

MILAN PAŠTÉKA

ABSTRACT. In this paper, Buck's measure density is investigated. Some properties of this set function are proved.

Introduction

Let $\mathbb N$ be the set of all positive integers and $\mathbb Z$ the set of all integers. In [1], the measure density of a set $S \subset \mathbb N$ has been introduced in the following way: For a nonnegative integer and $m \in \mathbb N$ we put

$$a + \langle m \rangle = \{a + m \cdot n; \ n = 0, 1, 2, \dots\}.$$

If $S \subset \mathbb{N}$, then the value

$$\mu^*(S) = \inf \left\{ \sum_{i=1}^k \frac{1}{m_i}; \ S \subset \bigcup_{i=1}^k a_i + \langle m_i \rangle, \ m_i \in \mathbb{N} \right\}$$

will be called the *measure density* of the set S.

The purpose of this paper is to describe some properties of the function μ^* . In 1962, E. V. Novoselov [5] has constructed a metric ring of polyadic numbers, as a compactification of the ring of integers \mathbb{Z} , with a special metric. Let us denote this ring by Ω . If $m \in \mathbb{N}$, then the symbol (m) will denote the principal ideal in Ω , generated by m. Similarly for $a \in \mathbb{Z}$ we put

$$a + (m) = \{a + \gamma \cdot m ; \ \gamma \in \Omega\}.$$

In [5], the Haar probability Borel measure P on Ω is also investigated. In this paper, it is proved that

$$P(a+(m))=\frac{1}{m}, \quad m \in \mathbb{N}.$$
 (1)

AMS Subject Classification (1991): 11K38.

Key words: measure density, sequences, uniform distribution.

Research supported by Slovak Academy of Sciences Grant 363/91.

From the investigation in [5] we also have that the set a + (m), $m \in \mathbb{N}$, $a \in \mathbb{Z}$, is closed and open (see [5]).

In [5], it is proved:

THEOREM A. Let $\alpha \in \Omega$, and $m \in \mathbb{N}$. Then there exist unique elements $\beta \in \Omega$ and $j \in \mathbb{Z}$, such that $0 \leq j < m$ and

$$\alpha = m \cdot \beta + i$$
.

Theorem A shows that the relation of divisibility can be naturally extended to Ω . For the extension of the metric d on Ω then one has

$$d(\alpha, \beta) = \sum_{n=1}^{\infty} \frac{\varphi_n(\alpha - \beta)}{2^n}$$
 (2)

for $\alpha, \beta \in \Omega$, where

$$\varphi_n(\gamma) = \begin{cases} 1, & \text{if } n + \gamma, \\ 0, & \text{if } n \mid \gamma. \end{cases}$$

Thus the convergence in Ω can be characterized as follows: Let $\{\alpha_n\}$ be a sequence of elements of Ω and $\alpha \in \Omega$. Then $\alpha_n \to \alpha$ if and only if for every positive integer M there exists an index n_0 such that for $n \geq n_0$ we have

$$\alpha_n \equiv \alpha \pmod{M!}. \tag{3}$$

We shall also need the well-known Riemann zeta function ζ defined as follows: For $\alpha > 1$ we put

$$\zeta(\alpha) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}.$$

From [2, page 246] we have: If $\alpha > 1$, then

$$\frac{1}{\zeta(\alpha)} = \prod_{p} \left(1 - \frac{1}{p^{\alpha}} \right). \tag{4}$$

If $S \in \mathbb{N}$, then the value of the limit (if it exists)

$$d(S) = \lim_{n \to \infty} \frac{1}{n} \sum_{\substack{k \le n \\ k \in S}} 1$$

will be called the asymptotic density of the set S. Clearly

$$d(S) \le \mu^*(S) \tag{5}$$

if d(S) exists.

In the paper [7], the following formula for evaluation of the measure density is proved. For $a, b \in \mathbb{N}$, denote by $a \mod b$ the least nonnegative remainder of a after division by b. For the set $S \in \mathbb{N}$ and $b \in \mathbb{N}$ we put

$$S \pmod{b} = \{s \pmod{b}; s \in S\}$$

and

$$R(S,b) = \#S \pmod{b}.$$

THEOREM B. Let $\{B_n\}$ be a sequence of positive integers for which the following condition is satisfied:

(i) For every $d \in \mathbb{N}$ there exists n_0 such that for $n > n_0$ we have $d \mid B_n$. Then

$$\mu^*(S) = \lim_{n \to \infty} \frac{R(S, B_n)}{B_n}$$

for every $S \subset \mathbb{N}$.

Proof. See [7, p. 17].

1. Buck's measure density and the measure on Ω .

In this part, we establish one connection between the measure P on Ω and the measure density.

Let us denote for $S \subset \mathbb{N}$ by \overline{S} the topological closure of S in the space Ω .

THEOREM 1. For $S \subset \mathbb{N}$ we have

$$\mu^*(S) = P(\overline{S}).$$

Proof. Let $\{B_n\}$ be a sequence for which (i) is satisfied and moreover $B_n|B_{n+1}$. (For instance $B_n=n!$, $n=1,2,\ldots$)

Put

$$S + (B_n) = \bigcup_{s \in S} s + (B_n), \quad n = 1, 2, \dots$$

Then $S + (B_n) \supset S + (B_{n+1})$, $n = 1, 2, \ldots$ From (3) and Theorem A it follows

$$\overline{S} = \bigcap_{n=1}^{\infty} S + (B_n) \,.$$

Thus the upper semi-continuity of measure gives us

$$P(\overline{S}) = \lim_{n \to \infty} P(S + (B_n)). \tag{6}$$

Clearly the set $S + (B_n)$ has a disjoint decomposition

$$S = \bigcup_{a \in S \pmod{B}_n} a + (B_n).$$

Thus (1) implies that

$$P(S + (B_n)) = \frac{R(S, B_n)}{B_n}.$$

Therefore (6) and Theorem B implies the assertion of Theorem 1. The proof is complete.

Denote by D the set of all primes and by Q_k for $k=2,3,\ldots$ the set of all $a\in\mathbb{N}$ such that there is no prime number $p\in D$ with $p^k|a$. Clearly Q_2 will denote the well known set of square-free integers. We shall now use Theorem 1 for the evaluation of $\mu^*(Q_k)$.

In [6, p. 65] it is proved that

$$d(Q_k) = \frac{1}{\zeta(k)} \tag{7}$$

for k = 2, 3, ...

THEOREM 2. For $k = 2, 3, \ldots$ we have

$$\mu^*(Q_k) = \frac{1}{\zeta(k)} \,.$$

Proof. Clearly for $k=2,3,\ldots$

$$Q_k \subset \Omega \setminus \bigcup_{p \in D} (p^k)$$
.

The set $\bigcup_{p\in D}(p^k)$ is open thus its complement is closed. Therefore

$$\overline{Q}_k \subset \Omega \setminus \bigcup_{p \in D} (p^k)$$
.

Now, Theorem 1 implies that

$$\mu^*(Q_k) = P(\overline{Q}_k) \le P\left(\Omega \setminus \bigcup_{p \in D} (p^k)\right). \tag{8}$$

But from the exclusion-inclusion principle we have

$$P\bigg(\Omega \setminus \bigcup_{p \in D} (p^k)\bigg) = \prod_{p \in D} \bigg(1 - \frac{1}{p^k}\bigg) = \frac{1}{\zeta(k)}.$$

Thus (5), (7) and (8) implies Theorem 2. The proof is complete.

Let us conclude this part with one remark. The set $\,S\in\mathbb{N}\,$ is called measurable if

$$\mu^*(S) + \mu^*(\mathbb{N} \setminus S) = 1.$$

In [7] it is proved that every measurable set S has asymptotic density and $d(S) = \mu^*(S)$. It is a natural question whether the equation $d(S) = \mu^*(S)$ implies the fact that S is a measurable set. Theorem 2 gives us the negative answer to this question, although $d(Q_k) = \mu^*(Q_k)$. In [8] is proved that this set does not contain any infinite arithmetic progression, thus Theorem B implies $\mu^*(\mathbb{N} \setminus Q_k) = 1$ for $k = 2, 3, \ldots$ and so Q_k is not measurable.

2. Remarks on a certain arithmetic function.

Theorem 1 implies the following property of sets having the measure density 1. **PROPOSITION 1.** If a set $S \subset \Omega$ has the measure density 1, then it is dense in Ω .

We shall say that an arithmetic function f is polyadically continuous if, for every $\varepsilon>0$, there exists a positive integer N_0 such that for each integer a,b it holds

$$a \equiv b \pmod{N_0!} \Longrightarrow |f(a) - f(b)| < \varepsilon.$$

Now, let us define an arithmetic function h_{α} for a real α in the following way:

$$h_{\alpha}(n) = \prod_{p/n} \left(1 - \frac{1}{p^{\alpha}}\right), \ n = 1, 2, \dots$$

LEMMA 1. For $\alpha > 1$, the arithmetic function h_{α} is polyadically continuous.

Proof. Let $a \equiv b \pmod{k!}$. Then in the representation of the numbers a, b as a product of prime powers there appear the same primes which are not greater than k.

Thus, we can put

$$K = \prod_{\substack{p/a \\ p < k}} \left(1 - \frac{1}{p^{\alpha}}\right) = \prod_{\substack{p/b \\ p < k}} \left(1 - \frac{1}{p^{\alpha}}\right).$$

It is trivial that $0 < K \le 1$. By an easy computation we get

$$|h_{\alpha}(a) - h_{\alpha}(b)| \le K \sum_{n > k} \frac{2}{n^{\alpha}}.$$

If $\alpha>1$, then the infinite series $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}}$ converges, and therefore, $\sum\limits_{n>k}\frac{1}{n^{\alpha}}\to 0$ for $k\to\infty$.

The proof is finished.

Our aim will now be to investigate the closure of the set

$$M_{\alpha} = \left\{ \log h_{\alpha}(s) \, ; \ s \in S \right\} \tag{9}$$

where S is a subset of $\mathbb N$ having the measure density 1.

We shall prove the following theorem:

THEOREM 3. For every $\alpha > 1$ there exists a finite number of closed intervals $[l_1 - C, l_1], \ldots, [l_r - C, l_r], C > 0$, such that for each set S having the measure density 1, the closure of the set M_{α} , given by (9), can be expressed in the form

$$\overline{M}_{\alpha} = \bigcup_{i=1}^{r} [l_i - C, l_i].$$

Proof. The arithmetic function h_{α} can be extended to a continuous function

$$h_lpha:\Omega o \left[rac{1}{\zeta(lpha)},1
ight]$$

by putting

$$h_{\alpha}(\gamma) = \prod_{p/\gamma} \left(1 - \frac{1}{p^{\alpha}}\right), \quad \gamma \in \Omega.$$

From this fact we obtain that the function $\log h_{\alpha}$ is also continuous. Proposition 1 gives now

$$\overline{M}_{\alpha} = \log h_{\alpha}(\Omega)$$
.

The assertion now follows from the following properties of infinite series. Put for the sequence of real numbers $\{a_n\}$

$$V(\{a_n\}) = \left\{ \sum_{n=1}^{\infty} \varepsilon_n a_n; \ \varepsilon_n = 0, 1 \right\}.$$

LEMMA 2. Let $a_n > 0$, $n = 1, 2, \ldots$ and $A = \sum_{n=1}^{\infty} a_n < \infty$.

If for every k holds

$$a_k \leq \sum_{n=k+1}^{\infty} a_n$$

then

$$V(\{a_n\}) = [0, A].$$

Proof. See [10, p. 95].

LEMMA 3. Let $\{a_n\}$ be a decreasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n < \infty$ and

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1.$$

Then there exists C > 0 and a finite number of closed intervals

$$[l_1, l_1 + C], \dots [l_r, l_r + C], \quad l_i \ge 0, \ (i = 1, 2, \dots, r)$$

such that

$$V(\lbrace a_n\rbrace) = \bigcup_{j=1}^r \left[l_j, l_j + C\right].$$

Proof. The assertion is a trivial consequence of Lemma 2, taking into account that there exists k_0 such that $\frac{a_k}{a_{k+2}} \leq 2$ for $k \geq k_0$. In this case

$$\sum_{n=k+1}^{\infty} a_n \ge a_{k+1} + a_{k+2} \ge 2a_{k+2} \ge a_k.$$

If $C=\sum\limits_{k=k_0}^{\infty}a_k$ and $\{l_1,\ldots,l_r\}$ will be the set of all numbers in the form $\varepsilon_1a_1+\cdots+\varepsilon_{k_0}a_{k_0}$, $\varepsilon_i=0,1$ the assertion follows.

Now we turn back to the proof of Theorem 3.

Let $p_1 < p_2 < \ldots$ be the increasing sequence of all primes. It is trivial that $\log h_{\alpha}(\Omega) = V\left(\{a_n\}\right)$, where $a_n = \log(1 - \frac{1}{p_n^{-\alpha}})$, $n = 1, 2, \ldots$ Then $-\log h_{\alpha}(\Omega) = V\left(\{-a_n\}\right)$. The sequence $\{-a_n\}$ is decreasing and $\sum\limits_{n=1}^{\infty} a_n = \log \zeta(\alpha) < \infty$, for $\alpha > 1$. Clearly $\lim\limits_{n \to \infty} \frac{a_n}{a_{n+1}} = 1$. Finally from Lemma 3 we obtain the assertion of Theorem 3.

Let $\{x_n\}$ be a sequence of positive integer numbers. The sequence $\{x_n\}$ is said to be *uniformly distributed* in the set of integers if and only if for every positive integers j and m it holds that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\substack{x_n \equiv j(m) \\ n \le N}} 1 = \frac{1}{m}.$$

Let us remark that $\mu^*(S) = 1$ if and only if S can be rearranged into a sequence which is uniformly distributed in \mathbb{Z} (cf. [7, p. 27]).

In the monograph [3, p. 41], it is proved that $\{x_n\}$ is uniformly distributed in the set of all integers if and only if for every positive integer m and every periodic arithmetic function g with period m, the following is valid: $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^Ng(x_n)=\frac{1}{m}\sum_{j=0}^{m-1}g(j)$. The following simple consideration shows us that this criterion can be extended to a larger class of functions.

In [9, p. 201] it is proved that for each polyadic continuous arithmetic function there exists the limit

$$S_f = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n).$$
 (10)

Clearly for each polyadic continuous function f there exists a periodic g such that

$$|g(n)-f(n)|<\varepsilon,\quad n=1,2,\ldots$$

This immediately implies:

PROPOSITION 2. The sequence of positive integers $\{x_n\}$ is uniformly distributed in the set of all integers if and only if for every polyadically continuous

arithmetic function f it holds

$$S_f = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n),$$

where S_f is given by (10).

As a consequence, we now prove one equality for sequences that are uniformly distributed in the set of all integers.

THEOREM 4. If $\{x_n\}$ is a sequence of positive integers which is uniformly distributed in the set of all integers, then for each $\alpha > 1$ it holds

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N h_{\alpha}(x_n)=\frac{1}{\zeta(\alpha+1)}.$$

For proof we shall need the following assertion well known as Wintner's theorem:

THEOREM C. Let f be an arithmetic function with representation

$$f(n) = \sum_{d|n} F(d)$$

and for the function F we have

$$\sum_{d=1}^{\infty} \frac{\left| F(d) \right|}{d} < \infty,$$

then S_f exists and

$$S_f = \sum_{d=1}^{\infty} \frac{F(d)}{d}$$
.

Proof. See [9, p. 192].

Proof of Theorem 4. According to Proposition 2 and Lemma 1 for each $\alpha>1$ we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} h_{\alpha}(x_n) = S_{h_{\alpha}}.$$

Let μ denote the Möbius function. Clearly we have

$$h_{lpha}(n) = \sum_{d/n} rac{\mu(d)}{d^{lpha}}, \quad n = 1, 2, \dots$$

Therefore, from Wintner's theorem we obtain

$$S_{h_{\alpha}} = \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{\alpha+1}} \,.$$

Using (4) we get

$$S_{h_{\alpha}} = \frac{1}{\zeta(\alpha+1)} \,.$$

Thus, the proof is complete.

REFERENCES

- BUCK, R. C.: The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560-580.
- [2] HARDY, G. H.—WRIGHT, E. M.: An Introduction to Theory of Numbers 4th. ed., Oxford Univ. Press, 1960.
- [3] HLAWKA, E.: Theorie der Gleichverteilung, Bibliographisches Institut, Mannheim-Wien-Zürich, 1979.
- [4] KUIPERS, L.—NIEDEREITER, H.: Uniform Distribution of Sequences, J.Wiley, New York, 1974.
- [5] NOVOSELOV, E. V.: Topological theory of polyadic numbers, Trudy Tbilis. Mat. Inst. 27 (1960), 61–69. (In Russian)
- [6] NYMAN, J. E.: A note concerning the square-free integers, Amer. Math. Monthly 79 (1972), 63-65.
- [7] PAŠTÉKA, M.: Some properties of Buck's measure density, Math. Slovaca 42 (1992), 15-32.
- [8] PAŠTÉKA, M.—ŠALÁT, T.: Buck's measure density and sets of positive integers containing arithmetic progressions, Math. Slovaca 40 (1991), 283-293.
- [9] POSTNIKOV, A. G.: Introduction to Analytic Number Theory, Nauka, Moskva, 1971. (In Russian)
- [10] ŠALÁT, T.: Infinite Series, Academia, Praha, 1974. (In Slovak)

Received February 4, 1993

Mathematical Institute
Slovak Academy of Sciences
Štefánikova 45
SK-814 73 Bratislava
SLOVAKIA
E-mail: matepast@savba.sk