated tribe with Y = X and $Z = \emptyset$. Further, any semigenerated tribe is a weakly generated tribe with $\Delta = \mathscr S|Y$.

If \mathcal{T} is a T_{∞} -tribe on X, then it need not be a weakly generated tribe. Take, e.g., $X=\{x\}$ (a singleton) and $\mathscr{T}_n=\left\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n}{n}\right\}$, $n=2,3,\ldots$ A similar example can be introduced for any nilpotent t-norm T. This reduces our attention to the strict t-norms only. For fundamental t-norms T_s this means that $s\in(0,\infty)$.

RADKO MESIAR

3. Characterization of T_s -tribes, $s \in (0, \infty)$

Let T be a given strict t-norm and let S be its dual t-conorm. Let $\mathscr T$ be a T-tribe on X. For each $k,n\in\mathbb N$ we define a non-decreasing function on [0,1]

$$T^{k,n}(t) = T^n(S^k(t)),$$

where $T^1(t) = S^1(t) = t$, $T^{n+1}(t) = T(T^n(t), t)$, $S^{n+1}(t) = S(S^n(t), t)$, $n = 1, 2, ..., t \in [0, 1]$.

It is easy to see that \mathscr{T} is closed under $T^{k,n}$ for any $k, n \in \mathbb{N}$, i.e., if $f \in \mathscr{T}$, then $T^{k,n} \circ f \in \mathscr{T}$, too.

LEMMA 3.1. For each $a, b, t \in (0,1)$, a < b, there are $k, n \in \mathbb{N}$ such that $T^{k,n}(t) \in [a,b]$.

Proof. Let f be an additive generator of T. Then $f(0) = \infty$ and g, g(t) = f(1-t), is an additive generator of S. We have

$$T^n(t) = f^{-1}(n \cdot f(t))$$
 and $S^n(t) = g^{-1}(n \cdot g(t))$ for any $t \in (0,1)$, $n \in \mathbb{N}$.

Hence, for any $t \in (0,1)$, $k, n \in \mathbb{N}$, it is

$$T^{k,n}(t) = f^{-1}\Big(n\cdot f\big(g^{-1}\big(k\cdot g(n)\big)\big)\Big) = f^{-1}\Big(n\cdot f\Big(1-f^{-1}\big(k\cdot \big(f(1-t)\big)\big)\Big)\Big)\,.$$

Let $a,b,t\in(0,1)\,,\ a< b\,,$ be given. Put $q=f(a)-f(b)\in(0,\infty)\,.$ Then there is $k\in\mathbb{N}$ such that

$$k \ge f(1-f^{-1}(q))/f(1-t)$$
.

It follows that

$$f(a) - f(b) = q \ge f(1 - f^{-1}(k \cdot (f(1-t)))) > 0,$$

which ensures the existence of $n \in \mathbb{N}$ such that

$$\infty > f(a) \ge n \cdot f\Big(1 - f^{-1}\big(k \cdot \big(f(1-t)\big)\big)\Big) \ge f(b) > 0.$$

The last inequalities are equivalent to

$$0 < a \le T^{k,n}(t) \le b < 1.$$

PROPOSITION 3.2. Let $\mathscr T$ be both a T_0 -tribe and a T-tribe, with T a strict t-norm. Let $f \in \mathscr T$. Then $\mathscr T|Df$ contains all constant fuzzy subsets of Df.

Proof. Put

$$U(t) = \sup \{\inf(T^{k,n}(t), 1 - T^{k,n}(t)); k, n \in \mathbb{N}\}$$

ON THE STRUCTURE OF T_s -TRIBES

for $t \in [0,1]$. $\mathscr T$ is a T-tribe and hence it is closed under both $T^{k,n}$ and $(1-T^{k,n})$. Further, $\mathscr T$ is also a T_0 -tribe and hence it is closed under infima and suprema of countable classes of elements of $\mathscr T$. Consequently, $\mathscr T$ is closed under U, i.e., for each $f \in \mathscr T$ also $U \circ f \in \mathscr T$ (here $(U \circ f)(x) = U(f(x))$, $x \in X$). It is easy to see that $U(t) \leq \frac{1}{2}$ for any $t \in (0,1)$ and that U(0) = U(1) = 0. Due to Lemma 3.1, for arbitrary small $\varepsilon > 0$ and any $t \in (0,1)$ there are some $k, n \in \mathbb N$ so that $T^{k,n}(t) \in \left[\frac{1}{2} - \varepsilon, \frac{1}{2}\right]$. It follows that $U(t) = \frac{1}{2}$ for all $t \in (0,1)$.

Take a fuzzy subset $f \in \mathcal{T}$. Then $U \circ f \in \mathcal{T}$ and $U \circ f(x) = \frac{1}{2}$ for any $x \in Df$. Following Lemma 1 of [7], $\mathcal{T}|Df$ contains all constant fuzzy subsets of Df.

THEOREM 3.3. Let \mathscr{T} be a T_s -tribe for some $s \in (0,\infty)$. Then \mathscr{T} is a weakly generated tribe.

Proof. Let \mathscr{T} be a T_s -tribe, $s \in (0,\infty)$. Then \mathscr{T} is also a T_∞ -tribe and consequently it is also a T_0 -tribe, see Theorem 2.3. Take a fuzzy subset f contained in \mathscr{T} . By Proposition 3.2, $\mathscr{T}|Df$ contains all the constant fuzzy subsets of Df. It is evident that $\mathscr{T}|Df$ is a T_s -tribe on Df. By Theorem 2.2, $\mathscr{T}|Df$ is a generated tribe on Df, $\mathscr{T}|Df = \mathscr{F}(\mathscr{F}|Df)$.

Let $f, g \in \mathcal{T}$. Let T be any measurable t-norm. Put

$$m{h} = \sup \left\{ \inf(m{f}, m{f}'), \ \inf(m{g}, m{g}')
ight\}.$$

Then $h \in \mathscr{T}$ and $\mathscr{T}|Dh$ is a generated tribe on Dh, i.e., $\mathscr{T}|Dh$ is closed under T. Hence $T(f|Dh,g|Dh) = T(f,g)|Dh \in \mathscr{T}|Dh$, i.e., there is some fuzzy subset p of X, $p \in \mathscr{T}$, such that p|Dh = T(f,g)|Dh.

$$m{r} = \sup_{n \in N} ig\{ (m{S}_n)^n \circ m{U} \circ m{h} ig\} = \left\{ egin{array}{ll} 0 \,, & ext{if } m{f}(x) ext{ and } m{g}(x) \in \{0,1\}, \ 1 \,, & ext{otherwise,} \end{array}
ight.$$

$$oldsymbol{f}^* = \inf_{n \in N} ig\{ (oldsymbol{T}_s)^n \circ oldsymbol{f} ig\} = \left\{ egin{array}{ll} 1\,, & ext{if } oldsymbol{f}(x) = 1, \ 0\,, & ext{otherwise,} \end{array}
ight.$$

$$oldsymbol{g}^* = \inf_{n \in N} ig\{ (T_s)^n \circ oldsymbol{g} ig\} = \left\{ egin{array}{ll} 1\,, & ext{if } oldsymbol{g}(x) = 1, \ 0\,, & ext{otherwise.} \end{array}
ight.$$

Then r, f^* and g^* are contained in $\mathscr T$ and

$$T(oldsymbol{f},oldsymbol{g}) = \supig\{T_s(oldsymbol{r},oldsymbol{p}),\,T_s(oldsymbol{f}^*,oldsymbol{g}^*)ig\}\in\mathscr{T}$$
 .

We have just shown that \mathscr{T} is closed under arbitrary measurable t-norm T. \mathscr{T} is also closed under countable suprema and infima as it is also a T_0 -tribe and consequently \mathscr{T} is a T-tribe for any measurable t-norm T. Especially, \mathscr{T} is also a T_1 -tribe on X and, by Theorem 2.3 of Navara [8], \mathscr{T} is a weakly generated tribe.

RADKO MESIAR

COROLLARY 3.4. The following three assertions are equivalent:

- (i) \mathcal{T} is a weakly generated tribe on X.
- (ii) \mathcal{T} is a T-tribe on X for all measurable t-norms T.
- (iii) For some fundamental t-norm T_s with $s \in (0, \infty)$, $\mathscr T$ is a T_s -tribe on X.

We have shown that if $\mathscr T$ is a T-tribe on X for some strict fundamental t-norm T (i.e., $T=T_s$ for some $s\in(0,\infty)$), then $\mathscr T$ is closed under any measurable t-norm T (and hence under any measurable t-conorms S). Is this true for any strict t-norm T?

OPEN PROBLEM 3.5. Let $\mathscr T$ be a T-tribe on X for some strict t-norm T. Does this requirement ensure the closedness of $\mathscr T$ with respect to any measurable t-norm and t-conorm?

REFERENCES

- [1] BUTNARIU, D.—KLEMENT, E. P.: Triangular norm-based measures and their Markov kernel representation, J. Math. Anal. Appl. 162 (1991), 111–143.
- [2] BUTNARIU, D.—KLEMENT, E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer, Boston, 1993.
- [3] FRANK, M. D.: On the simultaneous associativity of F(x,y) and x + y F(x,y), Aequationes Math. 19 (1979), 194-226.
- [4] KLEMENT, E. P.: Characterization of fuzzy measures constructed by means of triangular norms, J. Math. Anal. Appl. 86 (1982), 345-358.
- [5] LING, C. H.: Representation of the associative functions, Publ. Math. Debrecen 12 (1965), 189-212.
- [6] MESIAR, R.: Fuzzy sets and probability theory, Tatra Mountains Math. Publ. 1 (1992), 105-123.
- [7] MESIAR, R.: Fundamental triangular norm based tribes and measures, J. Math. Anal. Appl. 177 (1993), 633-640.
- [8] NAVARA, M.: A characterization of triangular norm based tribes, Tatra Mountains Math. Publ. 3 (1993) (to appear).
- [9] SCHWEIZER, B.—SKLAR, A.: Probabilistic Metric Spaces, North Holland, New York, Oxford, 1983.
- [10] TRILLAS, E.: Sobre funciones de negacion en la teoria de conjuctos diffusos, Stochastica 3 (1979), 47-59.
- [11] ZADEH, L. A.: Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Received March 15, 1993

Slovak Technical University Radlinského 11 SK-813 68 Bratislava SLOVAKIA E-mail: mesiar@cvt.stuba.sk