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A REMARK ON STATES ON
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Dedicated to the memory of Tibor Neubrunn

ABSTRACT. Some simple properties of states and state spaces on orthocomple-
mented structures are studied. Relations between state spaces and some structural
properties are found.

In this paper, we will study some simple but useful properties of states on
ortholattices, orthomodular lattices, orthoposets and orthomodular posets. We
will find some conditions under which these structures become Boolean algebras.
Some of our statements (and also some more) can be found in existing literature,
nevertheless also some original results are proved. Our main sources are [2, 8,
11, 12, 20, 28]. An ortholattice (OL) L is a lattice with 0 and 1 endowed with
a unary operation ' : L — L (orthocomplementation) such that

(i) a<b=¥b <d; (i) o' =a;

(i) avVa' =1 (ana =0).
If, in addition, we have

(iv) a<b=b=aV(a'Ab) (orthomodular law),
then L is an orthomodular lattice (OML).

A state on an OL L is a mapping m : L — [0, 1] such that
(ii) we say that a,b in L are orthogonal (written alb) if @ < b, and
m(a V b) = m(a) + m(b) whenever a and b are orthogonal.

In the next definition, a classification of states is given

DEFINITION 1. Let L be an OL, m a state on L. We say that m is
(1) Jauch—Piron if

a,be L, m(a) =m(b) =0=m(aVb)=0,
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(2) a (P)-state if
a,be L, m(a) =0= m(aVb)=m(b),
(3) a (B)-state if
a,be L, aNb=0 = m(aVb)=m(a)+m(b),
(4) subadditive if
a,be L, m(aVb) <m(a)+m(b),
(5) a valuation if
a,b € L, m(aVb)+m(aAb)=m(a)+m(b).

We note that the notion of a Jauch—Piron state was introduced by Riit ti-
mann [24] and properties of Jauch—Piron states were studied in [4, 5, 9, 10, 16,
17, 20]. A property similar to a (P)-state (in a stronger e—§ form) was consid-
ered by von Neumann [18] and Dobrakov [6]. As concerns valuations,
see, e.g., [3, 21, 22, 26].

In the next proposition, we collect some simple relations between different
kinds of states on orthomodular lattices. If a,b are elements of an OML L and
a <b, we will write b—a for bAa'.

PROPOSITION 2. Let m be a state on an OML L. Let (1), (2), (3), (4), (5) be
the properties of Definition 1. The following implications hold: (5) <= (4) <
(3) = (2) = (1) and (2) % (3), (1) (2).

Proof. (5)=(4), (5)=(3), (4) = (2) and (2) = (1) are evident.
(4) = (3): Let a A b= 0. Using subadditivity of m, we obtain
m(aVb)=m((aVb)A(aVY)) =
=m(a' A(aVb)V (b A(aVb))) <
<m((aVb)—a)+m((aVb)—b)=
=m(aV b) —m(a) + m(aV b) —m(b).

Hence
m(a) + m(b) < m(aV b).
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(3) = (5): Let m be (B)-state, then, for any a,b € L,
((avb)Ad)A((aVO)AY)=0 =
m((aVb)A(aAb))=m((aVb)Ad)V (aVb)Ab))
=m((aVb)Aad)+m((aVb)Ab)).
Hence
m(aV b) —m(a Ab) =m(aVb) —m(a)+m(aVb) —m(),

which gives the desired result.

(2) # (3): Let L = Lq x Ly (where X denotes the direct product) and L; =

MO(2) be the horizontal sum of two Boolean algebras {0,1,q,a’}, {0,1,b,0'},

L, be an arbitrary OML. Let m; be the state on L; deﬁned by ml(O) 0,

mi1(1) =1, mi(a) =1/3, mq(b) = 1/2. Define a state m on L by m((u,v)) =

mi(u). Let (¢,z), (y,z) be such that m((¢,z)) = 0. Then ¢ =0, hence
m((t,z) V (y,2)) = m((y, 2z V 2)) = ma(y) = m((y, z))

and hence m is a (P)-state. But m is not a (B)-state, since (a,0) A (b,0) =0,
but m((a,0) v (b,0)) = m((1,0)) = 1 # m((a,0)) + m((b,0)).

(1) % (2): Let L =MO(2) ={0,1,a,a’,b,b'} and define a state m on L by
putting m(a) = 0,m(b) = 1/2. Then m is Jauch—Piron, but we have m(a) =
0,m(aVb)=m(1) =1 m(b), hence m is not a (P)-state. O

For a state m on an OL L, the implications (5) = (4) = (2) = (1) and
(5) = (3) remain true.

A state m on L is a {0,1}-state if m(a) € {0,1} for every a € L. It is
easy to check that the following is true.

PROPOSITION 3. Let m bea {0,1} —state on an OL L. Then m is a valuation
iff m is Jauch—Piron.

Recall that a subset I of an OML L is

(i) an order ideal if
ac€l,bel,b<a = bel,
(ii) an ideal if I is an order ideal and
ael,bel = aVbel,
(iii) a p-ideal if I is an ideal and
a€l,bel = (aVV)AbeI.

For a state m on L, put N(m) = {a € L: m(a) = 0}.
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PROPOSITION 4. Let L be an OML and m be a state on L.
(i) N(m) is an order ideal in L and a,b € N(m), alb => aVbe N(m).
(i) M(m) is an ideal iff m is Jauch—Piron.
(iif) M(m) is a p-ideal iff m is a (P)-state (see also [1]).

Proof. Is left to the readers as an easy exercise. O

Remark 5. If m is a valuation, then A (m) is a p-ideal, the converse need
not hold (just consider a faithful state m (i.e., a state with A (m) = {0} ), not
necessarily a valuation).

DEFINITION 6. Let S be a set of states on an OML L. We say that S is
(i) unital if
a€l,a#0 = Is€8S:s(a)=1,

(ii) full (or ordering) if
a,beL,atb = Js€S:s(a) > s(b),
(iii) %‘z’ch (or strongly ordering) if
a,beL,afdb = Is€S:s(a)=1, s(b)#1.
(see [2, 8, 11, 12, 20]).

It is easy to see that a rich set S of states on an OL L is both unital and full;
the converse implication need not hold. Also, there is no relation between unital
and full sets, in general. On the other hand, it is easy to see that an ordering
set of {0, 1} -states is rich.

PROPOSITION 7. A unital set of Jauch—Piron states on an OML L is rich.

Proof. Let a £b. Then a Ab< a, hence a A (aAb) # 0 (by orthomod-
ularity). Hence there is a state s such that s(a A (a A b)’) = 1. This implies
s(a) =1, s(aAb) =0. Since s is Jauch—Piron, we have s(b) # 1. O

Now assume that L is an ortholattice (OL), not necessarily orthomodular.
Recall that, for every z € L, the Sasaki projection ¢, : L — L is defined
by ¢z(y) = z A (z' Vy). It is a well-known fact that an ortholattice L is
orthomodular iff

a,be L, a<b = ¢y(a)=a,

and an ortholattice L is a Boolean algebra iff

a,be L= ¢p(a) =aANb.
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PROPOSITION 8. Let L be an OL and m a state on L. Then N(m) is an
order ideal such that a,b € N(m), alb = aVbe N(m) and

a,beL,ae N(m), a<b = ¢(a) e N(m). (a)
If m is a (P)-state, then (a) can be replaced by

a,be L, a € N(m) = ¢p(a) € N(m). (b)

Proof. For a,b€ L, a <b implies alb’. Therefore m(a Vb)) = m(a)+
1-m(b) = m(b) = m(a)+1—m(aVd) = m(a)+m(a'Ab). Now m(ds(a)’) =
m®' VvV (bAa')) =m@)+mbdAd). If m(a) =0, then m(¢s(a)’) = m(b') +
m(b) —m(a) = 1, hence ¢p(a) € N(m). If m is a (P)-state then m(a) =0 =
0 = m(a V b) — m(b) = m(ds(a)). O
Remark 9. An OL L is an OML iff every proper order ideal I has property
(a) (with I instead of A(m)); and an OL L is a Boolean algebra iff every

proper order ideal I has property (b) (with I instead of A/(m)). It follows from
the fact that every interval [0,a],a # 1 is a proper order ideal.

THEOREM 10. Let L be an OL.
(i) L is an OML iff

a,beLl,as¢b = 3I,bel,a¢l,

where I is a proper order ideal satisfying condition (a).
(ii) L is a Boolean algebra iff

a,bel,adb = 31, bel,a¢l,

where I is an order ideal satisfying condition (b).

Proof. (i) If L is an OML, then for a,b € L, a £ b, the interval [0, ]
satisfies the required condition.

Conversely, let a £ b. Let I, be the smallest order ideal with property (a)
containing b. Then for every such order ideal I, I D I. This implies that
atb = a ¢& I, hence I = [0,b]. But then for every b € L, b # 1, the
interval [0,b] has property (a), hence L is an OML.

(ii) If L is a Boolean algebra, then for a,b € L, a £ b, the interval [0, b]
satisfies the required conditions.

Conversely, similarly as in case (i) we prove that every interval [0,b] has
property (b). Therefore L is a Boolean algebra. O
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COROLLARY 11. An OL L is
(i) an OML if it possesses a rich set of states;
(ii) a Boolean algebra iff it possesses a rich set of (P)-states.

Proof. It follows from the properties of the sets A(m).

We note that we cannot write iff in the statement (i): Greechie [7] found
examples of OMLs without states. On the other hand, the existence of a full
set of Jauch-Piron {0,1} -states is necessary and sufficient to make an OL a
Boolean algebra.

THEOREM 12. Let L be an OL.
(i) If L possesses a full set of states, then L is an OML.

(if) L is a Boolean algebra iff it possesses a full set of valuations.

Proof. (i) is left to the reader.

(ii) (see also [21]). We know from (i) that L is an OML. For any a,b € L,
take into account that ¢(a) is perspective with ¢,(b), and that a valuation is
equal on perspective elements (see, e.g., [11] for the definition of perspectivity).
This gives that m(¢y(a)) < m(a) for every valuation m, and since we have a
full set of valuation, we get ¢y(a) =a A b, hence L is a Boolean algebra. O

THEOREM 13. (See also [25]). Let L be an OML. The following statements
are equivalent

(i) L is a Boolean algebra;

(ii) L has a unital set of (P)-states;

(iii) for every a € L,a # 1, there is a proper p-ideal I in L such that a € I.

Proof. (i) = (ii) is straightforward. (ii) = (4ii) follows from the
fact that for a (P)-state m, N(m) is a p-ideal. (iii) = (i) We will prove that
condition (ii) in Theorem 10 is satisfied. Let a,b € L, b £ a. Then bVa > a
implies that a V (a’ A b") # 1. Therefore there is a proper p-ideal I such that
aV(a'Ab)€eTl.Then ac andifalso b€ I, then ¢po(b) =a’ A(aVb) e,
which together with aV (a’ Ab’) € I, contradicts the condition that I is proper.
Hence b ¢ I. O

The remaining part of our paper will be devoted to partially ordered sets,
not necessarily lattices. We recall that a partially ordered set L is called an
orthoposet (OP) if 0,1 € L, and there is a unary operation ’ : I — L (an
orthocomplementation) such that

(i)a<b = ¥ <d,
(ii) avad =1;
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(iii) a" =a;
(iv) a<b = aVbexistsin L.

If, in addition, the orthomodular law

(v) a<b = b=aV(a' Ab)
is satisfied, L is an orthomodular poset (OMP).

A state m on an OP L is a function m: L — [0,1] such that m(1) =1 and
a<bt = m(aVb)=m(a)+m(b).

We note that if L is an OP and a,b € L, a < b, then for any state m on L
we have m(b) = m(a) + m(a’ A D). Indeed, it follows from a < b that alb', so
that a Vb exists in L and m(a Vb') = m(a) + m(b’). It is easy to prove that
an OP with full set of states is an OMP.

In analogy with the case of lattices, let us consider the following properties
of states.

DEFINITION 14. Let m be a state on an OP L. We say that m is
(i) Jauch—Piron if

a,b€ L, m(a) =0=m(b) = T c€ L: ¢> a,bsuch that m(c) =0;

(ii) a (P)-state if
a,be L, m(a)=0 = Jc: c> a,bsuch that m(c) = m(b);
(iii) a (L )-state if
a,be L, aNb=0, m(a)=1 = m(b) =0;
(iv) a (LL)-state if
a,be L, aNb=0 = m(a)+m(b) <1;

(v) a (B)-state if

a,b€ L, aNb=0 = Jc: c> a,bsuch that m(c) = m(a) + m(b);
(vi) subadditive, if

a,be L => 3Jc: c> a,bsuch that m(c) < m(a) + m(b);

(vii) a valuation, if
a,b€ L = Jc¢,d: c>a,b>dsuch that m(c) + m(d) = m(a) + m(b).

Orthomodular posets with Jauch—Piron states were extensively studied ([4,
16, 17, 20]), for subadditive states see [14]. The other properties are new. The
following statement is obvious.
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PROPOSITION 15. Let m be a state on an OP L. With the notation from
Definition 14, the following implications hold:

(vii) = (vi) = (it) = (4)
4 4

(v) = (iv) = (i%).

We say that a subset I of L is an ideal if I is an order ideal and for any
elements a,b in I thereis a ¢ € L such that a,b < ¢ and ¢ € I. We note that
if @ <b then the element ¢p(a) exists in L.

PROPOSITION 16. Let m be a state on an OP L and N(m) = {a € L:
m(a) = 0}. Then
(i) N(m) is an order ideal with the property a,b € N'(m), alb = aVbe
N(m) and
a,be L, a<b, ae N(m) = ¢p(a) € N(m). (A)

(if) m is Jauch—Piron iff N'(m) is an ideal with property (A).
(iif) m is a (P)-state iff N'(m) is an ideal with the property

a,be L, a € N(m) = Jc:c>a,bsuch that cAb € N(m). (B)
(iv) m is a L -state iff

a,be L, anb=0, d e N(m) = be N(m).

Proof. Is left to the readers as an easy exercise. O

We say that an orthoposet L is Boolean if a Ab =0 = a < b (see
[13, 27, 29]). We note that a Boolean ortholattice is a Boolean algebra (indeed,
it is uniquely complemented, see e.g. [11]). It is easy to see that an orthoposet
L with a rich set of L —states or with a full set of Ll —states is a Boolean
orthomodular poset. It would be interesting to study which kinds of state spaces
imply the lattice structure, resp. a structure of a Boolean algebra on an OP L.
For example, it was proved in[23] that a block-finite OMP L, the state space
of which is unital and consists of Jauch—Piron states, is a Boolean algebra. We
obtain a similar result for (P)-states if we impose a finiteness condition on the
set of states.
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PROPOSITION 17. (i) If an OP L has a finite rich set of (P)-states, it is a
finite Boolean algebra.

(if) If an OML L has a finite unital set of (P)-states, it is a finite Boolean
algebra.

Proof. (i) Let S denote the rich set of (P)-states on L. Our assumptions
imply that L is an OMP. Let a € L and let there be 0 # a; < a. Then there
is 51 € § with si(a) =1, sy(a1) # 1. If there is 0 # as < ay, then there is
s2 € S with s3(a1) =1, sa(az) # 1. Clearly, s; # s3. Proceeding by induction,
we show that there is an atom b under a. Hence L is atomic. Moreover, since a
(P)-state is also a | -state (Proposition 15), and aAb = 0 for any two different
atoms a,b, we have s(a) =1 = s(b) =0 for any s € S, hence alb. This
implies that the set of atoms is finite and any two atoms are orthogonal. From
this we easily derive that L is a finite Boolean algebra.

(ii) follows from the fact that a unital set of (P)-states is rich for an OML. O

In the end, we introduce an example of an OMP with a valuation. Let H be a
Hilbert space, B(H) the algebra of all bounded operators on H and P = {Pe€
B(H) : P? = P}. Elements of P are called skew projections. It was proved in
[15] that, if dim H > 3, P is an OMP which is not a lattice. The partial order
on P is defined by P < Q & PQ =QP =P & Mp C Mg and Np D Ny,
where Mp = {Pz : 2 € H} is the range of P and Np = {z € H : Pz = 0}
is the null space of P. Orthocomplementation is defined by P/ = I — P. The
identity I and the null projection 0 are the greatest and smallest element in P,
respectively. We have P1Q iff P < Q' iff PQ = QP =0, therefore P+ Q is a
skew projection. Moreover, (P+Q)z = Pz+Qzx € Mp+ Mg, hence Mp, g C
Mp + Mg . Conversely, let z € Mp+ Mg. Then z =Pz +Qy=Pz+Qz €
Mpyq. Hence Mprg=Mp+Mg.Now Pz=Qz=0 = (P+Q)z=0,
hence Np A Ny C Npiq. Conversely, z € Np,9 = Pz = —Qz, and
0=QPz = —-Qz, 0= —-PQzx = Pz, hence Np.g = Np A Ng. This proves
that P+ Q = PV Q. From this we easily derive that P is an OMP.

Assume that dim H = 3, and define s: P — [0, 1] by s(P) = (1/3) dim Mp.
To prove additivity of s, let P,Q € P, PLQ. In this case, PVQ = P+ Q,
MP+Q = MP+MQ , and Mp/\MQ C MpANp = 0. From this it follows that
s(PVQ) = s(P)+s(Q) . Hence s is a state. Now take into account that if M and
N are nontrivial complementary subspaces, then one of them is one-dimensional
and the other is two-dimensional. Moreover, PVQ = I if either MpV Mg = H
or NpANg =0 (P,Q € P). For example, let Mp = Mg be two-dimensional,
Np and Ny be one-dimensional and different. Then PVQ = I and PAQ does
not exist, there are infinitely many lower bounds of P, Q: any projection R with
Nr = NpVNg and with Mg any one-dimensional subspace of Mp not lying
in NpV Ny, is such a lower bound. With any such R we have R < P,Q < I
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and s(I)+s(R) = s(P)+s(Q) . All other possibilities can be checked in a similar
way. We note that our state s is the unique state on P (see [15]).
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