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REMARK TO A PROBLEM
POSED BY S. PULMANNOVA

STANISEAW GOLDSTEIN

PROBLEM. [1] Let A, B be self-adjoint operators affiliated with a von Neu-
mann algebra A such that A+ B is densely defined. What can be said about
self-adjoint extensions of A+ B7?

In the case when A is finite, the solution is as follows. Since A is finite, any
densely defined operator which is affiliated with the algebra and closed is Segal
measurable [2]. Hence the closure of the sum (A+ B)~, the so-called strong sum
+ of A and B, is a self-adjoint extension of A+B (indeed, (A+B)* = A*4B*).
Thus, A + B is essentially self-adjoint and cannot have any other self-adjoint
extension (if C' is another extension of A+ B, then C > (A+ B)~ = A+ B,
so that C = C* D (A+ B)* = A+ B, which implies C = A + B).

In the case when A is arbitrary, one can show, as above, that the sum of
two locally measurable (see [3]) self-adjoint operators has a unique self-adjoint
extension, obviously, affiliated with the algebra.
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