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ON HERGLOTZ THEOREM IN VECTOR LATTICES

MiLosLAvV DUCHON

ABSTRACT. This paper is concerned with a generalization of Herglotz theorem
for sequences of elements of a vector lattice.

Introduction

It is well-known that it is possible to characterize Fourier-Stieltjes coefficients
of the (right-continuous) non-decreasing, bounded functions as positive definite
sequences. Recall that a numerical sequence (a,)S2__, is said to be positive
definite if for any (complex) sequence (z,) having only a finite number of terms

different from zero we have

Z Qp—mZnZm = 0.

n,m

Now according to the Herglotz theorem [1, Theorem 4.3.1] a numerical sequence
(an)S> _ ., is positive definite if, and only if, there exists a right-continuous,
non-decreasing, bounded function F on [—m, 7] with F(—7) =0, such that

Ay = /e_imdF(s)

(=m,m]

forall n=0,%1,....

In this paper we give a generalization of the Herglotz theorem for a, being
elements of a vector lattice. As for terminology and some results from vector
lattices we shall use as reference the book [2].
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Fourier-Stieltjes coefficients of vector
functions of (0)-bounded variation

Recall that a function g, defined on an interval of the real line T' = [a, b]
and taking values in a complete vector lattice Y, is said to be of (o)-bounded
variation, if the set of all elements of the form

Z lg(ti41) —a(t;)|,

corresponding to all finite partitions of the interval T', is o-bounded. We shall
denote by (o0)-varierg(t) the least upper bound of this set.

Denote by BV°(T,Y) the vector space of all functions on T' with values in
Y of o-bounded variation. Let T' = [0, 27| . Further if g € BV°(T,Y), then an
element of Y of the form

o(m) = 5= [ e mdg(t)

T

is called the n-th Fourier-Stieltjes coeflicient of g.

In the following, let T denote the quotient group R/27Z (R and Z denoting
the additive group of reals and integers, respectively), as a model we may think
of the interval [0,27). A trigonometric polynomial on T is a function a = a(t)

n
defined on T by a(t) = 3 aje*. Denote by p(T) the set of all trigonomet-

ric polynomials on T. We shall need the following theorem [5, Theorem, 2.12]
asserting that trigonometric polynomials are dense in C(T).

THEOREM A. For every f € C(T) we have 0,(f) — f, n — oo, in the
C(T) norm (|| - ]).

We shall make use of the following result [3, Theorem 4].

THEOREM 1. Let Y be a complete vector lattice. Let (y;) be a two-way
sequence of elements of Y . Then the following two conditions are equivalent:

(a) There is a function g : T — Y of (o)-bounded variation with (o)-
varierg(t) < C € Y such that y; are Fourier—Stieltjes coefficients of g(t),
ie.,

1 L
yi = §(j) = 2_/(3_”tdg(t) for all j€Z.
s
T
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!
(b) For all trigonometric polynomials a =Y a;et € p(T) there holds
-1

l
| Y aswi| <lalic

gj=-1

for some C €Y.
If g € BV°(T,Y), then the (formal) series
> g(n) e
nez

is called the Fourier-Stieltjes series of g.
Let (y;) be a two-way sequence of elements of Y . Put

N ;
on(Y,t) = Z (1 - N|{l]— 1) y_je ¥ N=1,2,...
j=N

and denote by Sy(Y) the (o0)-bounded linear mapping on C(T) defined by

W) = 5 [ Fon¥,0dt, feC(D), N=12,...

If the function g is of the (o)-bounded variation and y; = §(j), j € Z we

shall write
on(Y,t) =on(g,t) and Sn(Y)= Sn(g).

We have i
Sw(V(F) = 57 [ FOon (¥ bt
T
- i (1 - #) fG)y—j, fEC(T).N=1,2,....
—-N +1
Let

I1Sn (V)] = A |Sv(¥)(£)]-

We shall need also the following theorem [3, Theorem 5].
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THEOREM 2. Let Y be a complete vector lattice. The trigonometric series

D ye™, y €Y,
neEZ

is the Fourier-Stieltjes series of the function g of the (o)-bounded variation, i.e.,
y; =§g(j), j € Z, if and only if there exists an element 0 < C € Y such that

It is useful to formulate the Parseval formula explicitly for the Fourier-
Stieltjes series of the function g of (o0)-bounded variation [3, Theorem 6].

THEOREM 3. Let Y be a complete vector lattice and let f € C(T'). Then we

have
N

/f(t)dg(t)=Nn_131oo .Z (1— NLL)J?U)Q(‘J')-

It is a very important fact that we have established not only a characterization
of the Fourier-Stieltjes series of the function of (0)-bounded variation but also
a method how to recapture the function by means of its Fourier-Stieltjes series.
Theorem gives a recipe how to recover the function. In this sense we may, by
abuse of notation, write

dg(t) ~ Y _ 9(j)e”
JEZ
for g € BV°(T,Y).
It is easy to see that if the function g: T — Y is nondecreasing, then g is
of (0)-bounded variation. Hence we may establish the following.

THEOREM 4. Let Y be a complete vector lattice. The necessary and sufficient
condition for

Z Yk etk

kezZ

to be the Fourier-Stieltjes series of a nondecreasing function g with the values
in Y is that on(Y,t) >0 forall N on T.

Proof. The necessity. If yr = g(k), for a nondecreasing function g, we
have
N

on(Y;t) = .ZN <1 — NLll) y_je "t = ji}v <1 - _NUTII) §(—j)e ¥ =

- %T/i <1 — NLll) e 9= dg(t) = T/KN(S —t)dg(t) >0
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since g is nondecreasing and Féjer’s kernel K, is nonnegative. So we have
on(Y,t) >0 on T.

Assuming opn(Y,t) > 0 we obtain

1
w0l = sup T/ (v, = 5 I/ o (¥, )t =

and, by Theorem 3,

Z yjeijz

JEZ

is the Fourier-Stieltjes series for some g € BV?(T,Y). For arbitrary nonnegative

fec(T)
[ #dgte) = Jim 3= [ ryon (vt > 0,
T T

hence

g s / £()dg(t)

defines a positive linear operator on C(T') into Y which can be extended (2,
Theorem, 5.1.2] to the positive linear operator (denoted again by) U defined on
the complete vector lattice containing characteristic functions cjp s of intervals
[0,¢] in T'. From the definition (cf. [2, Theorem, 7.1.4] g(t) = U(cp,4) and it
follows that g is nondecreasing. ‘

It is not unexpected that Theorem 4 gives rise to a representation of positive-
definite functions definite in a suitable sense, analogous to those known for
complex-valued positive-definite functions.

Suppose that (y,), n =0,£1,%2,... is a two-way sequence of elements in
a vector lattice Y . Then it is called positive-definite if for any sequence (cy) of
complex numbers having only a finite number of terms different from zero we
have

Y om0
m,mn

THEOREM 5. Let Y be a complete vector lattice. A necessary and sufficient
condition for a sequence (yn)2_., € Y to be positive definite is that there
exists a nondecreasing function g : T — Y such that y, = g(n) for all n.
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Proof. Assume y; = g(j) with g : T — Y non-decreasing. Then

S ernen = [ (Semet )i -

m,n m,n

T
:/12 :Cneznt
T n

2
dg(t) > 0.

Conversely, if the sequence y; is positive definite and we take ¢; = et for
lI| < N, otherwise 0, then

chmyn_m = (2N + 1)oan(Y,t) >0

m,n

and it is enough to apply Theorem 4. O
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