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ALEXANDROV AND KOLMOGOROV
CONSISTENCY THEOREM FOR MEASURES WITH
VALUES IN PARTIALLY ORDERED GROUPS

PETER VOLAUF

ABSTRACT. Alexandrov and Kolmogorov theorems for Riesz space valued mea-
sures were discussed in [2] and [6]. The relations between the regularity and count-
able additivity for measures with values in partially ordered vector spaces were
studied in [12]. The goal of this note is to suggest the concept of the regularity of
u which gives the desired results for partially ordered group valued measures.

1. Introduction

Let (G,+,Z) be a commutative partially ordered group. G is said to be
monotone o-complete if, whenever (a,) (n = 1,2,...) is an upper bounded,
monotone increasing in G, then it has a least upper bound \/a, € G. If, for
each upper bounded, upward directed family (@) in G, there exists a least
upper bound \/a) € G, then G is said to be monotone complete. The set of
nonnegative elements in G will be denoted by G*. Denote by N the set of all
positive integers.

Let R be a ring of subsets of a nonempty set X and u be a positive, finitely
additive G-valued mapping on R, ie., p: R — GT, ie., u(A4) > 0, for any
A€R and p(AUB) = p(A) + u(B), for all 4,B€ R if ANB =0. (Due
to additivity u(@) = 0.) Recently, (see [4]) the term “charge” is used for such
mapping p, of course, “positive” charge in this case.

If p is a Gt -valued additive mapping on a ring R, there are several ways
how to define its countable additivity. We use the followmg definition: A mapping
p:R — GT is countably additive if

u(gAi) :\/{gu(AiHn:l,Z...},
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n
whenever (A;) is a sequence of disjoint sets in R. Instead of \/{Z ai| n =

3=

oo
1,2,... } we will write Y a;.

Referring to Floy dz’s1 paper [1], J. D. M. Wright pointed out that the
theory based on this concept of countable additivity differs from the theory of
topological group valued measures. The basic fact is that there exist partially
ordered groups which do not admit any Hausdorff group topology o-compatible
with the order. (A group topology 7 is o-compatible with the order if the
following implication holds:

if  (an) /" a (order convergence),

then (a,) La (convergence in the topology 7).

It is known that for basic results for Riesz space-valued measures the following
property of o-distributivity of a range space plays the central role. As we are
going to discuss group valued measures the weak o-distributivity is presented
as the condition of a lattice group. A o-complete lattice group G is weakly

o-distributive if

whenever (a;;) is a bounded from above double sequence in G such that for
each i €N, a;; \\0 (j — 00).

For partially ordered groups without the lattice structure the following con-
cept of regularity was used in [7]. A monotone o-complete partially ordered
group G is a regular group if

/\{Zaw(z) I (p: N—>N} :O,
g=1

whenever (a;;) is a double sequence in G such that a;; \, 0 (j — oo) for each
i € N. The relations between these concepts were studied in [8].

\/ai«p(i) | <P3N—’N} =0,

=1

Let us return to Gt—valued additive mappings. The following lemma states
the simple relation between continuity and countable additivity of .

LEMMA 1. If p: R — G7 is finitely additive, then the following conditions
are equivalent:

(1) p is countably additive on R.
(2) p is continuous from above at (.
(3) p is continuous from below at every A € R.

The proof is elementary; if (a,,) is a decreasing sequence of nonnegative elements
in G, then \/(a—a,)=a— Aay. 0
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2. Alexandrov theorem

A classical theorem of A. D. Alexandrov states that when p is nonnegative,
finitely additive, and regular on the ring R of subsets of a compact Hausdorff
space X , then u is countably additive on R . The generalization of Alexandrov
theorem for vector-valued measures was done in [6] and [2] for Riesz space-valued
measure, i.e., in the case when the range of p is a vector lattice. The concept
of regularity of vector valued measures was studied earlier in papers (10, 11, 12]
of J.D. M. Wright who proved the extension theorem under the assumption
of regularity of u. All the formulations of the regularity in papers we have just
mentioned are based on the lattice structure of the range space. For example, in
[10] the inner regularity means that

w(E)=\/{wF):3C ec, F c C c E},

where C is a system of closed (i.e., compact) subsets in the compact Hausdorff
space X . Authors in [6] and [2] used a more abstract and delicate formula-
tion of (inner) regularity of p. First, they used the concept of (abstract) com-

(o ]
pact system K (a nonempty system K C 2% is a compact one if (| K; = 0

i=1
n,
(K; € K, i=1,2,...) implies that there exists ng € N such that ﬁ K;,=0),
=1
which plays the role of a system of compact sets in X .

Secondly, they used behavior of doubled decreasing sequences tending to zero
to express the fact that /C approximates R . We point out that both authors dis-
cussed Riesz space-valued measures but what they really utilized was the lattice
structure of the range of u. That is the reason why it is possible to formulate
and to prove all their results also for lattice group valued measures. In the next
we will use the concept of regular group so to avoid misunderstanding, following
[3], instead of (inner) regularity of 1 (with respect to a compact system) we will
say that p is compact.

DEFINITION 1. Let G be a commutative lattice group. Let R be a ring of
subsets of X and let IC be a compact system in X . A mapping pu: R — G is
said to be \/-compact, if for any E € R, there exists a bounded double sequence
(aij) in G, a;; \\0 (j — o00), for each i € N, such that for any v:N—= N
there exist C € L and F € R such that F C C C E and

wE\F) = \/ @ p(3) -
i=1
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The sense of this definition arises in the case of a weakly o-distributive lattice
o

group when the infimum of elements \/ a;,(;) through all ¢, ¢: N — N isa
i=1

zZero.
Our goal is to abandon the lattice structure of the range of u so we offer the
following modification of the compactness of .

DEFINITION 2. Let G be a commutative partially ordered group. Let R be
a ring of subsets of X and let K be a compact system in X. A mapping
p: R — G is said to be X-compact if for any E € R there exists a double
sequence (a;;) in G, a;; \, 0 (j — o0), for each i € N, such that for any
¢: N — N there exist C € K and F € R such that F C C C E and

w(E\F) = Zaw(i) .
i=1

The comparison between these concepts in the case of lattice-ordered groups
is given in the following proposition.

PROPOSITION 1. Let G be a o-complete lattice group. If p: R — G* is
additive, then p is V-compact if and only if it is Y.-compact.

Proof. It is evident that V-compactness implies Y-compactness. For the
reverse implication we use the lemma from [9]:

If (a;;) is a double sequence in G such that a;; \, 0 (j — oo), for each
i € N, then to every positive b € G there exists a bounded double sequence
(bi;) in G, b;; \,0 (j — 00), for each i € N and such that for any ¢: N — N

it holds
oo o0
b/\<zaw(i)> <V by - -
i=1 i=1

The concept of inner regularity used in [5] is more restrictive ‘than those from
Definition 1 and Definition 2. It is easy to see that if p is inner regular in the
sense of [5], then u is V-compact. On the other hand, let us consider (inner)
regularity of u in the sense of [10]. Suppose that G is a complete lattice and p is
V-compact (with respect to a compact system C). If G is weakly o-distributive,
then

wE)=\/{uF):3CecC, FCCCE}.

To prove it, let us set a = u(E)—V{u(F): 3C € C, F C C C E}. It is obvious
that a is nonnegative and

a=p(E) - \/{u(F):3CeC, FCCCE}=
= A\{w(E\F):3CecC, FcCCE}.
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Due to the assumption, there exists a bounded double sequence (a;;) in G,
a;; \\0 (j — o00), for each ¢ € N, such that for any ¢g: N — N there exist
Cp € C and Fy € R such that Fy C Cy C E and

WE\Fo) £\ aigo) -
=1

We get
o= N{wE\F):3CeC, FcCCE} £\ aipu

i=1
for any g, vo: N — N, ie., a < /\{v aioi) | N — N} = 0 due to the
weak o-distributivity of G. Consequentzl;,1
wE)=\/{uF):3CecC, FCCCE}.
For the proof of Alexandrov theorem we will need the following computational
lemma.

LEMMA 2. Let (af;) be a triple sequence in G' such that af; \, 0 (j — o)
for each n,i € N. Then there exists a double sequence (b;;) in G, b;; \, 0
(j — o0), such that for any p: N — N

k
Proof. Set byj = )  aj_,;;- The relations
1

r=

allc—-l—{—lj N O (j — 00),

ai—2+1j N O (j — 00),
imply

(allc—1+1j + ai-2+1 j) N\ O (j — 00),
k
consequently, we get ) ap_ri1; N0 (j— 00),s0that br; \ 0 (j —o00). It
r=1

is easy to verify that for each m € N we get

m 2m-—1

Z agw(j+i—1) < D by
k=1

j=1 i=1

<,

so the desired inequality holds. O
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THEOREM 1 (ALEXANDROV). Let p: R — G* be additive and X-compact
(with respect to a compact system K) on the ring R. If G is a monotone
o-complete, regular partially ordered group, then p is countably additive.

Proof. With respect to Lemma 1 it is sufficient to show that p is contin-
uous from above at . Let (E,) be decreasing to #, F,, € R, for n € N. Since
u is Y-compact with respect to IC, for each E,, there exists a triple (a?j),
a’;i 0, (j — o0) such that for any ¢, ¢ : N — N, there exist K, € K and
F, € R such that F,, C K, C E, and

o0
(B \ Fn) £ 30l -
i=1

Short inspection shows that from compactness of p we can conclude the fol-
lowing: there exists a triple (af;) in G, af; \, 0 (j — o0), such that for any
@, v :N— N, there exist K,, € K and F, € R such that F, C K, C E,, and

)
:H’(ETL \ Fn) g Za?ga(n—i-i—l) :
i=1

[e.e] o0
Since (| E; =0, we get (| K; =0 and due to compactness of K there exists
i=1 i=1

n, n
ng € N, such that ﬁ K; = 0. From this we have F; =0,if n 2 ng. Hence
=1

i=1 4=
for n 2 ng we get

n

(8 = (B QF) FUEAVNED

J=1 J

o0
j
Z @5 p(j+i-1) 7

n
=1 d=1

according to Lemma 2 there exists (b;;), b;; \, 0 (j — o0o) such that
n o0 . (o e]
w(En) £ Zzahuﬂ-—n <D b
j=1i=1 i=1
Sets K, , F, depend on ¢ so the index ng also depends upon ¢. Anyway, for
N\ wu(E,) we can write
n=1
o0 [ee]
A 8B S N[ Y by | 058 =}
n=1 i=1
and from the regularity of G we get A w(E,) =0, so that p is continuous at
g

n=

0, i.e., p is countably additive. O
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Application: Kolmogorov’s consistency theorem

Let I be an arbitrary nonempty set and denote by F the set of all finite
subsets of I. Let (X;)iesr be a system of topological spaces and let X f=
[1 X: (f € F) be the product space (i.e., X/ is endowed with the product
ief
topology). Suppose that for each f € F, Kf is the system of all compact
subsets in X/ and uf : Af — G is a compact measure on an algebra Al
Kf ¢ A7 and pf is compact with respect to K7 .

Finally, denote by IIf the projection from [ X; into X f and by Iy,

i€l
where f,g € F, f C g, the projection from X9 into X7 . Let A be the algebra

of subsets of [] X; generated by the system {H;l(E): Ec A, feF}.
el

THEOREM 2 (KOoLMOGOROV). Under the notation given above suppose that
systems

(Y Af): ferF), mYA)={0;Y(E):E¢€ AT}

are directed upwards by set inclusion, i.e., for any f,g € F there exists h €
F such that H;l(.Af) C II;*(AM) and II;1(A9) C I (AM). Let G be a
monotone o-complete, regular partially ordered group and {uf: f € F} be
a consistent system of compact measures, l.e., if f,g € F and f C g, then
uf(E) = p9 (wg_}(E)) for any E € Af. Then there exists a measure p, p :
A — G such that

p(I7H(E)) = p! (B)

for any f € F, E € Af . Moreover, if G is an o-separable group, then there
exists a measure p* with the above property on the o-algebra S(A) generated

by A.

Proof. In [2] it is shown that u defined on A by p(A4) = pf (IIf(A4)) is
unambiguously defined ([2], Lemma 4). The fact that = {H;I(K): Kex/,
f € F} is a compact system is proved in [5]. The rest of the proof is completely
analogous with the proof in [2]. Let us recall that G is o-separable if every non-
empty subset H possessing a supremum contains an at most countable subset
possessing the same supremum as H (realize that in this case G is monotone

complete). The last part of the Theorem is the consequence of Theorem 3,
p. 375 in [7]. O
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