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A CHARACTERIZATION OF
TRIANGULAR NORM BASED TRIBES

MIRKO NAVARA

ABSTRACT. We study collections of fuzzy sets which are closed under comple-
mentation and under countable products (interpreted as “fuzzy intersections”).
We characterize them as certain spaces of functions measurable with respect to
the o-algebra of crisp elements. This solves the problem stated in [4] and [5] and
enables a generalization of results of [1, 2, 3, 4].

1. Preliminaries

Fuzzy probability models generalize classical Kolmogorov probability theory.
We start with a nonempty set X and a collection F C [0,1]% of fuzzy sets
equipped with some pointwise operations. The complement of f € F' is usually
defined as 1 — f. The fuzzy intersection is defined by the pointwise application
of a commutative associative operation T : [0,1]2 — [0,1] called a triangular
norm. There are many kinds of triangular norms; here we restrict our attention
to the triangular norm T4, which is the ordinary multiplication. It may serve as
a “typical” representant of a larger class of triangular norms — see [5] for a more
general overview. We recall here only those definitions which will be necessary
in the sequel.

DEFINITION 1.1 ([2]). Let X be a nonempty set. A Ti-tribe on X is a
collection F C [0,1]% such that

1. 0e F,

2. feF=1-feF,

3. {fn}nENCF: H fnGF
neN

(0, 1 denote the constant functions on X ).
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Throughout this paper, F C [0,1]* is a Tj-tribe. A subset G C F is a
sub-Ty-tribe (a subtribe, for short) of F' if it is a Tj-tribe with respect to the
operations inherited from F. For Y C X, we denote by F|Y the restriction
{f|Y: f € F} (which is a T -tribe as well). The collection C(F) = Fn{0,1}*
is the o-algebra of crisp elements of F'. The mapping ¢ : f — f‘l({l}) is
an isomorphism of C(F) and i(C(F)) C exp X . If we say that an f € [0,1]*
is measurable with respect to crisp elements, we mean that f is measurable
with respect to i(C(F)). For f € [0,1]% , we define the crisp domain Dc(f) =
{z € X: f(z) € {0,1}} and the fuzzy domain Dp(f) = {z € X: f(z) € (0,1)}.

DEFINITION 1.2 ([2]). A collection G C [0,1]¥ is called

— a generated tribe if there is a o-algebra C C exp X such that G = { fe
[0, 1% Pls C’-measurable},

— a semigenerated tribe if there is a o-algebra C C expX and Y C X such
that G = {f € [0,1]%: f is C-measurable, f|Y is crisp },

— a weakly generated tribe if there is a o-algebra C' C exp X and a o-ideal A
in C such that G = {f €[0,1]*: f is C-measurable, Dp(f) € A}.

A weakly generated tribe corresponding to a o-ideal A is semigenerated

(resp. generated) iff the ideal A is principal (resp. non-proper).

Remark 1.3. The notion of generated tribe is commonly used, semigenerated
tribes are introduced in [4] and the notion of weakly generated tribe is new.

PROPOSITION 1.4. Every weakly generated tribe is a T;-tribe.

The proof requires only a routine verification. O

2. Main result

Many results (see [1]-[5]) were obtained for generated or semigenerated tribes
and it is desirable to find their generalizations for all triangular norm based tribes
(in particular, for Tj-tribes). It was not clear to which extent the general case
might be different.

As the main result of this paper we shall prove that Tj-tribes coincide with
weakly generated tribes (Theorem 2.3). We need to recall some preceding partial
results towards this direction.

THEOREM 2.1 ([1]). A T -tribe is closed under countable (pointwise) suprema
and infima.
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THEOREM 2.2 ([1, 4]). If a Tj-tribe contains a constant function different
from 0 and 1, it is a generated tribe.

Our characterization is the following:
THEOREM 2.3. Every Ti-tribe is a weakly generated tribe (and vice versa).

The proof of Theorem 2.3 will require several lemmas. First of all we shall
describe all possible operations that can be applied pointwise to an element of
a Ty-tribe. For this purpose we introduce the notion of admissible function.

DEFINITION 2.4. The set A of admaissible functions is the smallest collection
of functions p: [0,1] — [0, 1] such that
1. the identity id € A,
the constant function 0 € A,
peA—=1—-peA,
p,g€ A= pog€e A,

. {pn}nEN CA= Han €A
ne

S 0

Notice that the set of admissible functions is a T -tribe and, according to
Theorem 2.1, it is a o-lattice.

LEMMA 2.5. If f€ F and p€ A, then pof € F.

Proof. The same sequence of operations which generated p from id can
be applied pointwise to f and resultsin po f. O

Lemma 2.5 allows a description of some procedures applied to elements of F'
without reference to the points of X . Thus our problem is transferred to the
investigation of admissible functions.

For a set M, we denote by xas its characteristic function. (The domain of
this function will be clear from the context.)

COROLLARY 2.6. If xg € A for some Borel set B, then xs-1py=xB°f €
C(F).
For each k,n € N we define an increasing admissible function pi () =

(1 —-(1- t)'“)71 These functions will play an important role in several steps of
the following proofs.

LEMMA 2.7. For each a,b,t € (0,1), a < b, there are k,n € N such that
pk:n(t) € [CL, b]
Proof. Notice that {pk,n(t)}neN

1—(1—1t)* <1.For k such that (1—1¢)* <b—a, at least one element of this
sequence belongs to the interval [a,b]. O

is a geometric sequence with the quotient
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LEMMA 2.8. For each a,b,r € (0,1), a < b, there are k,n € N such that

Prn(a) <7 < prn(b) .

Proof. The required inequality can be rewritten to an equivalent form

l—a>{/1-3r>1-b

which is satisfied for some k,n € N. O

LEMMA 2.9. Let xjo,] € A for some r € (0,1). Then X[o,a) € A for all
a€l0,1].

Proof. The case a € {0,1} is trivial; suppose that a € (0,1). We define a

function p= A X[0,r] © Pk,n » Where the infimum is taken over all k,n such that
k,n

Prn(a) < 7. The function p is admissible and it is the characteristic function

of some interval [0,b], b > a.If b > a, Lemma 2.8 gives a contradiction, hence

P = X[0,q] - O

LEMMA 2.10. There is an r € (0,1) such that X[o,r] 15 admissible.

Proof. We take an admissible function go(t) = pa2(t) = (1 — (1 — t)z)z.
The equation go(t) =t has exactly one root in (0,1/2), namely (3 —/5)/2;
we take this root for r. The function gy satisfies the following properties:

~ qo(t) =t for t € {0,r,1},
- qo(t) <t for t € (0,7),
- qo(t) >t for t e (r1).

We define a sequence {gn }nen C A recursively: g,(t) = qo (qn_l(t)) . We obtain

lim g,(t) =1 forall te (r1].
n—00

The function ¢ = \/ g, € A satisfies the following properties:
neN

- q(t)=1 for t € (r,1],

- q(t) <t for t€[0,7].
As 7 < 1—r, the admissible function g(t) = q(1 — g(t)) is the characteristic
function of [0,7]. O

Proof of Theorem 2.3. According to Lemmas 2.10 and 2.9, all char-
acteristic functions of intervals [0,s], s € [0,1], are admissible. A standard
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argument allows to generalize this observation to all Borel subsets of [0,1]. Let
C= i(C’ (F )) C exp X be the o-algebra corresponding to the o-algebra of crisp
elements of F'. Corollary 2.6 implies that all f € F are C-measurable.

We define A = {Dp(f): fe F} Let us prove that A is a o-ideal in C.
First, 0 = Dp(0) € A. Second, if M € A, K € C and K C M, then xg € F.
There is an f € F such that M = Dp(f). We obtain K = Dr(fAxk) € A.
Third, let {M,}nen C A. There is a sequence {fn}nen C F such that M, =
Dp(fr) for all n € N. We define an admissible function u — V (pk,n/\(l—pk,n))

k,n
(the supremum is taken over all k,n € N). It is clear that u(0) = u(l) =0
and u(t) < 1/2 for all ¢ € (0,1). According to Lemma 2.7, for each ¢ > 0
and each ¢ € (0,1) there exist k,n € N such that py,(t) € [1/2 —€,1/2].

This implies that u(t) = 1/2 for all t € (0,1). The function g = V uo f,
neN

belongs to F' (Lemma 2.5) and satisfies Dp(g) = 97 ({1/2}) = U Dr(f,) =
neN

U My, hence |J M, € A and A is a o-ideal. Moreover, for each f € F the
neN neN

restriction F'|Dp(f) contains the constant function 1/2 = (u o HIDr(f) and
hence (Th. 2.2) also all C-measurable functions on Dr(f). Thus F contains
all C-measurable functions whose fuzzy domains belong to A, and the proof of
Theorem 2.3 is complete. ]

3. Corollaries and examples

Our characterization leads to weakly generated tribes which are a proper gen-
eralization of generated tribes. In order to clarify the similarities and differences,
we add some other ideas. The corollaries were obtained as a by-product of the
proof of the main theorem.

COROLLARY 3.1. Every weakly generated tribe F is a subtribe of a generated
tribe G with the same crisp elements, i.e., C(F) = C(G).

COROLLARY 3.2. Fach element f of a weakly generated tribe F' is contained
in a semigenerated subtribe of F .

The last corollary shows that a weakly generated tribe contains a large “three-
valued sublogic” (which, of course, is not a subtribe).

COROLLARY 3.3. Let F be a weakly generated tribe and let feF. We

165



MIRKO NAVARA

define Zf € {0,1/2,1}% by the following rules:

0, for f(z) =0,

Ef(x)=4 1, for f(z)=1,
1/2, for f(z) € (0,1).

Then Ef € F.

Proof. Using the function u from the final part of the proof of Theo-
rem 2.3, we define an admissible function w = uV x{1} . We obtain wo fF=zf
and Lemma 2.5 completes the proof. O

The following examples show that weakly generated tribes are a proper gen-
eralization of generated tribes.

EXAMPLE 3.4. Let X be an uncountable set. We define F' = {f € [0,1]*:
Dp(f) is countable}, G = {f € [0, 1]%X: one of the sets X \ f—l({O}), X\
ft ({1}) is countable}. Then F', G are weakly generated tribes which are not
semigenerated.

EXAMPLE 3.5. Let (X,C, P) be a (classical) probability space. Let F' = {f €
[0,1]% : f is C-measurable, P(Dp(f)) =0} (i.e., the elements of F' are crisp
P -almost everywhere). Then F is a weakly generated tribe.

REFERENCES

[1] BUTNARIU, D—KLEMENT, E. P.: Triangular norm-based measures and their Markov-
kernel representation, J. Math. Anal. Appl. 162 (1991), 111-143.

[2] KLEMENT, E. P.: Construction of fuzzy o-algebras using triangular norms, J. Math.
Anal. Appl. 85 (1982), 543-565.

[3] KLEMENT, E. P.—LOWEN, R.—SCHWYHLA, W.: Fuzzy probability measures, Fuzzy
Sets and Systems 5 (1981), 21-30.

[4] MESIAR, R.: Fundamental triangular norm based tribes and measures, J. Math. Anal.
Appl. 177 (1993), 633-640.

[5] MESIAR, R.: Fuzzy sets and probability theory, Tatra Mountains Math. Publ. 1 (1992),
105-123.

Received February 4, 1993 Department of Mathematics
Faculty of Electrical Engineering
Czech Technical University
CZ-166 27 Praha 6
CZECH REPUBLIC
E-mail: navara@math.feld.cvut.cz

166



