

OPERATORS WHOSE EIGENVECTORS SPAN THE SPACE

MICHAL ZAJAC

ABSTRACT. The operators on a complex separable Hilbert space H whose eigenvectors span H are investigated. They are shown to be hyperreflexive and some conditions under which such operators are reflexive are given. We recall an example of a non-reflexive operator whose commutant is reflexive.

1. Introduction

Let H be a complex separable Hilbert space, $\mathcal{B}(H)$ the algebra of all continuous linear operators on H and $T \in \mathcal{B}(H)$. We denote by $\{T\}'$ the commutant of T ($X \in \{T\}'$ if an only if XT = TX) and by $\{T\}'' = \bigcap \{\{X\}' : XT = TX\}$ the bi-commutant of T. A contraction means an operator $T \in \mathcal{B}(H)$ with norm $\|T\| \leq 1$. By a subspace we always mean a closed linear subspace. A subspace $L \subset H$ is called invariant for $T \in \mathcal{B}(H)$ if $TL \subset L$. L is hyperinvariant for T if it is invariant for every $X \in \{T\}'$. If $A \subset \mathcal{B}(H)$, then Alg A denotes the smallest weakly closed subalgebra of $\mathcal{B}(H)$ containing A and the identity I. Lat A denotes the set of all subspaces invariant for each $A \in A$. Lat A (with the operations \cap and \vee of the intersection and of forming the closed linear span, respectively) is a complete lattice. If \mathcal{L} is a set of subspaces of H, then Alg $\mathcal{L} = \{T \in \mathcal{B}(H) \colon \mathcal{L} \subset \operatorname{Lat}\{T\}\}$. Let us consider the following properties of an operator $T \in \mathcal{B}(H)$:

DEFINITION. Let $T \in \mathcal{B}(H)$. Then

- (i) T is said to be reflexive if $Alg T = Alg Lat\{T\}$,
- (ii) T is said to be hyperreflexive if $\{T\}' = \text{Alg Lat}\{T\}'$.

In [1], a characterization of reflexive and hyperreflexive operators of the class C_0 was given and it was shown that every hyperreflexive C_0 contraction is reflexive and that the other implication does not hold. The problem whether hyper-

AMS Subject Classification (1991): 47A15. Key words: Hilbert space operator, reflexivity, eigenvector.

MICHAL ZAJAC

reflexivity implies reflexivity remained open. Recently, an example of Larson and Wogen [5] was used to show [3] that the answer is negative. The purpose of the present paper is to give a little more detail of the solution of the above mentioned problem and to show its connections with Nevanlinna-Pick interpolation.

Results

We start with a simple sufficient condition for hyperreflexivity of an operator [3]:

LEMMA 1. Let $T \in \mathcal{B}(H)$. If the closed linear span of all eigenvectors of T is H, then T is hyperreflexive.

Proof. The idea of the proof goes back to Sarason [6]. If λ is an eigenvalue of T, then the eigenspace $\ker(\lambda-T)$ is hyperinvariant for T. It follows for every $A\in \operatorname{Alg}\operatorname{Lat}\{T\}'$ and for every eigenvector $h\in \ker(\lambda-T)$:

$$ATh = A(\lambda h) = \lambda Ah = TAh$$
.

Since eigenvectors span H, AT = TA, i.e., T is hyperreflexive.

A little more can be shown using this idea:

LEMMA 2. Let $T \in \mathcal{B}(H)$ and let λ be an eigenvalue of T and let $A \in \operatorname{Alg\,Lat}\{T\}$. Then there exists a complex number $a(\lambda)$ such that every eigenvector $h \in \ker(\lambda - T)$ is an eigenvector of A with the eigenvalue $a(\lambda)$.

Consequently, if in addition eigenvectors of T span H, then $A \in \{T\}''$.

Proof. The one-dimensional space spanned by the eigenvector $h \in \ker(\lambda - T)$ is invariant for T and so also for A. Therefore, there exists a complex number a such that Ah = ah. If $g \in \ker(\lambda - T)$ is another eigenvector, then $\exists b, c \in C$ such that Ag = bg and A(h+g) = c(h+g) = ah + bg. It is easy to prove that b = c = a.

Since the space H is separable if eigenvectors of an operator $T \in \mathcal{B}(H)$ span H, then there exists a countable set $\{\lambda_n\}_{n=1}^\infty$ of eigenvalues of T such that the closed linear span of the corresponding eigenvectors $\bigvee \ker(\lambda_n - T) = H$. Let us assume (without loss of generality) that T is a contraction. To find some conditions under which T is reflexive, let us consider an operator $A \in \mathrm{Alg}\,\mathrm{Lat}\{T\}$ with norm $\|A\| \leq 1$. We want to show that A can be approximated in the weak operator topology by polynomials in T, more precisely, we have to

OPERATORS WHOSE EIGENVECTORS SPAN THE SPACE

solve the following problem. Given an arbitrary $\varepsilon > 0$ and arbitrary n-tuples x_1, x_2, \ldots, x_n , y_1, y_2, \ldots, y_n of vectors in H, does there exist a polynomial p such that

$$\left| \left((A - p(T))x_i, y_i \right) \right| < \varepsilon, \quad \text{for} \quad i = 1, 2, \dots, n ?$$
 (1)

According to Lemma 2, there exists a function mapping each eigenvalue λ_n of T onto an eigenvalue $a(\lambda_n)$ of A with the same eigenvectors. Therefore it is easy to construct a polynomial p satisfying (1) if all x_1, x_2, \ldots, x_n are eigenvectors of T. Indeed, if $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues of T it suffices to use Lagrange interpolation to obtain a polynomial mapping λ_i into $a(\lambda_i)$ and therefore satisfying $Ax_i = p(T)x_i$ for $i = 1, 2, \ldots, n$.

Although every element $x \in H$ can be approximated by a finite linear combination of eigenvectors of T the above mentioned idea does not give the proof of reflexivity of T. The reason is that the norm of the operator p(T) depends on the n-tuples $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $a(\lambda_1), a(\lambda_2), \ldots, a(\lambda_n)$.

Since we consider now only contractions T we can use the H^{∞} functional calculus (see [7]). Here H^{∞} means the algebra of all complex functions bounded and analytic in the open unit disc $\{\lambda\colon |\lambda|<1\}$. For every $u\in H^{\infty}$ $u(T)\in \mathrm{Alg}\,T$. Therefore, to prove that $A\in \mathrm{Alg}\,\mathrm{Lat}\{T\}$ it suffices to find a function $p\in H^{\infty}$ satisfying (1). The following theorem shows that this is related to the Nevanlinna–Pick interpolation problem.

THEOREM 3. Let $T \in \mathcal{B}(H)$ and let $H = \bigvee_{n=1}^{\infty} \ker(\lambda_n - T)$. Let $A \in \operatorname{Alg} \operatorname{Lat}\{T\}$ and let $a(\lambda_n)$ $(n=1,2,\dots)$ be the eigenvalues of A as described in Lemma 2. If for all natural numbers N, the matrix

$$\left(\frac{1 - a(\lambda_i)\overline{a(\lambda_j)}}{1 - \lambda_i\overline{\lambda_j}}\right)_{i,j=1,2,\dots,N}$$
(2)

is positive definite, then $A \in Alg T$.

Proof. The well-known Nevanlinna–Pick theorem (see, e.g., [4]) asserts that the positive definiteness of the matrix (2) is equivalent to the existence of a function p_N analytic in the open unit disc and bounded by 1 (i.e., with $\|p_N\|_{\infty} = \sup\{|p_N(\lambda)|: |\lambda| < 1\} \le 1$) satisfying, for all $n=1,2,\ldots,N$, $p_N(\lambda_n) = a(\lambda_n)$ and so also $p_N(T)x = Ax$ for $x \in \ker(\lambda_n - T)$. Since $\|p_N(T)\| \le \|p_N\|_{\infty} \le 1$, given an $h \in H$ and $\varepsilon > 0$, there exist a natural number N and a finite linear combination h_N of eigenvectors from eigensubspaces $\ker(\lambda_n - T)$ for $n=1,2,\ldots,N$ such that $\|h-h_N\| < \varepsilon/2$. Then it

holds

$$||p_N(T)h - Ah|| = ||p_N(T)h - p_N(T)h_N + p_N(T)h_N - Ah_N + Ah_N - Ah|| \le$$

 $\le 2||h - h_N|| < \varepsilon.$

Remark. According to a result of Carleson [2, Theorem 3], the condition

$$\inf_{k} \prod_{\substack{n=1\\k\neq n}}^{\infty} \left| \frac{\lambda_k - \lambda_n}{1 - \overline{\lambda_n} \lambda_k} \right| > 0 \tag{3}$$

implies that, for each bounded sequence of complex numbers $\{w_n\}$, there exists a function $f \in H^{\infty}$ such that $f(\lambda_n) = w_n$. This is sufficient for every $A \in Alg Lat\{T\}$ to be equal to f(T) for a function $f \in H^{\infty}$. Put $w_n = a(\lambda_n)$ to be the eigenvalue of A given by Lemma 2. Observe that there exists a function $g \in H^{\infty}$ such that

$$f(\lambda) - w_n = (\lambda - \lambda_n) g(\lambda)$$
 and so $f(T) = w_n I + g(T)(T - \lambda_n I)$.
For $x \in \ker(T - \lambda_n)$ $f(T)x = w_n x = Ax$.

Since $H = \bigvee_{n=1}^{\infty} \ker(T - \lambda_n)$ this implies f(T) = A and so T is reflexive.

But if the condition (3) holds, then T satisfies the assumption (4) of the following theorem which gives a simple sufficient condition for the reflexivity of a contraction.

THEOREM 4. Let T satisfy the assumptions of Theorem 3. The following condition is sufficient for T to be reflexive:

$$\sum_{n=1}^{\infty} (1 - |\lambda_n|) < \infty. \tag{4}$$

Proof. (4) implies that the Blaschke product $B(\lambda) = \prod_{n=1}^{\infty} \frac{\overline{\lambda_n}}{|\lambda_n|} \frac{\lambda_n - \lambda}{1 - \overline{\lambda_n} \lambda}$ converges, B(T) = 0 and so T is a contraction of class C_0 . T is hyperreflexive and consequently also reflexive.

OPERATORS WHOSE EIGENVECTORS SPAN THE SPACE

Let us recall now what was the example of Larson and Wogen [5]. They constructed an operator T on a complex separable Hilbert space H with the following properties:

- (i) The point spectrum of T consists of the sequence $\left\{\frac{1}{4^n}\right\}_{n=1}^{\infty}$.
- (ii) The eigensubspaces $\ker(\frac{1}{4^n}-T)$ are one-dimensional and span H.
- (iii) T is reflexive.
- (iv) If K is any other complex separable Hilbert space with dimension at least one, then the operator $T \oplus 0$ on the space $H \oplus K$ is not reflexive.

They used this example to show that the orthogonal sum of two reflexive operators need not be reflexive. Since the eigenvectors of the operator $T\oplus 0$ span $H\oplus K$, this is also an example of an operator which is hyperreflexive but not reflexive.

Remark. It might be interesting to observe that both the operators T and $T \oplus 0$ do not satisfy any of the conditions (3) and (4).

REFERENCES

- [1] BERCOVICI, H.—FOIAS, C.—SZ.-NAGY, B.: Reflexive and hyper-reflexive operators of class C_0 , Acta Sci. Math. (Szeged) 43 (1981), 5-13.
- [2] CARLESON, L.: An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
- [3] DRAHOVSKÝ, Š.—ZAJAC, M.: Hyperinvariant subspaces of operators on Hilbert spaces, Banach Center Publications (to appear).
- [4] FOIAS, C.—FRAZHO, A. E.: The Commutant Lifting Approach to Interpolation Problems, Birkhäuser Verlag, Basel-Boston-Berlin, 1990.
- [5] LARSON, D. R.—WOGEN, W. R.: Reflexivity properties of $T \oplus 0$, J. Funct. Anal. 92 (1990), 448–467.
- [6] SARASON, D.: Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
- SZ.-NAGY, B.—FOIAS, C.: Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, Akadémiai Kiadó, Budapest, 1970.

Received April 19, 1993

Department of Mathematics
Faculty of Electrical Engineering
Slovak Technical University
Ilkovičova 3
SK-812 19 Bratislava
SLOVAKIA
E-mail: zajac@kmat.elf.stuba.sk