

ON HERGLOTZ THEOREM IN VECTOR LATTICES

Miloslav Duchoň

ABSTRACT. This paper is concerned with a generalization of Herglotz theorem for sequences of elements of a vector lattice.

Introduction

It is well-known that it is possible to characterize Fourier-Stieltjes coefficients of the (right-continuous) non-decreasing, bounded functions as positive definite sequences. Recall that a numerical sequence $(a_n)_{n=-\infty}^{\infty}$ is said to be positive definite if for any (complex) sequence (z_n) having only a finite number of terms different from zero we have

$$\sum_{n,m} a_{n-m} z_n \bar{z}_m \ge 0.$$

Now according to the Herglotz theorem [1, Theorem 4.3.1] a numerical sequence $(a_n)_{n=-\infty}^{\infty}$ is positive definite if, and only if, there exists a right-continuous, non-decreasing, bounded function F on $[-\pi,\pi]$ with $F(-\pi)=0$, such that

$$a_n = \int_{(-\pi,\pi]} e^{-ins} dF(s)$$

for all $n = 0, \pm 1, \ldots$

In this paper we give a generalization of the Herglotz theorem for a_n being elements of a vector lattice. As for terminology and some results from vector lattices we shall use as reference the book [2].

AMS Subject Classification (1991): 42A16, 42A32. Key words: vector lattice, positive definite sequence, function of order bounded variation.

MILOSLAV DUCHOŇ

Fourier-Stieltjes coefficients of vector functions of (o)-bounded variation

Recall that a function g, defined on an interval of the real line T=[a,b] and taking values in a complete vector lattice Y, is said to be of (o)-bounded variation, if the set of all elements of the form

$$\sum_{j}\left|oldsymbol{g}(t_{j+1})-oldsymbol{g}(t_{j})
ight|,$$

corresponding to all finite partitions of the interval T, is o-bounded. We shall denote by (o)- $var_{t\in T}g(t)$ the least upper bound of this set.

Denote by $BV^o(T,Y)$ the vector space of all functions on T with values in Y of o-bounded variation. Let $T=[0,2\pi]$. Further if $g\in BV^o(T,Y)$, then an element of Y of the form

$$\hat{m{g}}(n) = rac{1}{2\pi} \int\limits_{T} e^{-int} dm{g}(t)$$

is called the n-th Fourier-Stieltjes coefficient of g.

In the following, let ${\mathbb T}$ denote the quotient group ${\mathbb R}/2\pi{\mathbb Z}$ (${\mathbb R}$ and ${\mathbb Z}$ denoting the additive group of reals and integers, respectively), as a model we may think of the interval $[0,2\pi)$. A trigonometric polynomial on ${\mathbb T}$ is a function a=a(t) defined on ${\mathbb T}$ by $a(t)=\sum_{-n}^n a_j e^{ijt}$. Denote by $p({\mathbb T})$ the set of all trigonometric polynomials on ${\mathbb T}$. We shall need the following theorem [5, Theorem, 2.12] asserting that trigonometric polynomials are dense in $C({\mathbb T})$.

THEOREM A. For every $f \in C(\mathbf{T})$ we have $\sigma_n(f) \to f$, $n \to \infty$, in the $C(\mathbf{T})$ norm $(\|\cdot\|)$.

We shall make use of the following result [3, Theorem 4].

THEOREM 1. Let Y be a complete vector lattice. Let (y_k) be a two-way sequence of elements of Y. Then the following two conditions are equivalent:

(a) There is a function $g: T \to Y$ of (o)-bounded variation with (o)- $var_{t \in T}g(t) \leq C \in Y$ such that y_j are Fourier–Stieltjes coefficients of g(t), i.e.,

$$y_j = \hat{oldsymbol{g}}(j) = rac{1}{2\pi} \int\limits_T e^{-ijt} doldsymbol{g}(t) \qquad ext{for all} \quad j \in \mathbb{Z}.$$

ON HERGLOTZ THEOREM IN VECTOR LATTICES

(b) For all trigonometric polynomials $a = \sum_{l=1}^{l} a_{j}e^{ijt} \in p(T)$ there holds

$$\Big|\sum_{j=-l}^{l} a_{-j} y_j\Big| \le ||a|| C$$

for some $C \in Y$.

If $g \in BV^o(T,Y)$, then the (formal) series

$$\sum_{n\in\mathbb{Z}}\hat{m{g}}(n)\,e^{inx}$$

is called the Fourier-Stieltjes series of g.

Let (y_j) be a two-way sequence of elements of Y. Put

$$\sigma_N(Y,t) = \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1}\right) y_{-j} e^{-ijt}, \quad N = 1, 2, \dots$$

and denote by $S_N(Y)$ the (o)-bounded linear mapping on C(T) defined by

$$S_N(Y)(f) = \frac{1}{2\pi} \int_{\mathbf{T}} f(t)\sigma_N(Y,t)dt, \quad f \in C(\mathbf{T}), \ N = 1, 2, \dots$$

If the function g is of the (o)-bounded variation and $y_j = \hat{g}(j), j \in \mathbb{Z}$ we shall write

$$\sigma_N(Y,t) = \sigma_N(\boldsymbol{g},t)$$
 and $S_N(Y) = S_N(\boldsymbol{g})$.

We have

$$S_N(Y)(f) = rac{1}{2\pi} \int\limits_{\mathbb{T}} f(t) \sigma_N(Y,t) dt$$

$$=\sum_{-N}^{N}\left(1-rac{|j|}{N+1}
ight)\hat{f}(j)y_{-j},\quad f\in C(\mathbb{T}).\ N=1,2,\ldots.$$

Let

$$||S_N(Y)|| = \sup_{\|f\| \le 1} |S_N(Y)(f)|.$$

We shall need also the following theorem [3, Theorem 5].

MILOSLAV DUCHOŇ

THEOREM 2. Let Y be a complete vector lattice. The trigonometric series

$$\sum_{n\in\mathbb{Z}} y_j e^{inx}, \quad y_j \in Y,$$

is the Fourier-Stieltjes series of the function g of the (o)-bounded variation, i.e., $y_j = \hat{g}(j)$, $j \in \mathbb{Z}$, if and only if there exists an element $0 \le C \in Y$ such that

$$||S_N(Y)|| \le C, \quad N = 1, 2, \dots$$

It is useful to formulate the Parseval formula explicitly for the Fourier-Stieltjes series of the function g of (o)-bounded variation [3, Theorem 6].

THEOREM 3. Let Y be a complete vector lattice and let $f \in C(T)$. Then we have

$$\int_{T} f(t)d\boldsymbol{g}(t) = \lim_{N \to \infty} \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1}\right) \hat{f}(j)\hat{\boldsymbol{g}}(-j).$$

It is a very important fact that we have established not only a characterization of the Fourier-Stieltjes series of the function of (o)-bounded variation but also a method how to recapture the function by means of its Fourier-Stieltjes series. Theorem gives a recipe how to recover the function. In this sense we may, by abuse of notation, write

$$doldsymbol{g}(t) \sim \sum_{j \in \mathbb{Z}} \hat{oldsymbol{g}}(j) e^{ijx}$$

for $g \in BV^o(T, Y)$.

It is easy to see that if the function $g: T \to Y$ is nondecreasing, then g is of (o)-bounded variation. Hence we may establish the following.

THEOREM 4. Let Y be a complete vector lattice. The necessary and sufficient condition for

$$\sum_{k\in\mathbb{Z}}y_ke^{ikx}$$

to be the Fourier-Stieltjes series of a nondecreasing function g with the values in Y is that $\sigma_N(Y,t) \geq 0$ for all N on T.

Proof. The necessity. If $y_k = \hat{\boldsymbol{g}}(k)$, for a nondecreasing function \boldsymbol{g} , we have

$$\sigma_N(Y,t) = \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1} \right) y_{-j} e^{-ijt} = \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1} \right) \hat{g}(-j) e^{-ijt} =$$

$$= \frac{1}{2\pi} \int_{T} \sum_{-N}^{N} \left(1 - \frac{|j|}{N+1} \right) e^{-ij(t-s)} dg(t) = \int_{T} K_N(s-t) dg(t) \ge 0$$

ON HERGLOTZ THEOREM IN VECTOR LATTICES

since g is nondecreasing and Féjer's kernel K_n is nonnegative. So we have $\sigma_N(Y,t) \geq 0$ on T.

Assuming $\sigma_N(Y,t) \geq 0$ we obtain

$$||S_N(Y)|| = \sup_{\|f\| \le 1} \left| \int_T f(t) \sigma_N(Y, t) dt \right| = \frac{1}{2\pi} \int_T \sigma_N(Y, t) dt = y_0$$

and, by Theorem 3,

$$\sum_{j\in\mathbb{Z}} y_j e^{ijx}$$

is the Fourier-Stieltjes series for some $g \in BV^0(T,Y)$. For arbitrary nonnegative $f \in C(T)$

$$\int\limits_T f(t)d\boldsymbol{g}(t) = \lim_{N \to \infty} \frac{1}{2\pi} \int\limits_T f(t)\sigma_N(Y,t)dt \ge 0,$$

hence

$$U:f o\int\limits_T f(t)dm{g}(t)$$

defines a positive linear operator on C(T) into Y which can be extended ([2, Theorem, 5.1.2] to the positive linear operator (denoted again by) U defined on the complete vector lattice containing characteristic functions $c_{[0,t]}$ of intervals [0,t] in T. From the definition (cf. [2, Theorem, 7.1.4] $g(t) = U(c_{[0,t]})$ and it follows that g is nondecreasing.

It is not unexpected that Theorem 4 gives rise to a representation of positive-definite functions definite in a suitable sense, analogous to those known for complex-valued positive-definite functions.

Suppose that (y_n) , $n=0,\pm 1,\pm 2,\ldots$ is a two-way sequence of elements in a vector lattice Y. Then it is called positive-definite if for any sequence (c_n) of complex numbers having only a finite number of terms different from zero we have

$$\sum_{m,n} c_n \overline{c_m} y_{n-m} \ge 0.$$

THEOREM 5. Let Y be a complete vector lattice. A necessary and sufficient condition for a sequence $(y_n)_{n=-\infty}^{\infty} \in Y$ to be positive definite is that there exists a nondecreasing function $g: T \to Y$ such that $y_n = \hat{g}(n)$ for all n.

MILOSLAV DUCHOŇ

Proof. Assume $y_j = \hat{g}(j)$ with $g: T \to Y$ non-decreasing. Then

$$\sum_{m,n} c_n \overline{c_m} y_{n-m} = \int_T \left(\sum_{m,n} c_n \overline{c_m} e^{i(n-m)t} \right) d\mathbf{g}(t) =$$

$$= \int_T \left| \sum_n c_n e^{int} \right|^2 d\mathbf{g}(t) \ge 0.$$

Conversely, if the sequence y_j is positive definite and we take $c_l = e^{ilt}$ for $|l| \leq N$, otherwise 0, then

$$\sum_{m,n} c_n \overline{c_m} y_{n-m} = (2N+1)\sigma_{2N}(Y,t) \ge 0$$

and it is enough to apply Theorem 4.

REFERENCES

- BROCKWELL, P. J.—DAVIS, R. A.: Times Series: Theory and Methods, Springer-Verlag, Berlin, 1987.
- [2] CRISTESCU, R.: Ordered Vector Spaces and Linear Operators, Abacus Press, Kent, 1976.
- [3] DUCHOŇ, M.: On Fourier-Stieltjes transforms in vector lattices, Tatra Mountains Math. Publ. 2 (1993), 175–183.
- [4] EDWARDS, R. E.: Fourier Series II. 2nd ed., Springer-Verlag, Berlin, 1982.
- [5] KATZNELSON, Y.: An Introduction to Harmonic Analysis, 2nd ed., Dower Publications, Inc., New York, 1976.

Received April 5, 1993

Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava SLOVAKIA E-mail: mateduch@savba.sk