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CENTRAL ENVELOPES OF
ORTHOMODULAR LATTICES
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Dedicated to the memory of Tibor Neubrunn

ABSTRACT. Suppose that {Le | @ € I} is a collection of orthomodular lattices
and suppose that B is a Boolean algebra. An orthomodular lattice L is called
a B-envelope of {Lo | a € I} if L contains every Lo (o € I) and if the centre
of L equals B. We show in this note that every collection of orthomodular
lattices has a B-envelope for any Boolean algebra B. We then ask an analogous
question for o-complete and complete orthomodular lattices. In the latter cases
we have been able to find only a partial answer (Th. 2 — 4). The results may find
applications in the mathematical foundations of quantum theories.

Introduction and basic notions

In the logico-algebraic foundation of quantum mechanics one often associates
the “event structure” of a quantum experiment with an orthomodular lattice
(see e.g. [6], [14] and [16]). The family of all “absolutely compatible” events
(i.e. those events that are simultaneously measurable with any other event) then
correspond to the centre of the orthomodular lattice in question. The following
natural problem of whether one can extend a given event structure (or, more
generally, a collection of event structures) to an event structure with an arbitrary
set of absolutely compatible elements then transfers in the mathematical setup
as follows: Can we enlarge orthomodular lattices to a single orthomodular lattice
whose centre has been preassigned? In this note we provide some results that
shed light on the latter question.

Let us first recall basic notions which will be used in the sequel (for details,
see e.g. [14]).

DEFINITION 1. An orthomodular lattice (abbr. an OML) is a lattice, L, with
0 and 1, which is endowed with an orthocomplementation relation, ’: L — L,
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such that the following four conditions are fulfilled (a,b € L):
(i) if a <b, then b’ <d’,
(i) (o) =a,
(ili) avad' =1,
(iv) if a<b,then b=aV (bAd).

Two elements a,b € L are called orthogonal if @ < &' . If L is closed under
the formation of the suprema of countably many mutually orthogonal elements

in L (resp. the suprema of arbitrary many mutually orthogonal elements in
L), then L is called a o-complete OML (abbr. 0-OML) (resp. complete OML)
(abbr. c-OML).

Let us agree to denote by L (possibly with indices) an OML. Basic examples
of OMLs are Boolean algebras or lattices of projections in von Neumann algebras.

DEFINITION 2. A couple a,b € L is called compatible if the elements
(an(anb)), (bA(aAb)) are orthogonal.

The notion of compatibility models the simultaneous measurability in a quan-
tum experiment. It can be seen easily that the above definition coincides with
the usual quantum logic definition (see [14]).

PROPOSITION 3 (see e.g. [14]). Put C(L) = {a € L| a is compatible to any
be L} and call C(L) the centre of L. Then C(L) is a Boolean sub-OML of L
(i.e. C(L) is a Boolean algebra when understood with the operations inherited
from L). Moreover, if L is a 0-OML (resp. c-OML), then so is its centre as
well.

In the following definition we determine when an OML is “smaller” than the
other.

DEFINITION 4. Let K,L be OMLs. We say that L contains K if there is
an injective mapping e: K — L such that the following conditions are satisfied
(a,b e K):
(i) e(1)=1,
(i1) e(a’) =e(a)’, and
(111) e(a1 Vv az) = 6(0,1) vV 6((1,2) 3

If both K,L are o-complete (resp. complete), then we say that L contains
K if the conditions (i) and (ii) above are satisfied and the condition (iii) is
fulfilled for countably many a; (i € N) (resp. for arbitrarily many a;, i € I).
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In view of a potential application in quantum theories, it may be worth
observing that if L contains K then the compatibility in K transfers to L
(compare with a less satisfying situation in orthomodular posets, see e.g. [12] or

[14]).

OBSERVATION 5. If L contains K and if e: K — L is the corresponding
embedding then e(a), e(b) are compatible elements in L if and only if a,b are
compatible elements in K .

Proof. We shall show the necessity, the sufficiency shows similarly. If e(a),
e(b) are compatible in L, then the elements e(a) A (e(a) Ae(b))’, e(b) A (e(a) A
e(b)) are orthogonal. Thus, we have (e(a)A(e(a’)Ve(t')) < (e(b)A(e(a’)Ve(d')))'
and therefore e(a A (a/ Vb)) < e(bA (a’ VY)) . This means that e(a A (a’ Vv
) VeA(aVY)) =eldA(a Vb)) which implies the equality e((a A (a’V
D) ABA (@ VY)) = ebA(a VvY)). Since e is injective, we infer that
(@A (@nb))V (bA (aAb)) = (bA(aAb)) . This equality is equivalent with
the inequality a A (a Ab) < (bA (aAb)') which means exactly that a A (aAb)’
is orthogonal to bA (a Ab)'. In other words, a, b are compatible in K and the
proof is complete. O

In what follows we shall be mainly interested in “enveloping” OMLs.

DEFINITION 6. Let {L,| @ € I} be a collection of OMLs and let B be a
Boolean algebra. We say that L is a B-envelope of {L,| a € I} if L contains
every L, (a € I') and moreover, C(L) = B.

Results

We will now look for B-envelopes of OMLs (resp. o-OMLs or c-OMLs). In
the proofs we sometimes omit the routine technicalities assuming the reader to
be familiar with basic facts and constructions in OMLs (see e.g. [14]). The first
result concerns “algebraic” OMLs and brings a full answer to our question. (Prior
to the formulation of the next result, let us recall an important class of OMLs.
An OML is called concrete if it can be represented by a collection of subsets
of a set and in this representation the orthocomplementation operation agrees
with the set-theoretic complementation and the suprema operation of disjoint
elements agrees with the set-theoretic union. All Boolean algebras are obviously
concrete OMLs (and there are many others — see, e.g., [5] and [6]), the projection
OMLs are usually not concrete.)

THEOREM 1. Let {L,| a € I} be a collection of OMLs and let B be a
Boolean algebra. Then there is a B-envelope of {Lq | a € I}. If moreover every
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Lo (a € I) is concrete then the B-envelope of {L,| o € I} can be taken
concrete, too.

Proof. Let D be a four-point Boolean algebra and let K be the horizontal
sum of the collection {Ly|a € I} U{D} (see e.g. [9]). Then K is obviously a
{0, 1}-envelope of {L,| a € I} (the adding of D guarantees the trivial centre
of K in case card I = 1). Let (Q, B), where B C exp {1, be a set representation
of B. Let us now denote by L the set of all functions .f :  — K which are
determined as follows: The range of f is a finite subset of X and moreover,
for any k € K we require that f~1(k) € B. It can be easily seen that L is
an OML with C(L) = B. Obviously, L contains every L, — K contains every
Ly and L contains K (every k € K can be mapped on the constant function
f:Q — K such that f(w) =k for any w € Q). Thus, L is a B-envelope
of {La|a € I}. Moreover, if every L, (a € I) is concrete then so is L, too.
Indeed, L is concrete if and only if the two-valued measures on I distinguish
the noncompatible elements of L (see e.g. [5] and [6]). By our construction, it is
straightforward to show that ”enough” two-valued measures on every L, (a el
guarantees ”enough” two-valued measures on L. The proof is complete. O

Remark. The latter construction of I — sometimes also called a Boolean
power of OMLs — has been already used a number of times in OMLs (see e.g.
2], [4], [7], [8], [10], [13], etc.). The nature of this construction is universally
algebraic (see [1]).

If we want to extend the latter result to the o-complete case, which is of-
ten the case used in the quantum axiomatics, we face two additional obstacles.
Firstly, a Boolean o-algebra does not have to admit a set representation and
secondly, a countable collection of countable partitions does not have to admit a
countable partition refinement. For the time being, we have not been able to re-
solve the o-complete case of our question in full generality (the method applied in
Th. 1 may not be suitable in general; the questions arising here may be related to
the problem of the construction of a minimal o-product for Boolean o-algebras
which seems to be still open (see [15], §38). We do have the following partial
solution. (Let us recall that by a state on L we mean a probability o-additive
measure on L. Obviously, a 0-OML may not possess any state — see, e.g., [14].)

THEOREM 2. Let {L,| a € I} be a collection of -OMLs and let B be a
Boolean o-algebra. Let every Lo(a € I) possess a state. Then {Ly|a € T } has
a B-envelope. Moreover, if every Lo (o € I) is concrete and if B is concrete,
then the B-envelope can be taken concrete, too.

Proof. Let D be a four-point Boolean algebra and let K denote the
horizontal sum of the collection {Lq | a € I} U {D}. Since every L, admits a
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state then so does K, too. Let us denote it by s, s: K — (0,1). As before, K
contains all the L),s (a € I'). Let (Q,%) be the Loomis—Sikorski representation
of B (see [15]) and let g: ¥ — B be the corresponding factor mapping. Let
now L be the set of all functions f: Q@ — K such that s - f: Q2 —(0,1) be a
o-measurable mapping with respect to ¥ and Borel subsets of (0,1). Making
now use of the basic properties of measurable functions, one checks easily that
L is a -OML. Moreover, C(L) = % for a two-valued function belongs to I, if
and only if it is a characteristic function of a set of X. If we now factorize L
over the p-o-ideal I of “meagre sets” (i.e. I = {f € L| thereisaset J, J€ %
such that ¢(J) = 0(€ B) and f(a) = 0(€ K) for any a € Q— J}), we obtain a
0-OML, some L. It is not difficult to check that L possesses all the properties
required in Th. 2 (the concreteness transfers to L the same way as in Th. 1).
The proof is complete. O

Let us finally take up the case of complete OMLs (c-OMLs). If the centre
in question allows a (complete) Loomis-Sikorski parametrization, we have an
analogy of the previous result. Unfortunately, not all complete Boolean algebras
allow a (complete) Loomis—Sikorski parametrization (in fact, they do exactly
if they are weakly distributive — see [15], p. 127 for the definition and other
considerations; see also [11] for relevant investigations in OMLs).

THEOREM 3. Let {L,| a € I) be a collection of complete OMLs and let B
be a complete weakly distributive Boolean algebra. Then there exists a complete
B-envelope of {L | o € I}. If moreover every L, (o € I) is concrete and if B
is concrete, then the B-envelope can be taken concrete, too.

The proof closely follows the pattern of the previous proof (it is sufficient to
consider only step functions since every collection of partitions in B admits a
partition refinement).

In the realm of complete OMLs and quantum theories, an important position
belongs to the OMLs of all projections in a von Neumann algebra. For these
OMLs we have the following result. (The author would like to express his grati-
tude to L. Bunce for suggesting the use of the tensor product in the next theorem
- see [3].)

THEOREM 4. Let {L,| oo € I} be a collection of OMLs and let each of L,
(a € I) be an OML of all projections in a von Neumann algebra. Let B be
a complete (completely) set-representable Boolean algebra. Then there exists a
B-envelope of {L | a € I}. Moreover, this B-envelope can be required an OML
of all projections in a von Neumann algebra.

Proof. Suppose that L, = P(A,), where Ay(a € I) is a von Neumann
algebra. Let us denote by A the direct sum of A, ’s (@ € I') in the category of
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von Neumann algebras. Then P(A) contains every P(Ay) (see [17], Chap. IV).
Let A be viewed as an operator algebra for a Hilbert space H. Let D be
the (von Neumann) algebra of all bounded operators on H . It is obvious that
P(D) is a {0,1}-envelope of {L, | @ € I'}. Further, there is a commutative von
Neumann algebra, C, such that B = P(C). Let us now consider the “canonical”
tensor product C®D and let us denote by L the projection OML of the latter
von Neumann algebra. Thus, L = P(C®D). If we denote by C the algebra of
complex numbers, we have C(L) = C(P(C®D)) = C(P(CRC)) = C(P(C)) =
B (see [17], Chap. IV for the proof of the latter three equalities). The proof is
complete. O
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