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THE CASIMIR CHAOS MAP FOR U(N)
R. L. HupsoN — K. R. PARTHASARATHY

ABSTRACT. The generalized number processes of N-dimensional quantum sto-
chastic calculus form a representation of the Lie algebra % of U(N). Their
stochastic differentials form a second such representation. Associated with each
Casimir element C, we construct a Casimir process (Ct:t € R4) using the
first representation, and a Casimir chaos process combining the second with an
iterated integral which is defined naturally on the tensor algebra over .# but is
shown to extend to the center 2 of the universal enveloping algebra in a natural
way. The Casimir chaos process of C is the Casimir process of the image of C
under a bijective linear map on %.

1. Introduction

In N-dimensional quantum stochastic calculus, in addition to creation and
annihilation processes which do not concern us in this paper, there are general-
ized number processes [2, 5] (Ag(t), t > 0) labelled by skew symmetric linear

transformations H on CN satisfying
[Au(t), Ax(t)] = A, (2) .-

Thus H — Ag(t) is a representation of the Lie algebra of such skew symmetric
transformations. In fact the Ag(t) are operators of “differential second quanti-
sation” and this is the infinitesimal representation of a representation m; of the
group U(N) of N x N unitary matrices got by a second quantisation procedure.
More remarkably the Ito quantum stochastic differentials of the processes A g (t)
also form a representation of the same Lie algebra; the quantum Ito formula [2, 5]

gives
[dA g (t), dAk (t)] = dAj k) (t) -

Our purpose in this paper is to exploit the existence of this linked pair of re-
presentations. The first representation extends in the usual way to the universal
enveloping algebra and enables us in particular to associate a Casimir process
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C(t) to each Casimir element, that is to each element C of the center % of
the universal enveloping algebra % . To exploit the second representation we
consider iterated stochastic integrals. It emerges that such an integral is naturally
associated with each element of %, though not of the universal enveloping
algebra % ; thus we construct Casimir chaos processes. In addition products
of such iterated integrals are again iterated integrals of the same type but the
product of iterated integrals is not the iterated integral of the product, so that
we have a representation of Z only if the multiplication is redefined. But it
turns out that the totality of Casimir chaos processes is coextensive with the
totality of Casimir processes obtained using the first representation. Thus there
exists a chaos map C +— C in % such that the Casimir process of C gives
the chaotic decomposition (that is, the expansion as an iterated integral) of the
Casimir process of C'.

2. Casimir elements

We identify the Lie algebra of the group U(N) of N x N unitary matrices
with the space of skew-symmetric linear operators on CV in the natural way;
then its complexification .# is the space of all linear operators on CV with the
commutator Lie bracket and the natural involution {. A basis for £ is provided
by the Dirac dyads Aj-, i,7=1,..., N, which satisfy

[AZ, AF] = 65 A} — SAY, (2.1)
iyt j
(AL) = Al (2.2)
The adjoint action of U extends to & as
adU(H)=UHU!. (2.3)

To construct the universal enveloping algebra % [4] we first construct the
free tensor algebra .# generated by the linear space £ equipped with the
natural extension of the involution t. We then take the quotient f-algebra by
the f-ideal _# generated by the set of elements of the form

H®K-K®H-[H,K|, HKeZ%. (2.4)
The adjoint action extends to the tensor algebra as
adU(H® - QH,)=UHU'® - -@UH,U™). (2.5)

The ideal _¢ is invariant under this action, thus we may pass to the quotient
and allow that the adjoint action acts on % . The center 2 of % may then
be characterized as the fixed point set of the adjoint action. Its elements are
called Casimir elements. Every Casimir element has a unique representation, as
an element of the quotient algebra % = #/_¢ , of form

C=e+ 7, (2.6)
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where ¢ € # is a symmetric tensor. Since both _# and the space of symmetric
tensors are invariant under the adjoint action of U(N) on .#, it is clear from
the uniqueness that c is pointwise invariant under this action. It is known [1]

that 2 is generated by the Casimir elements D", r =1,..., N given by
) = : io(1) io(r)
DY = Z Z sign(oT) A A
1<i1<-+<i-.<N 0,7TESr

Clearly D) is self-adjoint under the involution 1 and its representation in the
form (2.6) is just

PO- ¥ X sl e e+

1<41 <<% <N 0,7TESr

3. Quantum stochastic calculus

We are concerned with the quantum stochastic calculus in the Fock space
Z(h) over the Hilbert space

h=L*R;,CY) = L*(Ry) ®CY (3.1)

of vector-valued functions on R, taking values in Cp , and with the class of in-
tegrator processes (A u(t), te R|_) labelled by H € ., which are conveniently
defined by

(T(F), Au(D)¥(g))= / (F(s), Ho())ds(T(P), T(F)),  (32)

where W(f) is the exponential vector in % (h) corresponding to f € h. Then
we may define in particular iterated stochastic integral processes of the form

IZ‘L(HL,Hn): / dAHl(tl)...dAHn(tn), Hl...,HnEZ’
for which
(U(f), [F(Hy, ..., Ha)U(g)) =
= / (f(t1), Hig(t1)) ... (f(tn), Hng(tn)) dts dtn<\11(f),q;((%):>3)

0<t1 <<t <t
Note that
IMHy,. .. H) =10H], ... HY), (3.4)
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where, on the lhs, 1 denotes the restriction to the exponential domain & of the
Hilbert space adjoint, and that

Ap(t) =L (H). (3.5)

It is evident from (3.3) that I}*(Hy,...,H,) is multilinear in Hi,...,H,,
hence I} extends uniquely to a linear map from the n-fold tensor product
ZQ®---®.% . We can thus define an iterated integral process I(T") = {It(T), te

R, } for each element T' of the tensor algebra .# by linear extension of the maps
I™ defined on the homogeneous subspaces of .# . Using the independence of the
stochastic integrators Ay it can be seen that It(7) =0 for ¢ > 0 onlyif T =0.

Unfortunately I does not vanish on the ideal _# so we cannot define I(X)
unambiguously for X € % .

4. A product formula for iterated integrals

In what follows operators R and S on the exponential domain & are said
to have product T = RS if, for all f,g € h,

(U(f), TU(g)) = (R1U(F), ST(g)).

In fact, for the products which concern us, formed from the operators Ag(t),
this definition is equivalent to the usual operator product if the exponential
domain is suitably enlarged [5].

PROPOSITION 4.1. Let H, K1,...,K,, be operators on CV . Then

INEVP(Ky,. .o Kp) =) LY (K, Ky H, Kjga,.o, Kn) +
J=0

+ D IP(Erspens HEjy Kigigwnes K
j=1

Proof. The case m =1, that
L(H)(K) = I}(H,K) + I}(K, H) + I;(HK),, (4.1)

follows from the quantum Ito formula of [2, 5] using (3.6). Assuming that the
case m = n — 1 holds, we have, by the same formula

d{I} (H) I}(Ky,...,Kn)} = dI} T (Ky, ..., Kn, H) +
+ NHEIP YKy, ..., Kno1)dAg, (t) =
=I"YKy,. .., K,_1)dAgx, ().

Applying the case m =n — 1 to the middle term and integrating yields the
result. O
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COROLLARY 4.2.

LKy, KEp)B(H) =) Iy (K., Ky By Ky, Km) +

=0

m
+ ZIZ—L(KM s -;Kj—17 KjH, Kj_H_, S ;Km) .
j=1 (4.2)

Proof. Clear by taking adjoints and using (3.4). O
PROPOSITION 4.3. Let Hi,...,Hpy, Hyy1,-.., Hyyn be operators on CV .
Then

Itm'(Hl, ey Hm)ItTL(Hm+1, ey Hm—l—n) =

m-+n

=1 i) 4 S I¥Hs,,...,Hs,) (43)

k=max{m,n} (S1,...,5k)€EPk
where P is the set of ordered partitions (Si,...,S;) of {1,...,m+ n} such
that
(a) each S is either a singleton {i}, or a pair {j,l1} with j € {1,...,m}
and l € {m+1,...,m+n}. In the former case Hg = H;, in the latter

Hs = H;H;,

(b) in the permutation (Si,...,Sk) of {1,...,m +n} in which each S
is written in increasing order, the numbers 1,...,m occur in their
natural order, as do the numbers m+1,...,m-+n.

Thus, for example
I}(H,K)I?(L,M) =
=I}(H,L,M,K)+I}(L,H,M,K) +I}(L,M,H,K) +
+ L, H,K,M)+ I}(H,L,K, M) + I*(H,K,L, M) +
+ IB(HL,M,K)+I}(L,HM,K) + I3}(H, KL, M) +
+ IB(HL,K,M)+I}(H,L,KM) + I3(L,H, KM) +
+ I2(HL,KM).

Proof. Proposition 4.1 and Corollary 4.2 establish the cases when m =1
and n =1 respectively. By the quantum Ito formula we have

d(Ln(Hyy oy H) In(H1, -+ Hinyn)) =
= Im1(Hy,y .o o Hye ) In(Hms1, - -, Hynan )dA g, +
+ In(H1y ooy Hi) Iy (Hont1, -+« Hino1)dA g, +
L1 (Hiy ooy Hon 1) In1(Himgas -+ Hmgme1)dA g, - s
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Making the inductive assumption that the Proposition holds when (m,n) is
replaced by any of (m —1,n), (m,n —1) or (m —1,n — 1) and integrating,
we obtain the result, noting that the three terms on the right hand side of (4.4)
account for the terms on the right hand side of (4.3) in which Hg, takes the
three possible values H,,, Hpytn and H,, Hp, 1, respectively. O

Writing (4.3) in the form
I(H1® @ Hn) I(Hn41 ® @ Hmyn) =

m4+n

= > Y I(Hs,® - ®Hs,)

k:max{m,n} (Sl,.A.,Sk)EPk

and using the faithfulness of the iterated integral map I, we see that there is a
bilinear composition #* in the tensor algebra .# such that

IX)IY)=I(X*Y) (X,Y €.9).

It may be verified directly from (4.3) that this composition is associative; alter-
natively of course this is clear from the equivalence to the usual multiplication of
operators noted at the beginning of this section. In general, for Casimir elements

C=c+ ¢, D=d+ ¢

with ¢ and d symmetric, c¢*d is not symmetric. However, as the next proposi-
tion shows, c*d + _# is a Casimir element and thus defines an associative
bilinear composition o in £ by

CoD=cxd+ ¢,
which we call the chaotic product.

PROPOSITION 4.4. Suppose that elements c,d € .# are pointwise invariant
under the adjoint action of U(N). Then so toois c*d.

Proof. For U € U(N) and t € Ry let m(U) be the second quantisation
unitary operator on % (h) whose action on exponential vectors is

T (U)¥(f) = U(x0,nU f + X(t,00)f) 5

7 is the unitary representation of U(N) generated by the representation H —
Ap(t) of £ . Then it is easily seen from (3.3) that, for all X € .#,

m(U) I(X) m(U) ™t = L(ady X).
It follows that
L(ady c*d) = m(U) Li(c * d) m(U) ™t
= Wt(U) It(C) It(d)’ﬂ't(U)—l
= m(U) I(c) m (U) ™y (U) L (d) mp(U) 1
= I;(ady ¢) It(ady d)
= It(C) It(d)
= It(C * d) . O
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5. Casimir processes and Casimir chaos processes

Consider a Casimir element C, represented in the form
C=c+ ¢,

with ¢ a symmetric tensor. The family of infinitesimal representations 8m;: H —
Ag(t) of the unitary representations m; of U(N) extend naturally to the uni-
versal enveloping algebra % , and thus generates a Casimir process (Ci, t>0)
given by

Ct = 671'15 (C) .

It is clear that, for C,D € &

(CD)t = OtDt ) (51)
where on the left the multiplication is the usual one in % , and on the right the
weak operator product introduced in § 4.

PROPOSITION 5.1. FEach Casimir process (C;,t € Ry) is commutative;
C’SCt = ths for s 7é t.
Proof. We adapt the argument of [3]. Assume without loss of generality
that s <. Then [2, 5] each Ag(t), H € % can be expressed in the form
Ap(t)=Au(s) + A>'(H),

where A®(H) commutes with all Ag(s), and hence with C,. By the centrality
of C, C, also commutes with Ag(s), hence it commutes with Az (). But then
it must commute with any polynomial in the Ag(t), H € %, in particular with
Cs. i

Notes.

1. The same argument shows that the set of all Casimir processes is commuta-
tive.

2. If C = C" then (because U(N) is compact) the operators C; are essentially
self-adjoint and thus give rise to a classical stochastic process in any state.

For example in a coherent state W(f) = [|U(f)[|~1¥(f), (Dﬁl), t>0) is a
Poisson process of intensity measure || f(t)]|2dt.

We may also associate with each C in % a second adapted process (é’t, te
Ry ) called the Casimir chaos process. This is defined by

Cy = I(c).
From §4 we know that o L
(CoD);=CiDy.
In [3] we showed that, in the case of the “determinantal” Casimir elements
D) of §2,

D" =" a,,Df, (5.3)
s=1
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where the coefficients o5 are all non-zero and do not depend on ¢. In particular
this shows that in general C; # C;.

PROPOSITION 5.2. The injective maps ®: C — (Cy), ®: C — (C;) have the
same range.

Proof. The elements D™, r =1,..., N, generate %, hence from (5.1)

their images (Dé”), t > 0) generate the range of ® under operator multipli-
cation. The result follows from the invertibility of the triangular linear relation
(5.3). O

COROLLARY 5.2. There exists a bijective linear map ~: & — %, C +— ¢
such that

(@)®(C)=&(C) forall Ce Z,
(b)(Co D)~ =CD.
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