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STATES AND OBSERVABLES ON MV ALGEBRAS

FERDINAND CHOVANEC

ABSTRACT. In this paper, states and observables on MV algebras, as special
cases of a D-morphism of MV algebras, are studied.

1. Introduction

The axiomatic Kolmogorov model of probability theory is formed by the
triplet (2,5, P), where Q is a non-empty set, S is a o-algebra of subsets of
2, and P is a probability measure. Another fundamental notion of probability
theory is a random variable. A random variable is a pointwise function & : O — R
such that ¢71(E) € S for every Borel set E. Then ¢~! is a o-homomorphism
from the o-algebra B(R) of Borel sets of the real line R into the o- algebra
S. A mapping F¢ : B(R) — [0,1] defined by formula P;(E) = P(¢71(E))
for every E € B(R) is a probability on B(R) (a probability distribution of a
random variable &).

States and observables are two basic notions of quantum logics theory. A
state plays the same role as a probability measure in classical probability theory
and an observable is an analogue of a random variable.

C.C.Chang in [1] developed theory of algebraic systems that correspond in
a natural way to the No-valued propositional calculus. These algebraic systems
are called MV algebras, where MV is supposed to suggest many-valued logics.
The classical two-valued logic gives a rise to the study of Boolean algebras and,
every Boolean algebra is an MV algebra where as the converse does not hold.

Recently, a very simple but very general structure has appeared, so called a
D-poset [4], which was inspired by an investigation of the possibility to intro-
duce fuzzy set ideas to quantum structures models [3]. D-posets are a natural
generalization of, for example, quantum logics, real vector lattices, orthoalgebras
and MV algebras. The states and observables on D-posets are deﬁned as the
special cases of morphisms of D-posets.
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For the first time the notions of a state, an observable and a joint observable
on an MV algebra of fuzzy sets have been defined by B. Rie¢an in [6].

In the present paper, we introduce the notions of a state and an observable
on a general MV algebra in a similar way as in D-posets.

2. MV algebras

In [5] an MV algebra is defined as follows:
An MV algebra is an algebra (A4,®,®,*,0,1), where A is a non-empty set, 0
and 1 are constant elements of A, ® and © are binary operations, and * is a
unary operation, satisfying the following axioms:

(21) (a@b)=(0®a);

(22) (a®b)Bc=ad(bdc);
(23) a®0=aq;

(24) a®1=1;

(25) (a*)" =a;

(2.6) 0% =1;

(27) a®a" =1,

(28) (Db @b=(a@b) Da;
(2.9) a®b=(a"®b")*.

The lattice operations V and A are defined by the formulas
aVb=(a@b")®b and aAb=(aBb)Ob.

We write a < b iff a Vb ="5b. The relation < is a partial ordering over A and
0<a<1,forevery a € A. An MV algebra is a distributive lattice with respect
to the operations V, A.

In [1] the following assertions have been proved:

(2.10) a®b<aAb<aVb<La®b,forevery a,be A.

(2.11) If a < b, then a®c<b®c and a©®c<bOc, forevery cc A.

(2.12) The following three conditions are equivalent:

(i) a <0, (ii) a*®db=1, (iii) a®@b* =0.
(2.13) f a<b,then b=a® (bOa").
(2.14) (aVb)* =a*Ab" and (aAb)* =a™ VD*.

EXAMPLE 2.1. Every Boolean algebra is an MV algebra. Especially, let B be
an algebra of subsets of a non-empty set X. Weput E@F =FUF, EQF =
=ENF, E*=X\FE,forevery E,Fe€ B, 0=0 and 1 =X . Then B forms
an MV algebra, where < is the inclusion relation.
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EXAMPLE 2.2. Let Z be a subset of the interval [0,1] of real numbers such
that 0€Z, 1 €Z, and if a,b € I, then a ® b := min(l,a+b) €Z, a©b:=
max(0,a +b—1) € Z, a* :==1—a € T, where + and — denote the usual
sum and difference of real numbers. The system Z is an MV algebra. Moreover,
aV b= max(a,b), a Ab=min(a,b) and the relation < is the natural ordering
of real numbers. It is not difficult to show that, for a,b € 7, a®b=a+ b if
andonly if a <b*=1—05 and a < b implies b@a* =b—a.

EXAMPLE 2.3. Let X be a non-empty set and F C [0,1]% be a system of
functions f: X — [0, 1] such that:
(i) if 0(t) =0 and 1(t) =1 forevery t € X, then 0 € F and 1€ F,
(i) if f,g€ F, then f@® g:=min(l,f+g) € F and
fog:=max(0,f +g—1) € F, where (f +g)(t) = f(¢) +g(t), for
every t € X ;
(i) if f€F,then f*:=(1—-f)eF.
Then the system F is an MV algebra (of fuzzy sets). We point out here that
the operations V and A on F are fVg=max(f,g), fAg=min(f,g), and
f<giff f(t) <g(t), for every t € X.

Let A be an MV algebra. We define a binary operation \ on A ( a difference )
by the formula
b\a:=b®a" forany a,beA.

The difference operation on an MV algebra is already known in the literature
and it has been studied in [2], for example.
It is evident that 1\a =a*, a\0O=a, a\a =0 and b\a < b, for any a,b € A.

PROPOSITION 2.4. Let A be an MV algebra and a,b,c € A. Then:
(i) a<b implies b\ (b\a) = a,and b=a® (b\a);
(ii) a < b* implies a = (a®b) \b.
(iii) a < b < c implies
c\b<c\a and (c\a)\(c\b)=0b\a,
b\a<c\a and (c\a)\ (b\a)=c\b.

Proof. The assertions (i) and (ii) follow from the definitions of the lattice
operations A and V. Indeed,

b\ (b\a) =00 (bea*)* =b0(*®a)=aAb,
a®(b\a)=a®(bOa*)=aVb, and

(a@®b)\b=(a®b)Ob* =aAbd*.
(iii) If a <b<c, then ¢* <b* <a* and, therefore,

c\b=cOb* <cO®a* =c\a. Calculate
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(c\a)\(c\b) = (c@a*) O (cOb) =a* O (cO(c@b) =
=a*®(bAc)=a*Ob=0b\a.
Similarly,
(b\a) = bOa* < cO®a* =c\a, and (c\a)\(b\a) = (cOa*)O(bOa*)* =
=cO(a*O(d*®a)) =cO(a*Ab*)=cOb* =c\b.

a

DEFINITION 2.5. [4] Let P be a partially ordered set with a partial ordering
<, the greatest element 1, and with a partial binary operation \: P x P — P,
called a difference, such that, for a,b € P, b\ a is defined iff @ < b, and the
following three axioms hold for a,b,c € P:
(i) b\a<b;
(ii) o\ (b\a)=gq;
(iif) a<b<c implies c\b<c\a and (c\a)\(c\b)=0b\a.
Then P is called a D-poset or a difference poset.

From the introduced above it follows that any MV algebra is a D-poset, in
particular, any MV algebra of fuzzy sets (see Example 2.3) is a D-poset of fuzzy
sets [3].

PROPOSITION 2.6. Let A be an MV algebra. Then:
() (avh)\a=b\(anb);
(ii) (a®b)\a=0b\(a®b);
(iii) (a®b)\(aVbd)=(anb)\(a®b).

Proof. Using (i) and (ii) from Proposition 2.4 we obtain:

(i) (avb)\a=(a®(d\a))=b\a=0b\(b\(b\a)) =b\(anb).
(i) (a@b)\a=(a®b)Oa*=((*"®b*)Ob=(a0b)*Ob=>b\(a®b).
(il) (a@b)\(aVbd)=(a®b)@ (a®(a*@b)) =(a®b)® (a* @ (a®b*)) =
=((a®b)®a*)O(a®b*) = ((a*Bb*)®b) @ (a®b*) = ((a* ®") O
bO@®b)) =(@o0b)* O (anb)=(anb)\ (a®b).
O

PROPOSITION 2.7. Let a <b and d<c.Ifb\a=c\d, then adc=0b&d.

Proof. By (i) of Proposition 2.4 we have b = a®(b\a) and ¢ =d®(c\d).
Then a®c=a® (d®(c\d)) =a® (d& (b\a)) = (a®(b\a)) ®d=bdd.DO

The converse assertion, in general, is not true. Indeed, let Z be an MV algebra
from Example 2.2. Put a =02, 6=0.7, ¢c=0.9 and d =0.3. Then b®d =
l=a®c,but b\a=0.5 and ¢c\d=0.6.
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COROLLARY 2.8.
(i) (avVb)®(aAb)=a®b=(a®d)@®(a®b);
(i) ifa<b<c, then (c\b)®(b\a)=c\a;
(iii) (anb)®(b\a)=0b.

PROPOSITION 2.9. Let A be an MV algebra. Then:
() c\(and)=(c\a)V(c\b);
(i) c\(aVvb)=(c\a)A(cAb);

for any a,b,c€ A.

Proof.

(i) By [1;Ax. 11" 20O (yVz) = (zOy)V (z®z) for all z,y,z from an
MYV algebra A. It suffices to put z =c, y =a* and z =b". Then
c\(aAb) = c®(aAb)* = cO(a*Vb*) = (cOa*)V(cOb*) = (c\a)V(c\b).

(i) Since a < aVb and b < aVb, it is evident that ¢\ (aVbd) <c\a
and c\ (aVb) < c\b, which gives that ¢\ (aV b) is a lower bound
of the set {c\a,c\b}. If d e A, d <c\a and d < ¢\ b, then
cha=c\(c\a)<c\dand cAb=c\(c\b) <c\d.

Hence (cAa)V (cAb) =cA(aVDd) <c\d, therefore, d =cAd =
=c\(c\d)<ec\(cA(aVvb) =(c\c)V (c\(aVD))=c\(aVD).

Thus c\(aVb) is the greatest lower bound of { c\a,c\b},ie. c\(aVbd) =
=(c\a)A(c\b). O

3. States and observables on MV algebras

According to [1], we will say that a mapping w from an MV algebra A into
an MYV algebra B is a homomorphism of MV algebras or an MV-homomorphism
iff w(04)=0g5, w(la) =15, and w preserves the operations @, ® and *.

PROPOSITION 3.1. A mapping w: A — B is an MV-homomorphism if and
only if w(l4) = 1p, and w preserves difference operations on A and B.

Proof. The necessary condition is evident.
Let w(b\4 a) = w(b) \g w(a) for any a,b € A, where \4 and \p denote
difference operations on A and B, respectively. We will write shortly \ for
both operations. Then:
(i) w(04) = w(04\04) =w(04) \ w(04) =w(04) ® (w(04)" =0s5.
(i) w(a") = w(la\ @) = w(l4) \ w(a) = 15) \ w(a) = w(a)".
(iii) w(a ®b) = w(a \b*) = w(a) \ w(b)* = w(a) @ w(b).
(iv) w(a ®b) = w((a* ©b*)*) = (w(a*) © w(b"‘))}|= = w(a) ® w(b). ]
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Let w: A — B be an MV-homomorphism. The range of w is the set R(w) =
{w(a): a € A }. Then R(w) is an MV algebra of B (see [1; p. 471]). It is easy
to see that if A is a Boolean algebra, then R (w) is a Boolean subalgebra of
B. If we put, in this case, B = Z, where Z is the MV algebra of all reals from
the interval [0, 1], then R (w) = {0, 1}.

DEFINITION 3.2. An MV algebra A is said to be an MV o-algebra, if each
countable sequence of elements from .4 has the supremum in 4.

It is clear that every Boolean o-algebra is an MV o-algebra. The MV al-
gebra I from Example 2.2 and the MV algebra F from Example 2.3 are
MV og-algebras, too.

DEFINITION 3.3. Let A and B be two MV algebras (MV o-algebras). A
mapping w: A — B is called an D-morphism (an D-o-morphism) if the fol-
lowing conditions are satisfied:

(3.1) w(ly)=1g5;

(3.2) if a,be A, a <b, then w(a) < w(b) and w(b\a)=w(b)\ w(a);

(3.3) if (an):o:1 CA, a, /a (ie, ap < apyy for any n € N and

(o]

a= \/ an), then w(a,) / w(a).

n=1

PROPOSITION 3.4. Let w: A — B be a D-morphism of MV algebras A and
B. Then the following assertions are true.

(i) w(04)=0s5.

(ii) w(a*) =w(a)*.

(iii) w(aVvbd)=wla)dw(d\a)= w(a\b).

(iv) If a <b, then w(b) = w(a) ® ( w( ) w(a)).

(v) we®db)@wlae®bd)=wla)®dwb)=wlaVbd) dwlaAb).

(vi) If a <b*, then w(a®b) = w(a) ® w(b).

Proof.

() w(04) =w(a\a)=w(a)\w(a)=0z.
(i) w(a") =w(la\a) =w(la)\w(a) =w(a)*.
(i) By the monotonicity of the D-morphism w, we have w(a) < w(aV b)
and, using (2.4), (3.2) and (i) of Proposition 2.4, we get

w(a Vb) = w(a) & (w(aVb) ©wla)) = wk)dw(aVb)\ @l =
w(a) ®w(b)\ a)
and dually w(aV b) = w(b) ® w(a\b).

(iv) This result follows directly from (iii) and (3.2).
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(v) By the inequalities a ®b<b, a<a®b and by (iv) we have
w(b) = w(a ®b) ® (w(b) \ w(a ®b)) and
w(a ®b) = w(a) ® (we db) \ wia)) = wla) @ w((a®b)\a) =
=w(a)® (w(b) \ w(@a®b)).
Now we calculate,
w(a)@w(b) = w(a)Sw(a®b)® (w(b) \w(a®b)) = w(a®b) Bw(a®b).

The equality w(a ® b) ® w(a ©b) = w(a V b) ® w(a Ab) follows from
(iii) of Proposition 2.4 and from Proposition 2.6.

(vi) If @ <b*, then a ©b =04 and, using (v), we obtain that
w(a) @w(b) =w(@a©b) dw(a®b) =0 wlad®b) =w(adb).

The following assertions follow from (v) of Proposition 3.4.

COROLLARY 3.5.

(i) w(a)=0p implies w(a ®b) = w(b) = w(aVb) for any be A;
(ii) w(a)=1p implies w(a ®b) = w(b) = w(a Ab) for any be A.

DEFINITION 3.6. Let A be an MV o-algebra and Z be an MV o-algebra of
reals from the interval [0,1]. A D-o-morphism s: A — T is said to be a state

(on A).

Let B(R) be the MV o-algebra of all Borel subsets of the real line R. A
D-o-morphism z: B(R) — A is said to be an observable (on A).

It is easy to see that if s is a state on an MV o-algebra A, then:
(3.4) s(a*)=1-s(a);

(3.5) a <b* implies s(a @®b) = s(a) + s(b);

(3.6) if (an)nen € A, an /" a, then s(a) = lim s(a,) and

n—oo

s(a) = s(a1) + i) s(an \ an-1);
(3.7) a <a* implies s(a ®a) = 2s(a);
(3.8) a* < a implies s(a ®a) = 2s(a) — 1.

EXAMPLE 3.7. Let F C [0,1]% be an MV o-algebra of fuzzy sets (see Ex-
ample 2.3). Let ¢ € X. A mapping s: F — [0,1] defined by the formula
s(f) = f(to) is a state on F.
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EXAMPLE 3.8. Let A be an MV algebra and a € A. A mapping z: B(R) —
A defined via

14, if{0,1}nE ={0,1},
a, if{0,1}nE={1},
a*, if{0,1}NnE = {0},
04, if{0,1}NE=0,

zq(E)

for every E € B(R), is an observable on A (called an indicator of the ele-
ment a).

We note that the range of an observable on an MV g-algebra, in general,
is not an MV algebra. Indeed, we put A = Z and a = 0,2. Then R(z,) =
={1; 0,2; 0,8; 0} and 0,290,2=0,4 ¢ R(z,).

PROPOSITION 3.9. Let A, B,C be MV o-algebras, u: A— B and v: B—C
two MV homomorphisms ( D-c-morphisms). Then the composition vou: A — C
defined by the formula v o u(a) = v(u(a)), for every a € A, is an MV homo-
morphism (a D-o-morphism).

The proof of this proposition requires only a routine verification of the defi-
nition of an MV homomorphism (a D-o-morphism).

THEOREM 3.10. Let = be an observable and s be a state on an MV o-algebra
A. Then the composition

sox: B(R) — [0,1], where soz(E) = s(z(E)), for every E € B(R),
is a probability measure on B(R).

Proof. We prove only the o-additivity of the mapping sox. Let (En)oo

n=1

n 4
be a sequence of pairwise disjoint Borel subsets. Put A, = |J E;, n=1,2,....
i=1

o0 . .
The sequence (An)n=1 is monotonic and

o0

o0
A= En.
n=1

n=1
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Let us calculate

(GE):<(GE))

n=1

s(w(gl An)) = s< (7 :U(An)> _

n=1

= s(2(41) + ) 5(2(An) \ 2(4n-1)) =

n=2

= s(z(A1) + Y s(x(An \ Apor)) =

=5(2(B) + ) s(2(En)) =Y s(z(En)).

O

The composition soz is said to be a probability distribution of the observable
z in the state s.

Now a mean value of an observable z in a state s can be defined by the
integral

Bm) v= /t d(soz)(t),
R

if it exists and is finite.

4. Joint observables

It is well-known, from the classical probability theory, that if (Q,S,P) is a
probability space, £: @ — R and 7: 2 — R are two random variables, then the
random vector T' = (£,7) is a map from  into R? with the property

T™YEx F)=¢YE)nn Y(F) forevery E,F € B(R).
There is an analogy between a random vector and a joint observable.

DEFINITION 4.1. Let A be an MV o-algebra and B(R?) be the c-algebra
of all Borel subsets of R%. A joint observable of observables z and y isa D-o-
morphism w: B(R?) — A satisfying the following identity:

w(E x F)=z(E)Ay(F) forevery E,F ¢ B(R).

We give a necessary condition of the existence of a joint observable.
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PROPOSITION 4.2. If w is a joint observable of observables = and y, then

¢(E)Ay(F)=z(E)©Oy(F) forevery E,F ¢ B(R).

Proof. Let w be a joint observable and E x F € B(R?). Then

w(EXF)*:w((ExF)C) =w(E°xRUE x F°) =
— w(B° X R) ®u(E x F*) = a(E)* & (a(B) Ay(F)"),

therefore,
z(E) Ay(F) = w(E x F) = 2(B) © (z(B)" Vy(F)) =
=z(E) 0 ((=(BE) 0 y(F)") ®@y(F)) =
= 2(E) @ ((=(E) 0 y(F)) ® =(E)") =
=z(E) A (z(E) @ y(F)) = z(E) © y(F).

O

By a joint observable we can build up the functional calculus for observables

on MV o-algebras, for example, the sum, the difference, the product, etc.
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