

FERDINAND CHOVANEC

ABSTRACT. In this paper, states and observables on MV algebras, as special cases of a D-morphism of MV algebras, are studied.

1. Introduction

The axiomatic Kolmogorov model of probability theory is formed by the triplet (Ω, \mathcal{S}, P) , where Ω is a non-empty set, \mathcal{S} is a σ -algebra of subsets of Ω , and P is a probability measure. Another fundamental notion of probability theory is a random variable. A random variable is a pointwise function $\xi : \Omega \to \mathbb{R}$ such that $\xi^{-1}(E) \in \mathcal{S}$ for every Borel set E. Then ξ^{-1} is a σ -homomorphism from the σ -algebra $\mathcal{B}(\mathbb{R})$ of Borel sets of the real line \mathbb{R} into the σ -algebra \mathcal{S} . A mapping $P_{\xi} : \mathcal{B}(\mathbb{R}) \to [0,1]$ defined by formula $P_{\xi}(E) = P(\xi^{-1}(E))$ for every $E \in \mathcal{B}(\mathbb{R})$ is a probability on $\mathcal{B}(\mathbb{R})$ (a probability distribution of a random variable ξ).

States and observables are two basic notions of quantum logics theory. A state plays the same role as a probability measure in classical probability theory and an observable is an analogue of a random variable.

C. C. C h a n g in [1] developed theory of algebraic systems that correspond in a natural way to the \aleph_0 -valued propositional calculus. These algebraic systems are called MV algebras, where MV is supposed to suggest many-valued logics. The classical two-valued logic gives a rise to the study of Boolean algebras and, every Boolean algebra is an MV algebra where as the converse does not hold.

Recently, a very simple but very general structure has appeared, so called a D-poset [4], which was inspired by an investigation of the possibility to introduce fuzzy set ideas to quantum structures models [3]. D-posets are a natural generalization of, for example, quantum logics, real vector lattices, orthoalgebras and MV algebras. The states and observables on D-posets are defined as the special cases of morphisms of D-posets.

AMS Subject Classification (1991): 03G12, 81P10. Key words: MV algebra, MV-homomorphism, D-morphism, state, observable.

For the first time the notions of a state, an observable and a joint observable on an MV algebra of fuzzy sets have been defined by B. Riečan in [6].

In the present paper, we introduce the notions of a state and an observable on a general MV algebra in a similar way as in D-posets.

2. MV algebras

In [5] an MV algebra is defined as follows:

An MV algebra is an algebra $(A, \oplus, \odot, *, 0, 1)$, where A is a non-empty set, 0 and 1 are constant elements of A, \oplus and \odot are binary operations, and * is a unary operation, satisfying the following axioms:

- $(2.1) (a \oplus b) = (b \oplus a);$
- $(2.2) \quad (a \oplus b) \oplus c = a \oplus (b \oplus c);$
- (2.3) $a \oplus 0 = a$;
- (2.4) $a \oplus 1 = 1;$
- $(2.5) (a^*)^* = a;$
- $(2.6) \quad 0^* = 1;$
- (2.7) $a \oplus a^* = 1$;
- $(2.8) (a^* \oplus b)^* \oplus b = (a \oplus b^*)^* \oplus a;$
- $(2.9) \quad a \odot b = (a^* \oplus b^*)^*.$

The lattice operations \vee and \wedge are defined by the formulas

$$a \lor b = (a \odot b^*) \oplus b$$
 and $a \land b = (a \oplus b^*) \odot b$.

We write $a \leq b$ iff $a \vee b = b$. The relation \leq is a partial ordering over A and $0 \leq a \leq 1$, for every $a \in A$. An MV algebra is a distributive lattice with respect to the operations \vee , \wedge .

In [1] the following assertions have been proved:

- (2.10) $a \odot b \le a \land b \le a \lor b \le a \oplus b$, for every $a, b \in A$.
- (2.11) If $a \leq b$, then $a \oplus c \leq b \oplus c$ and $a \odot c \leq b \odot c$, for every $c \in A$.
- (2.12) The following three conditions are equivalent:

(i)
$$a \le b$$
, (ii) $a^* \oplus b = 1$, (iii) $a \odot b^* = 0$.

- (2.13) If a < b, then $b = a \oplus (b \odot a^*)$.
- $(2.14) (a \lor b)^* = a^* \land b^* \text{ and } (a \land b)^* = a^* \lor b^*.$

EXAMPLE 2.1. Every Boolean algebra is an MV algebra. Especially, let B be an algebra of subsets of a non-empty set X. We put $E \oplus F = E \cup F$, $E \odot F = E \cap F$, $E^* = X \setminus E$, for every $E, F \in B$, $0 = \emptyset$ and 1 = X. Then B forms an MV algebra, where \leq is the inclusion relation.

EXAMPLE 2.2. Let \mathcal{I} be a subset of the interval [0,1] of real numbers such that $0 \in \mathcal{I}$, $1 \in \mathcal{I}$, and if $a, b \in \mathcal{I}$, then $a \oplus b := \min(1, a + b) \in \mathcal{I}$, $a \odot b := \max(0, a + b - 1) \in \mathcal{I}$, $a^* := 1 - a \in \mathcal{I}$, where + and - denote the usual sum and difference of real numbers. The system \mathcal{I} is an MV algebra. Moreover, $a \lor b = \max(a, b)$, $a \land b = \min(a, b)$ and the relation \leq is the natural ordering of real numbers. It is not difficult to show that, for $a, b \in \mathcal{I}$, $a \oplus b = a + b$ if and only if $a \leq b^* = 1 - b$ and $a \leq b$ implies $b \odot a^* = b - a$.

EXAMPLE 2.3. Let X be a non-empty set and $\mathcal{F} \subseteq [0,1]^X$ be a system of functions $f: X \to [0,1]$ such that:

- (i) if 0(t) = 0 and 1(t) = 1 for every $t \in X$, then $0 \in \mathcal{F}$ and $1 \in \mathcal{F}$;
- (ii) if $f, g \in \mathcal{F}$, then $f \oplus g := \min(1, f + g) \in \mathcal{F}$ and $f \odot g := \max(0, f + g 1) \in \mathcal{F}$, where (f + g)(t) = f(t) + g(t), for every $t \in X$;
- (iii) if $f \in \mathcal{F}$, then $f^* := (1 f) \in \mathcal{F}$.

Then the system \mathcal{F} is an MV algebra (of fuzzy sets). We point out here that the operations \vee and \wedge on \mathcal{F} are $f \vee g = \max(f,g)$, $f \wedge g = \min(f,g)$, and $f \leq g$ iff $f(t) \leq g(t)$, for every $t \in X$.

Let $\mathcal A$ be an MV algebra. We define a binary operation \setminus on $\mathcal A$ (a difference) by the formula

$$b \setminus a := b \odot a^*$$
 for any $a, b \in \mathcal{A}$.

The difference operation on an MV algebra is already known in the literature and it has been studied in [2], for example.

It is evident that $1 \setminus a = a^*$, $a \setminus 0 = a$, $a \setminus a = 0$ and $b \setminus a \leq b$, for any $a, b \in A$.

PROPOSITION 2.4. Let A be an MV algebra and $a, b, c \in A$. Then:

- (i) $a \leq b$ implies $b \setminus (b \setminus a) = a$, and $b = a \oplus (b \setminus a)$;
- (ii) $a \leq b^*$ implies $a = (a \oplus b) \setminus b$.
- (iii) $a \le b \le c$ implies $c \setminus b \le c \setminus a$ and $(c \setminus a) \setminus (c \setminus b) = b \setminus a$, $b \setminus a \le c \setminus a$ and $(c \setminus a) \setminus (b \setminus a) = c \setminus b$.

Proof. The assertions (i) and (ii) follow from the definitions of the lattice operations \land and \lor . Indeed,

$$b \setminus (b \setminus a) = b \odot (b \odot a^*)^* = b \odot (b^* \oplus a) = a \wedge b,$$

$$a \oplus (b \setminus a) = a \oplus (b \odot a^*) = a \vee b, \text{ and}$$

$$(a \oplus b) \setminus b = (a \oplus b) \odot b^* = a \wedge b^*.$$

(iii) If $a \le b \le c$, then $c^* \le b^* \le a^*$ and, therefore, $c \setminus b = c \odot b^* \le c \odot a^* = c \setminus a$. Calculate

$$\begin{array}{ll} (c \setminus a) \setminus (c \setminus b) &= (c \odot a^*) \odot (c \odot b^*)^* &= a^* \odot \left(c \odot (c^* \oplus b)\right) = \\ &= a^* \odot (b \wedge c) = a^* \odot b = b \setminus a \,. \\ \text{Similarly,} \\ (b \setminus a) &= b \odot a^* \leq c \odot a^* = c \setminus a \,, \, \text{and} \, \, (c \setminus a) \setminus (b \setminus a) = (c \odot a^*) \odot (b \odot a^*)^* = \\ &= c \odot \left(a^* \odot (b^* \oplus a)\right) = c \odot (a^* \wedge b^*) = c \odot b^* = c \setminus b \,. \end{array}$$

DEFINITION 2.5. [4] Let \mathcal{P} be a partially ordered set with a partial ordering \leq , the greatest element 1, and with a partial binary operation \setminus : $\mathcal{P} \times \mathcal{P} \to \mathcal{P}$, called a difference, such that, for $a, b \in \mathcal{P}$, $b \setminus a$ is defined iff $a \leq b$, and the following three axioms hold for $a, b, c \in \mathcal{P}$:

- (i) $b \setminus a \leq b$;
- (ii) $b \setminus (b \setminus a) = a$;
- (iii) $a \leq b \leq c$ implies $c \setminus b \leq c \setminus a$ and $(c \setminus a) \setminus (c \setminus b) = b \setminus a$. Then \mathcal{P} is called a D-poset or a difference poset.

From the introduced above it follows that any MV algebra is a D-poset, in particular, any MV algebra of fuzzy sets (see Example 2.3) is a D-poset of fuzzy sets [3].

PROPOSITION 2.6. Let A be an MV algebra. Then:

- (i) $(a \lor b) \setminus a = b \setminus (a \land b)$;
- (ii) $(a \oplus b) \setminus a = b \setminus (a \odot b)$;
- (iii) $(a \oplus b) \setminus (a \lor b) = (a \land b) \setminus (a \odot b)$.

 ${\bf P} \; {\bf r} \; {\bf o} \; {\bf o} \; {\bf f} \; . \;$ Using (i) and (ii) from Proposition 2.4 we obtain:

- (i) $(a \lor b) \setminus a = (a \oplus (b \setminus a)) = b \setminus a = b \setminus (b \setminus (b \setminus a)) = b \setminus (a \land b)$.
- $\text{(ii)}\quad (a\oplus b)\setminus a=(a\oplus b)\odot a^*=(a^*\oplus b^*)\odot b=(a\odot b)^*\odot b=b\setminus (a\odot b)\,.$
- (iii) $(a \oplus b) \setminus (a \vee b) = (a \oplus b) \odot (a \oplus (a^* \odot b))^* = (a \oplus b) \odot (a^* \odot (a \oplus b^*)) =$ = $((a \oplus b) \odot a^*) \odot (a \oplus b^*) = ((a^* \oplus b^*) \odot b) \odot (a \oplus b^*) = ((a^* \oplus b^*) \odot (b \odot (a \oplus b^*))) = (a \odot b)^* \odot (a \wedge b) = (a \wedge b) \setminus (a \odot b).$

PROPOSITION 2.7. Let $a \leq b$ and $d \leq c$. If $b \setminus a = c \setminus d$, then $a \oplus c = b \oplus d$.

Proof. By (i) of Proposition 2.4 we have $b = a \oplus (b \setminus a)$ and $c = d \oplus (c \setminus d)$. Then $a \oplus c = a \oplus (d \oplus (c \setminus d)) = a \oplus (d \oplus (b \setminus a)) = (a \oplus (b \setminus a)) \oplus d = b \oplus d$. \square

The converse assertion, in general, is not true. Indeed, let $\mathcal I$ be an MV algebra from Example 2.2. Put a=0.2, b=0.7, c=0.9 and d=0.3. Then $b\oplus d=1=a\oplus c$, but $b\setminus a=0.5$ and $c\setminus d=0.6$.

COROLLARY 2.8.

- (i) $(a \lor b) \oplus (a \land b) = a \oplus b = (a \oplus b) \oplus (a \odot b)$;
- (ii) if a < b < c, then $(c \setminus b) \oplus (b \setminus a) = c \setminus a$;
- (iii) $(a \wedge b) \oplus (b \setminus a) = b$.

PROPOSITION 2.9. Let A be an MV algebra. Then:

- (i) $c \setminus (a \wedge b) = (c \setminus a) \vee (c \setminus b)$;
- (ii) $c \setminus (a \vee b) = (c \setminus a) \wedge (c \setminus b);$ for any $a, b, c \in A$.

Proof.

- (i) By [1; Ax. 11'] $x \odot (y \lor z) = (x \odot y) \lor (x \odot z)$ for all x, y, z from an MV algebra \mathcal{A} . It suffices to put x = c, $y = a^*$ and $z = b^*$. Then $c \lor (a \land b) = c \odot (a \land b)^* = c \odot (a^* \lor b^*) = (c \odot a^*) \lor (c \odot b^*) = (c \lor a) \lor (c \lor b)$.
- (ii) Since $a \le a \lor b$ and $b \le a \lor b$, it is evident that $c \setminus (a \lor b) \le c \setminus a$ and $c \setminus (a \lor b) \le c \setminus b$, which gives that $c \setminus (a \lor b)$ is a lower bound of the set $\{c \setminus a, c \setminus b\}$. If $d \in \mathcal{A}$, $d \le c \setminus a$ and $d \le c \setminus b$, then $c \land a = c \setminus (c \setminus a) \le c \setminus d$ and $c \land b = c \setminus (c \setminus b) \le c \setminus d$.

 Hence $(c \land a) \lor (c \land b) = c \land (a \lor b) \le c \setminus d$, therefore, $d = c \land d = c \setminus (c \setminus d) \le c \setminus (c \land (a \lor b)) = (c \setminus c) \lor (c \setminus (a \lor b)) = c \setminus (a \lor b)$.

Thus $c \setminus (a \vee b)$ is the greatest lower bound of $\{c \setminus a, c \setminus b\}$, i.e. $c \setminus (a \vee b) = (c \setminus a) \wedge (c \setminus b)$.

3. States and observables on MV algebras

According to [1], we will say that a mapping w from an MV algebra \mathcal{A} into an MV algebra \mathcal{B} is a homomorphism of MV algebras or an MV-homomorphism iff $w(0_{\mathcal{A}}) = 0_{\mathcal{B}}$, $w(1_{\mathcal{A}}) = 1_{\mathcal{B}}$, and w preserves the operations \oplus , \odot and *.

PROPOSITION 3.1. A mapping $w: A \to B$ is an MV-homomorphism if and only if $w(1_A) = 1_B$, and w preserves difference operations on A and B.

Proof. The necessary condition is evident.

Let $w(b \setminus_{\mathcal{A}} a) = w(b) \setminus_{\mathcal{B}} w(a)$ for any $a, b \in \mathcal{A}$, where $\setminus_{\mathcal{A}}$ and $\setminus_{\mathcal{B}}$ denote difference operations on \mathcal{A} and \mathcal{B} , respectively. We will write shortly \setminus for both operations. Then:

- (i) $w(0_{\mathcal{A}}) = w(0_{\mathcal{A}} \setminus 0_{\mathcal{A}}) = w(0_{\mathcal{A}}) \setminus w(0_{\mathcal{A}}) = w(0_{\mathcal{A}}) \odot (w(0_{\mathcal{A}})^* = 0_{\mathcal{B}}.$
- (ii) $w(a^*) = w(1_{\mathcal{A}} \setminus a) = w(1_{\mathcal{A}}) \setminus w(a) = 1_{\mathcal{B}}) \setminus w(a) = w(a)^*$.
- (iii) $w(a \odot b) = w(a \setminus b^*) = w(a) \setminus w(b)^* = w(a) \odot w(b)$.
- $\text{(iv)} \ \ w(a\oplus b)=w\big((a^*\odot b^*)^*\big)=\big(w(a^*)\odot w(b^*)\big)^*=w(a)\oplus w(b)\,.$

Let $w: \mathcal{A} \to \mathcal{B}$ be an MV-homomorphism. The range of w is the set $\mathcal{R}(w) = \{w(a): a \in \mathcal{A}\}$. Then $\mathcal{R}(w)$ is an MV algebra of \mathcal{B} (see [1; p. 471]). It is easy to see that if \mathcal{A} is a Boolean algebra, then $\mathcal{R}(w)$ is a Boolean subalgebra of \mathcal{B} . If we put, in this case, $\mathcal{B} = \mathcal{I}$, where \mathcal{I} is the MV algebra of all reals from the interval [0, 1], then $\mathcal{R}(w) = \{0, 1\}$.

DEFINITION 3.2. An MV algebra \mathcal{A} is said to be an MV σ -algebra, if each countable sequence of elements from \mathcal{A} has the supremum in \mathcal{A} .

It is clear that every Boolean σ -algebra is an MV σ -algebra. The MV algebra \mathcal{I} from Example 2.2 and the MV algebra \mathcal{F} from Example 2.3 are MV σ -algebras, too.

DEFINITION 3.3. Let \mathcal{A} and \mathcal{B} be two MV algebras (MV σ -algebras). A mapping $w: \mathcal{A} \to \mathcal{B}$ is called an D-morphism (an D- σ -morphism) if the following conditions are satisfied:

- (3.1) $w(1_{\mathcal{A}}) = 1_{\mathcal{B}}$;
- (3.2) if $a, b \in \mathcal{A}$, $a \leq b$, then $w(a) \leq w(b)$ and $w(b \setminus a) = w(b) \setminus w(a)$;
- (3.3) if $(a_n)_{n=1}^{\infty} \subseteq \mathcal{A}$, $a_n \nearrow a$ (i.e., $a_n \le a_{n+1}$ for any $n \in \mathbb{N}$ and $a = \bigvee_{n=1}^{\infty} a_n$), then $w(a_n) \nearrow w(a)$.

PROPOSITION 3.4. Let $w: A \to B$ be a D-morphism of MV algebras A and B. Then the following assertions are true.

- (i) $w(0_A) = 0_B$.
- (ii) $w(a^*) = w(a)^*$.
- (iii) $w(a \lor b) = w(a) \oplus w(b \setminus a) = w(b) \oplus w(a \setminus b)$.
- (iv) If $a \leq b$, then $w(b) = w(a) \oplus ((w(b) \setminus w(a))$.
- (v) $w(a \oplus b) \oplus w(a \odot b) = w(a) \oplus w(b) = w(a \lor b) \oplus w(a \land b)$.
- (vi) If $a \leq b^*$, then $w(a \oplus b) = w(a) \oplus w(b)$.

Proof.

- (i) $w(0_A) = w(a \setminus a) = w(a) \setminus w(a) = 0_B$.
- (ii) $w(a^*) = w(1_A \setminus a) = w(1_A) \setminus w(a) = w(a)^*$.
- (iii) By the monotonicity of the *D*-morphism w, we have $w(a) \leq w(a \vee b)$ and, using (2.4), (3.2) and (i) of Proposition 2.4, we get $w(a \vee b) = w(a) \oplus \left(w(a \vee b) \odot w(a)^*\right) = w(a) \oplus w\left((a \vee b) \setminus a\right) = w(a) \oplus w(b \setminus a)$ and dually $w(a \vee b) = w(b) \oplus w(a \setminus b)$.
- (iv) This result follows directly from (iii) and (3.2).

(v) By the inequalities $a \odot b \le b$, $a \le a \oplus b$ and by (iv) we have $w(b) = w(a \odot b) \oplus (w(b) \setminus w(a \odot b))$ and $w(a \oplus b) = w(a) \oplus (w(a \oplus b) \setminus w(a)) = w(a) \oplus w(a \oplus b) \setminus a$

$$w(a \oplus b) = w(a) \oplus (w(a \oplus b) \setminus w(a)) = w(a) \oplus w((a \oplus b) \setminus a) = w(a) \oplus (w(b) \setminus w(a \odot b)).$$

Now we calculate,

$$w(a) \oplus w(b) = w(a) \oplus w(a \odot b) \oplus (w(b) \setminus w(a \odot b)) = w(a \odot b) \oplus w(a \oplus b).$$

The equality $w(a \oplus b) \oplus w(a \odot b) = w(a \lor b) \oplus w(a \land b)$ follows from (iii) of Proposition 2.4 and from Proposition 2.6.

(vi) If $a \leq b^*$, then $a \odot b = 0_A$ and, using (v), we obtain that $w(a) \oplus w(b) = w(a \odot b) \oplus w(a \oplus b) = 0_B \oplus w(a \oplus b) = w(a \oplus b)$.

The following assertions follow from (v) of Proposition 3.4.

COROLLARY 3.5.

- (i) $w(a) = 0_{\mathcal{B}}$ implies $w(a \oplus b) = w(b) = w(a \lor b)$ for any $b \in \mathcal{A}$;
- (ii) $w(a) = 1_{\mathcal{B}}$ implies $w(a \odot b) = w(b) = w(a \wedge b)$ for any $b \in \mathcal{A}$.

DEFINITION 3.6. Let \mathcal{A} be an MV σ -algebra and \mathcal{I} be an MV σ -algebra of reals from the interval [0,1]. A D- σ -morphism $s: \mathcal{A} \to \mathcal{I}$ is said to be a *state* (on \mathcal{A}).

Let $\mathcal{B}(\mathbb{R})$ be the MV σ -algebra of all Borel subsets of the real line \mathbb{R} . A D- σ -morphism $x \colon \mathcal{B}(\mathbb{R}) \to \mathcal{A}$ is said to be an observable (on \mathcal{A}).

It is easy to see that if s is a state on an MV σ -algebra \mathcal{A} , then:

- $(3.4) \quad s(a^*) = 1 s(a);$
- (3.5) $a \le b^* \text{ implies } s(a \oplus b) = s(a) + s(b);$
- (3.6) if $(a_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, $a_n\nearrow a$, then $s(a)=\lim_{n\to\infty}s(a_n)$ and

$$s(a) = s(a_1) + \sum_{n=2}^{\infty} s(a_n \setminus a_{n-1});$$

- (3.7) $a \le a^*$ implies $s(a \oplus a) = 2s(a)$;
- (3.8) $a^* \le a \text{ implies } s(a \odot a) = 2s(a) 1.$

EXAMPLE 3.7. Let $\mathcal{F} \subset [0,1]^X$ be an MV σ -algebra of fuzzy sets (see Example 2.3). Let $t_0 \in X$. A mapping $s \colon \mathcal{F} \to [0,1]$ defined by the formula $s(f) = f(t_0)$ is a state on \mathcal{F} .

EXAMPLE 3.8. Let \mathcal{A} be an MV algebra and $a \in \mathcal{A}$. A mapping $x : \mathcal{B}(\mathbb{R}) \to \mathcal{A}$ defined via

$$x_a(E) = \left\{ egin{array}{ll} 1_{\mathcal{A}} \,, & \mbox{if } \{0,1\} \cap E = \{0,1\} \,, \\ a \,, & \mbox{if } \{0,1\} \cap E = \{1\} \,, \\ a^*, & \mbox{if } \{0,1\} \cap E = \{0\} \,, \\ 0_{\mathcal{A}} \,, & \mbox{if } \{0,1\} \cap E = \emptyset \,, \end{array}
ight.$$

for every $E \in \mathcal{B}(\mathbb{R})$, is an observable on \mathcal{A} (called an *indicator* of the element a).

We note that the range of an observable on an MV σ -algebra, in general, is not an MV algebra. Indeed, we put $\mathcal{A}=\mathcal{I}$ and a=0,2. Then $\mathcal{R}(x_a)=\{1;\ 0,2;\ 0,8;\ 0\}$ and $0,2\oplus 0,2=0,4\notin \mathcal{R}(x_a)$.

PROPOSITION 3.9. Let A, B, C be MV σ -algebras, $u: A \to \mathcal{B}$ and $v: \mathcal{B} \to \mathcal{C}$ two MV homomorphisms (D- σ -morphisms). Then the composition $v \circ u: A \to \mathcal{C}$ defined by the formula $v \circ u(a) = v(u(a))$, for every $a \in A$, is an MV homomorphism (a D- σ -morphism).

The proof of this proposition requires only a routine verification of the definition of an MV homomorphism (a D- σ -morphism).

THEOREM 3.10. Let x be an observable and s be a state on an MV σ -algebra \mathcal{A} . Then the composition

 $s \circ x \colon \mathcal{B}(\mathbb{R}) \to [0,1]$, where $s \circ x(E) = s(x(E))$, for every $E \in \mathcal{B}(\mathbb{R})$, is a probability measure on $\mathcal{B}(\mathbb{R})$.

Proof. We prove only the σ -additivity of the mapping $s \circ x$. Let $(E_n)_{n=1}^{\infty}$ be a sequence of pairwise disjoint Borel subsets. Put $A_n = \bigcup_{i=1}^n E_i$, $n = 1, 2, \ldots$

The sequence $(A_n)_{n=1}^{\infty}$ is monotonic and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} E_n \,.$$

Let us calculate

$$s \circ x \left(\bigcup_{n=1}^{\infty} E_n \right) = s \left(x \left(\bigcup_{n=1}^{\infty} E_n \right) \right) = s \left(x \left(\bigcup_{n=1}^{\infty} A_n \right) \right) = s \left(\bigvee_{n=1}^{\infty} x(A_n) \right) =$$

$$= s \left(x(A_1) \right) + \sum_{n=2}^{\infty} s \left(x(A_n) \setminus x(A_{n-1}) \right) =$$

$$= s \left(x(A_1) \right) + \sum_{n=2}^{\infty} s \left(x(A_n \setminus A_{n-1}) \right) =$$

$$= s \left(x(E_1) \right) + \sum_{n=2}^{\infty} s \left(x(E_n) \right) = \sum_{n=1}^{\infty} s \left(x(E_n) \right).$$

The composition $s \circ x$ is said to be a *probability distribution* of the observable x in the state s.

Now a mean value of an observable x in a state s can be defined by the integral

$$E(x) := \int_{\mathbb{D}} t \ d(s \circ x)(t) \,,$$

if it exists and is finite.

4. Joint observables

It is well-known, from the classical probability theory, that if (Ω, \mathcal{S}, P) is a probability space, $\xi \colon \Omega \to \mathbb{R}$ and $\eta \colon \Omega \to \mathbb{R}$ are two random variables, then the random vector $T = (\xi, \eta)$ is a map from Ω into \mathbb{R}^2 with the property

$$T^{-1}(E \times F) = \xi^{-1}(E) \cap \eta^{-1}(F)$$
 for every $E, F \in \mathcal{B}(\mathbb{R})$.

There is an analogy between a random vector and a joint observable.

DEFINITION 4.1. Let \mathcal{A} be an MV σ -algebra and $\mathcal{B}(\mathbb{R}^2)$ be the σ -algebra of all Borel subsets of \mathbb{R}^2 . A *joint observable* of observables x and y is a D- σ -morphism $w \colon \mathcal{B}(\mathbb{R}^2) \to \mathcal{A}$ satisfying the following identity:

$$w(E \times F) = x(E) \wedge y(F)$$
 for every $E, F \in \mathcal{B}(\mathbb{R})$.

We give a necessary condition of the existence of a joint observable.

PROPOSITION 4.2. If w is a joint observable of observables x and y, then

$$x(E) \wedge y(F) = x(E) \odot y(F)$$
 for every $E, F \in \mathcal{B}(\mathbb{R})$.

Proof. Let w be a joint observable and $E \times F \in \mathcal{B}(\mathbb{R}^2)$. Then

$$w(E \times F)^* = w((E \times F)^c) = w(E^c \times \mathbb{R} \cup E \times F^c) =$$

= $w(E^c \times \mathbb{R}) \oplus w(E \times F^c) = x(E)^* \oplus (x(E) \wedge y(F)^*),$

therefore,

$$\begin{split} x(E) \wedge y(F) &= w(E \times F) = x(E) \odot \left(x(E)^* \vee y(F) \right) = \\ &= x(E) \odot \left(\left(x(E)^* \odot y(F)^* \right) \oplus y(F) \right) = \\ &= x(E) \odot \left(\left(x(E) \odot y(F) \right) \oplus x(E)^* \right) = \\ &= x(E) \wedge \left(x(E) \odot y(F) \right) = x(E) \odot y(F) \,. \end{split}$$

By a joint observable we can build up the functional calculus for observables on MV σ -algebras, for example, the sum, the difference, the product, etc.

REFERENCES

- [1] CHANG, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
- [2] ISEKI, K.—TANAKA, S.: An introduction to the theory of BCK-algebras, Math. Japonica 3 (1978), 1–26.
- [3] KÔPKA, F.: D-Posets of fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 83-87.
- [4] KÔPKA, F.—CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994) (to appear).
- [5] MUNDICI, D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-53.
- [6] RIEČAN, B.: On limit theorems in fuzzy quantum spaces (to appear).

Received April 30, 1993

Military Academy Department of Mathematics SK-031 19 Liptovský Mikuláš SLOVAKIA