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KERNEL LOGICS

MIRKO NAVARA

ABSTRACT. Let A be a Boolean algebra and m a (group-valued) measure on
A. Then the kernel Kerm is a concrete logic (= set-representable orthomodular
poset). We exhibit the efficiency of this technique in constructions of concrete
logics with special properties, e.g., the Jauch—Piron property.

1. Motivation

Concrete logics have been studied for many years (see, e.g., [9]) as an al-
ternative structure for the description of events in a system including noncom-
patibility. Possible areas of applications include quantum mechanics, artificial
intelligence, psychology, sociology etc. Concrete logics admit analogues of some
results obtained in the measure and integration theory on Boolean algebras (see,
e.g., [1, 5]). However, serious difficulties are encountered in these attempts. Ker-
nel logics, which are introduced in this paper, form a class of concrete logics. As
they are described in terms of Boolean algebras using measure-theoretic notions,
there is a greater chance to generalize classical results for Boolean algebras to
kernel logics. As we show here, the class of kernel logics is still rather general.
It is closed with respect to products and horizontal sums. We find among them
important and quite non-trivial examples of “almost Boolean” logics. Besides
this, our approach might be interesting as a special construction technique for
concrete logics.

2. Basic definitions and examples

Let us recall the basic definitions. Let X be a nonempty set. A collection
L c 2% is called a concrete logicif X € L and A,B € L, A C B, implies
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B\ A € L. Concrete logics may be alternatively defined as orthomodular posets
possessing order-determining sets of two-valued measures (see [10]). Notice that
a concrete logic is closed with respect to disjoint unions, but not to all unions.
Of course, all Boolean algebras are concrete logics. Another typical example is
the following.

EXAMPLE 2.1. Let X be a set of an even cardinality and let L be the set of
all subsets of X of an even cardinality. Then L is a concrete logic.

Let G be a commutative group. A G-valued measure on a concrete logic
L is a mapping m: L — G such that m(A U B) = m(A) + m(B) whenever
AN B =0. Our approach is based on the following observation:

PROPOSITION 2.2. Let m be a G-valued measure on a Boolean algebra A
such that m(1) = 0. Then the kernel of m, Kerm = m™(0), is a concrete
logic.

Logics isomorphic to those constructed as in Proposition 2.2 are called kernel
logics.
EXAMPLE 2.3. Logics from Example 2.1 are kernel logics. It suffices to take

a Zp—valued measure on 2% (Z, is the two-element cyclic group) such that
m({z}) =1 foral z € X.

EXAMPLE 2.4. Let X = {a,b,c,d,e, f,g,h}. We define a Z-valued mea-
sure m on 2% such that m({a}) = m({d}) = 1, m({8}) = m({c}) = -1,
m({e}) = m({f}) = m({g}) = m({h}) = 0. The atoms of the kernel logic
Kerm are {a,b}, {a,c}, {b,d}, {c,d}, {e}, {f}, {g}, {R}. It is isomorphic
to the free orthomodular lattice with 2 free generators (which may be identified

With {a'7b’e7f} a'nd {a7c’f7g})'
In the following sections we summarize (without proofs) some discoveries
concerning kernel logics. Their detailed treatment is provided in [6].

3. Properties of the class of kernel logics

It is natural to ask how large the class of kernel logics is. Further, we may
want the respective measure to attain values in some special group. Until now
we have only the following partial results.

PROPOSITION 3.1. Every product of finitely many kernel logics is a kernel
logic.
THEOREM 3.2. Every horizontal sum of finitely many kernel logics is a kernel
logic.

Janowitz [2]introduced the class of constructible logics — it is the smallest
class containing all Boolean algebras and closed under products and horizontal
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sums. According to Proposition 3.1 and Theorem 3.2, each finite constructible
logic is a kernel logic. Moreover, we can strengthen the latter result:

THEOREM 3.3. Every finite constructible logic is the kernel of some integer-
valued measure.

Obviously, neither integer-valued nor real-valued measures suffice to deter-
mine all kernel logics.

4. Almost Boolean kernel logics

Important and quite non-trivial applications of kernel logics were found in
the study of classes of concrete logics which are “close” to Boolean algebras. The
key references to this topic are [7, 4].

A concrete logic P has the Jauch—Piron property if, for each non-negative
finite measure s, each A, B € Ker s have an upper bound C € Ker s. We denote
by Csp the class of concrete logics with the Jauch—Piron property and by B the
class of Boolean algebras. Obviously, B C Cjp . The question has arisen whether
the latter inclusion is proper. This problem was formulated, e.g., in [7, 8] and
remained open for several years. An affirmative answer was given in [3]. Here we
provide an example of a kernel logic from Cyp \ B.

EXAMPLE 4.1. There is a kernel logic which is not a Boolean algebra and
satisfies the Jauch—Piron property.

Let F', G be two disjoint uncountable sets, and let E = FUG, X = EV.
We define A C 2% as the Boolean algebra generated by all sets of the form

Gler,...,en) ={(zi)ien € X: 21 =€y,...,2p = er},
where k € N, ei,...,e; € E. The real-valued set function m defined by
m(G(el, e ek)) — (_1)card((el,.‘.,ek)€F),
m(X) =0,

extends uniquely to a measure on A, and the corresponding kernel logic belongs

to C.]p\B.

Let n € N. We say that a concrete logic L satisfies the n-covering property

if for each A,B € L there exist Ci,...,C, € L such that AN B = |J C;.
i<n

We denote by C, the class of concrete logics with the n-covering property.
Obviously, C; = B. It was proved in [7] that Cjp ; Cy . Again the question
remained open for some time whether the inclusions C, C Cpy1, n € N, are
proper. An affirmative answer was given in [4]. Here we construct a different
example which is a kernel logic; moreover, unlike the example of [4], our technique
is universal for all n € N.
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EXAMPLE 4.2. Let n € N. There is a kernel logic which satisfies the (n+ 1)-
covering property, but does not satisfy the n-covering property.

With the notation No = {0} UN, let X = {(z;)ien, : zo € {0,1,2,3} and
z; € {0,...,n+ 1} for ¢ > 1}. We define A C 2X as the Boolean algebra
generated by all sets of the form

Gleg,...,€ex) = {(%‘)iel\lo eX:xzg=-eg,..., T} =ek},

where k € N, ep € {0,1,2,3}, e1,...,ex € {0,...,n+ 1}. The real-valued set
function m defined by

i eo+card{j: e;=0}
m(G(eo,...,ek)) = (=1)

m(X)=0

nk ’

extends uniquely to a measure on A, and the corresponding kernel logic belongs
to Cn+1 \ Cn v
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