TATRA
Tatra Mountains Math. Publ. 3 (1993), 191-200 MOUNTaIiNS

Mathematical Publications

REMARKS ON BUCK’S MEASURE DENSITY

MILAN PASTEKA

ABSTRACT. In this paper, Buck’s measure density is investigated. Some prop-
erties of this set function are proved.

Introduction

Let N be the set of all positive integers and Z the set of all integers. In [1],
the measure density of a set S C N has been introduced in the following way:
For a nonnegative integer and m € N we put

a+{m)={a+m-n; n=0,1,2,...}.
If S C N, then the value
kg k
i=1 i=1
will be called the measure density of the set S.
The purpose of this paper is to describe some properties of the function p*.
In 1962, E. V. Novoselov [5] has constructed a metric ring of polyadic
numbers, as a compactification of the ring of integers Z, with a special metric.
Let us denote this ring by Q. If m € N, then the symbol (m) will denote the
principal ideal in (2, generated by m. Similarly for a € Z we put
a+(m)={a+v-m; y€Q}.

In [5], the Haar probability Borel measure P on  is also investigated. In this
paper, it is proved that

P(a—i—(m)):%, m e N. (1)
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From the investigation in [5] we also have that the set a+(m), m €N, a € Z,
is closed and open (see [5]).

In [5], it is proved:

THEOREM A. Let a € Q, and m € N. Then there exist unique elements
B€Q and j € Z, such that 0 < j <m and

a=m-[B+7.

Theorem A shows that the relation of divisibility can be naturally extended
to . For the extension of the metric d on Q then one has

o0 il =
d(o, )=y £0=F) (2
n=1
for a,p € §2, where
()_{1, if n41,
D 0, if n|vy.

Thus the convergence in 2 can be characterized as follows: Let {an} be a
sequence of elements of Q and a@ € Q. Then a, — « if and only if for every
positive integer M there exists an index ngy such that for n > ng we have

anp=a (mod M!). (3)

We shall also need the well-known Riemann zeta function ¢ defined as follows:
For o > 1 we put

From [2, page 246] we have: If a > 1, then

ﬁ:ﬂ(l—ﬁg). (4)

P

If S € N, then the value of the limit (if it exists)

.1
A5) = Jim, o D1
TSN
kes
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will be called the asymptotic density of the set S. Clearly
d(S) < u*(S) (5)

if d(S) exists.

In the paper [7], the following formula for evaluation of the measure density
is proved. For a,b € N, denote by a mod b the least nonnegative remainder of
a after division by b. For the set S € N and b € N we put

S (mod b) = {s (mod b); s € S}

and

R(S,b) = #S (mod b).

THEOREM B. Let {B,} be a sequence of positive integers for which the fol-
lowing condition is satisfied:
(i) For every d € N there exists ng such that for n > ng we have d| B, .
Then
p*(S) = lim R(&: Bu)

n—o0 n
for every S C N.
Proof. See |7, p. 17]. O

1. Buck’s measure density and the measure on (.

In this part, we establish one connection between the measure P on € and
the measure density.

Let us denote for S C N by S the topological closure of S in the space §2.

THEOREM 1. For S ¢ N we have

w(S) = P(S).

Proof. Let {B,} be a sequence for which (i) is satisfied and moreover
B|Bp41 . (For instance B, =n!, n=1,2,....)
Put
S+ (Bn)=|Js+(Bn), n=12,....
seS
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Then S+ (B,) D S+ (Bp+1), n=1,2,.... From (3) and Theorem A it follows
5=[)5+(Bu).
n=1

Thus the upper semi-continuity of measure gives us
P(S) = lim P(S+ (Bn)) - (6)
Clearly the set S + (B,) has a disjoint decomposition

S= |J e+@Bn.

a€S (mod B),

Thus (1) implies. that
_ R(5,Bx)

P(S + (B,)) B,

Therefore (6) and Theorem B implies the assertion of Theorem 1. The proof is
complete. O

Denote by D the set of all primes and by Q for k£ =2,3,... the set of all
a € N such that there is no prime number p € Dwith p*|a. Clearly Q, will
denote the well known set of square-free integers. We shall now use Theorem 1
for the evaluation of p*(Qp) .

In [6, p. 65] it is proved that

1

d = 7
@)= 775 ™)
for £=2,3,....
THEOREM 2. For k=2,3,... we have
“(0,) = ——

Proof. Clearly for £ =2,3,...

Qxc\ J ).

peD
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The set |J (p*) is open thus its complement is closed. Therefore
peED

Qp CQ\ U (")
pED
Now, Theorem 1 implies that
(@) = P@) < P(2\ J 6). (®
pED
But from the exclusion-inclusion principle we have
1 1
P(Q N =1l1-%)=5-
(" Yo) =10 -5) = o
Thus (5), (7) and (8) implies Theorem 2. The proof is complete. O

Let us conclude this part with one remark. The set S € N is called measurable

if
pr(S) +p*(N\S)=1.

In [7] it is proved that every measurable set S has asymptotic density and
d(S) = p*(S). It is a natural question whether the equation d(S) = u*(S)
implies the fact that S is a measurable set. Theorem 2 gives us the negative
answer to this question, although d(Qi) = p*(Qg). In [8] is proved that this
set does not contain any infinite arithmetic progression, thus Theorem B implies
p*(N\Qr)=1 for k=2,3,... and so Q is not measurable.

2. Remarks on a certain arithmetic function.

Theorem 1 implies the following property of sets having the measure density 1.

PROPOSITION 1. If a set S C Q has the measure density 1, then it is dense
in .

We shall say that an arithmetic function f is polyadically continuous if, for
every € > 0, there exists a positive integer Ny such that for each integer a,b it
holds

a=b (mod No!) = |f(a) — f(b)| <e.

Now, let us define an arithmetic function h, for a real a in the following way:

ha(n):H(l—pia), n=1,2,....

p/n
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LEMMA 1. For a > 1, the arithmetic function h, is polyadically continuous.

Proof. Let a = b (mod k!). Then in the representation of the numbers
a,b as a product of prime powers there appear the same primes which are not
greater than k.

Thus, we can put
1 1
K:||<1—E):I|(1—E)

p/a p/b
p<k p<k

It is trivial that 0 < K < 1. By an easy computation we get

ha(@) ~ ha(Bl S K Y .

n>k

(o]
If a > 1, then the infinite series n—la- converges, and therefore, ) n% — 0
for k£ — oco. n=1 n>k

The proof is finished. |

Our aim will now be to investigate the closure of the set
My = {loghqa(s); s€ S} (9)

where S is a subset of N having the measure density 1.
We shall prove the following theorem:

THEOREM 3. For every a > 1 there exists a finite number of closed intervals
[l — C,l4],...,[l. — C,l.], C >0, such that for each set S having the measure
density 1, the closure of the set M, , given by (9), can be expressed in the form

T

Mo =Jli-C1.

g=1

Proof. The arithmetic function h, can be extended to a continuous func-
tion i
B Q) — [— 1]
¢ ((a)

by putting

ha(v)zﬂ(l—p—la), yeQ.

P/
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From this fact we obtain that the function log h, is also continuous. Proposition
1 gives now

Mg, = log ha(Q).

O
The assertion now follows from the following properties of infinite series.
Put for the sequence of real numbers {a,}
V({an}) = {Z Enln; En =0, 1} .
n=1
LEMMA 2. Let a, >0, n=1,2,... and A= Y a, < cc.
n=1
If for every k holds
ar < Z Ap
n=k+1

then

Proof. See [10, p. 95]. O

LEMMA 3. Let {a,} be a decreasing sequence of positive real numbers such

oo
that ) a, < co and
n=1
g,

lim
=30 Ap41
Then there exists C > 0 and a finite number of closed intervals
1,01 +C,... [0, +C], ;>0, (i=1,2,...,7)
such that

V({an}) = U s + €1,

Proof. The assertion is a trivial consequence of Lemma 2, taking into
account that there exists ky such that =2k < 2 for k > ko . In this case

k+2 —

(o ]
Z Un 2 Q41 + Qg2 > 2042 > ay
n=k+1
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If C = Y a; and {l4,...,l;} will be the set of all numbers in the form
k=ko
€141+ + EpyQky » €i = 0,1 the assertion follows. O

Now we turn back to the proof of Theorem 3.

Let p; < ps < ... be the increasing sequence of all primes. It is trivial

that log ha(Q) = V({an}), where a, = log(1 — 1#)’ n = 1,2,... Then
oo

—log ha(Q) = V({—an}). The sequence {—an} is decreasing and > an =
n=1

2 — 1. Finally from Lemma 3 we

log((ar) < o0, for a > 1. Clearly lim %2

n—oo ~n

obtain the assertion of Theorem 3.

Let {z,} be a sequence of positive integer numbers. The sequence {z,} is
said to be uniformly distributed in the set of integers if and only if for every
positive integers j and m it holds that

1 1
lim — =
Nl—rgo N Z 1 m
zn=j(m)
n<N

Let us remark that p*(S) = 1 if and only if S can be rearranged into a
sequence which is uniformly distributed in Z (cf. [7, p. 27]).

In the monograph [3, p. 41], it is proved that {z,} is uniformly distributed in
the set of all integers if and only if for every positive integer m and every periodic

N

arithmetic function g with period m, the following is valid: Nlim % > glzyn) =

m—1 00 p—1
L g(j) . The following simple consideration shows us that this criterion can
™ j=o

]:
be extended to a larger class of functions.

In [9, p. 201] it is proved that for each polyadic continuous arithmetic function
there exists the limit ’

Sy = lim -]{—]-Z f(n). (10)

Clearly for each polyadic continuous function f there exists a periodic g such
that

lg(n) —f(n)|<e, n=12,....
This immediately implies:

PROPOSITION 2. The sequence of positive integers {z,} is uniformly distrib-
uted in the set of all integers if and only if for every polyadically continuous
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arithmetic function f it holds
1 X

where Sy is given by (10).

As a consequence, we now prove one equality for sequences that are uniformly
distributed in the set of all integers.

THEOREM 4. If {z,} is a sequence of positive integers which is uniformly
distributed in the set of all integers, then for each o > 1 it holds

IE%ONZ}L )= sy

For proof we shall need the following assertion well known as Wintner’s the-
orem:

THEOREM C. Let f be an arithmetic function with representation
=) _F@
d|n
and for the function F' we have

= |F(d)]
Z d < oo,

d=1

then Sy exists and

&:Z#.

d=1

Proof. See |9, p. 192]. : |

Proof of Theorem 4. According to Proposition 2 and Lemma 1 for
each o > 1 we have
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" Let u denote the Mobius function. Clearly we have

ha(n) = Mcgil) ’

m=1,2,4:s
d/n

Therefore, from Wintner’s theorem we obtain

o0
5, =5 Md)
o T a1 °
d=1 d
Using (4) we get
1
Sp, = ——.
% fla+1)
Thus, the proof is complete. O
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