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ON THE JOINT OBSERVABLE IN
SOME QUANTUM STRUCTURES

RADKO MESIAR — BELOSLAV RIECAN

ABSTRACT. A mathematical model of quantum theory based on fuzzy sets is
considered. The existence of the joint observable is proved and the sum and the
independence of observables are examined.

0. Introduction

In several mathematical models of quantum theory, certain function spaces
are studied instead of linear subspaces of a Hilbert space. For example a ¢-
o-algebra @ can be considered, i.e., a family of subsets of a set closed under
complements and countable disjoint unions ([8]). Then the family {xa;A €
@} is a function space being an orthomodular poset ([16]). In [11] some more
general conditions have been examined under which a functional space forms
an orthomodular poset. Recently fuzzy sets were used for constructing various
models of quantum structures ([19], [17], [2]). Since a fuzzy set is a function
f:Q —[0,1], the fuzzy approach leads to some functional spaces, too.

While in some preceding papers the Zadeh connectives were used (for a
review see [6], [20]), in this paper we consider the Giles connectives ([18]).
Of course, all necessary definitions are mentioned in the following. Further we
prove that the joint observable exists, we examine the sum of observables and
finally we define in a reasonable way the independence of observables.

We recall that the joint observable and the sum of observables has been
introduced in [5, 7] for a model of fuzzy quantum spaces, see also [6].

For simplicity, let us consider a measurable space (€,S) and the space F
of all measurable functions f: Q — [0,1]. As usual two basic notions will be
considered: state and observable.

A state is a mapping m: F — [0,1] satisfying the following conditions:

() m(ia)=1.
(i) If f,g,h € F and f =g+ h, then m(f) =m(g) +m(h).
(iii) If fr € F (n=12,...), f€F and f, / f, then m(f,) / m(f).
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Note that by Klement [9], m is an integral, i.e., there is a probability
measure P on S such that m(f) = ffdP for any f € F.
An observable is a mapping z: B(R) — F (B(R) is the family of all Borel
subsets of R) satisfying the following conditions:
(i) z(R)=1q.
(ii) If A,B€B(R), ANB =0, then z(AUB) =z(A) + z(B).
(iii) If A, € B(R), A, / A, then z(A4,) /" z(A).
Note that (i) and (ii) imply z(A°) =1 — z(A) for any A € B(R). It is not
difficult to prove that the composite mapping mg: B(R) — [0, 1] defined by the
formula m;(A) = m(z(A)) is a probability measure.

1. Joint observable

While an observable z corresponds to a random variable £:  — R (where
z(E) can be considered as z(E) = xg-1(g)), the joint observable corresponds
to a random vector T = (£,7). It can be defined as a morphism h: B(R?) — F
(where h(F) can be considered as h(F') = x7-1(p) in the crisp case). We define
the joint observable of observables z and y as a mapping h: B(R?) — F with
the following properties:

(i) A(R2)=1gq.

(i) If A,B€ B(R?), ANB =0, then h(AU B) = h(A) + h(B).
(iii) If A, € B(R?) (n=1,2,...), A, /* A, then h(A,) / h(A).
(iv) h(C x D) =z(C) - y(D) for every C,D € B(R).

If we compare this definition with the definition of a random vector, we see

that

T7Y(C x D)=¢"H(C)ny~ (D),
hence

XT-1(CxD) = Xe¢-1(C)Xn—1(D) -

Of course, this is not the only formula how to express the characteristic function
XEnr by the help of characteristic functions xg, xr . Actually, one can use any
fuzzy intersection connective, e.g., Xgnr = min(xg, xr) - By [1], the only fuzzy
intersection distributive with respect to the Giles fuzzy union (i.e., if f,g,h,g+
h € F,then (g+h)Nf = gNf+hNf),is exactly the product. This justifies using
the product in (iv). Of course, we could substitute the sum by the maximum
or another fuzzy union. So different fuzzy connectives lead to different fuzzy
quantum models.

THEOREM 1. For any pair of observables =,y there exists their joint observ-
able.

Proof. Since z(4) € F, z(A) is a function z(A): @ — [0,1], hence for
we Q, z(A)(w) € [0,1]. For fixed w €  define p,: B(R) — [0,1] by the
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formula

pheo (A) = z(A)(w)
and similarly v, : B(R) — [0,1] by the formula

vu(B) = y(B)(w).
Evidently p.,v, are probability measures, so we can define h: B(R?) — F by
the formula

B(O)(w) = o X 1 (C).
It is easy to see that h is a morphism satisfying the property
h(A x B)(w) = py X V(A X B) = p,(A)v,(B) =

= z(A)(w) y(B)(w) = (z(4) y(B)) ().

Since the equality holds for every w € 2, we conclude that h(Ax B) = z(A)y(B)
for every A, B € B(R). O
Remark. In [14] we have shown that z is an observable (on (Q,F)) if and
only if the mapping K: (Q,S) x B(R) — R defined by K(w,A) = z(A)(w),
is a Markov kernel, i.e., w — K(w,A) is an S-measurable function for every
A € B(R) and A~ K(w,A) is a probability distribution for every w € Q.

Now, for fixed w, let Kz(w,-), Ky(w,-) be corresponding probability distrib-
utions. Let £, n be independent random variables defined on 2 with probability
distribution Kg(w,-), Ky(w,-), respectively, T = (§,n), K(w,-) be the proba-
bility distribution on B(R?) induced by T'. Then h(F)(w) = K(w,F), w € Q,
F e B[R?).

2. Sum of observables

Similarly as in the orthomodular poset theory, some operations with observ-
ables can be defined by the help of joint distribution. E.g.,

(z+y)(4) =h(g7'(4)),

where
g: R =R, g(u,v)=u+v.
Indeed, if T'= (¢&,n) is a random vector, then
E+m7HA) =(goT)™HA) =T (g7'(4)),
what justifies our definition.
A natural question arises how to compute the sum of two observables. For

any fixed w € Q, put

Xo(t) = z((—00,t)) (w) .
Then X,:R — [0,1] is a distribution function (see [13]). This enables us to
express the sum of observables in a very simple form (for another formula see

[10], [9])-
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THEOREM 2. For every observables x,y and every t € R, w € Q we have
(z +y)((00,1)) (W) = Xu * Yo (1),

where

X # Y (t) = /Xw(t—u)de(u)z /Yw(t—u)de(u).

Proof. Evidently
g_l((—oo,t)) = {(u,v);u—{—v < t} =

-0, 00508« (-2

n=1i=—00

Therefore
h(g7((—00,t))) = lim lim Xk: m(<2_2:n_12in)) y<(*oo,t_ 2%))
Then for a fixed w wWe obtain o
(@+y)((—00,1)) (w) = lim lim : ka (t- zin) (Xw(zin) - Xw(i;nl)) _

- 7 Yo (t —u)dX,,(u).

O

Remarks. 1. Note that the sum of observables introduced in [10] (and sim-
ilarly in [9]) corresponds to the Menger approach to the combination of two
distributions ([12]). Our approach leads to the Wald combination ([21]).

2. Taking into account the results of Alsina ([1]), the only convenient
fuzzy connectives ensuring (AN B)U (AN B®) = A for any A,B € T, are
induced by a t-norm 7', t-conorm S and complementation ¢ given by

T(a,b) = ¢~ (p(a) - p(b)) ,

S(a,b) = ™! (min(1, ¢(a) + ¢(b))) ,

Cla) = ¢ (1 - ¢(a)),
for any a,b € [0,1]. Here ¢: [0,1] — [0,1] is any given continuous, strictly
increasing mapping, ¢(0) = 0, (1) = 1. If we put ¢(t) = ¢, t € [0,1], we
get exactly the fuzzy connectives used throughout the paper. We see that this
is exactly the only possible case up to the isomorphism ¢.
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3. Independence

The problem arises what to do if the domain F is not closed under the
product of functions, or if the domain is more abstract. As a motivation we
mention MV algebras ([3]). An elementary example of an MV algebra is a picture
whose darkness can be interpreted as a fuzzy set f: Q — [0,1]. If we have two
pictures f,g: Q — [0, 1], then their composition can be described as the fuzzy
set

f@g:ma.x(f—i-g,l),

because the degree of darkness of a colour cannot exceed the maximum 1 (1
corresponds to the black, 0 to the white). MV algebras have important connec-
tions with C*-algebras, fuzzy sets, [-groups and multivalued logics. E.g., every
MV-algebra is isomorphic to an interval in an [-group, i.e., our starting example
with pictures is a typical one in some sense ([15]).

Generally we shall suppose only that a partially ordered set F is given with
the greatest element 1 and with a partial commutative binary operation @& such
that if f ® g and f ® h are defined, then g < h implies f® g < f @ h. Again
a state is a mapping m: F — [0, 1] satisfying the following conditions:

(i) m(1)=1,
(ii) f=g&h=m(f)=m(g)+m(h),
(i) fo /7 f=m(fn) /" m(f).
An observable is a mapping z: B(R) — F satisfying the following conditions:
(i) z(R) =1,
(i) ANB=0=z(AUB)==z(A)®=z(B),
(i) An, ~A=z(4,) " z(4).
Again the composite mapping m: B(R) — [0,1], m.(E) = m(:c(E)), is a
probability measure for arbitrary binary operation @ .
The joint observable of two observables z,y should be a mapping

h: B(R?) — F
being a morphism and satisfying the identity
h(A x B) = a(A) © y(B),

where ® is some binary operation of F . It may happen, in general, that such A
cannot be defined. Another situation is in the case of independent observables,
what is an important case in the corresponding probability considerations. Usu-
ally the independence is defined by the formula

m(m(A) ® y(B)) = m(m(A)) m(y(B)) .

Combining these two formulas we obtain the following general definition.
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DEFINITION. Two observables z,y: B(R) — F are said to be independent, in
the state m if there exists a morphism h: B(R?) — F such that

m(h(A x B)) =m(z(A)) m(y(B))

for every A, B € B(R).

If F is the set of all measurable functions from Q to (0,1), then the inde-
pendence has the usual meaning:

/fgdP:/fdP/gdP

for every f € z(B(R)), g € y(B(R)). On the other hand the notion of inde-
pendent observables can be considered in more general situations, too. Consider,
e.g., the g-algebra Q = {0,{1,2}, {3,4},{1, 3}, {2,4}, {1,2,3,4}} of subsets of
{1,2,3,4}, F={xa;A€Q}.For f,ge F define fdOg=f+g,if f+g<1.
Further put

1
m(x(1,2) = mxsap) = 5
m(X{2,4}) =m(0) =0,
m(X{l,g}) =m{l)=1.

It is easy to see that m: F — [0,1] is a state. Define now two observables
z,y: B(R) — F by the following way.

(1, ifo0e A 1€ A,
if0eA, 1¢ A

.’L‘(A)=< X{1,2}» 1 €A, ¢ )
X{3,4}7 1f0¢A,16A,

L 0, ifog A 1¢A,

(1, if0e B, 1€ B,
if0eB,1¢ B

y(B)Z X{1,3}» 1 € b, ¢ )
X{2,4}, if0¢ B, 1€ B,

L 0, ifOﬁEB,l¢B.

We shall show that z,y are independent, although F is not closed under the
product of functions. Define hence

1, if (0,0) e C, (1,0) e C,
X{1,2}» if (070) € Ca (1’0) ¢ Ca
X{s,4}, if(0,0)¢C, (1,0)€C,
0, if (0,0) ¢ C, (1,0) ¢ C.

h(C) =
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Then h: B(R?) — F is a morphism and h(AXx B) = z(A),if 0 € B, h(AxB) =
0,if 0 ¢ B. Therefore
m(h(A x B)) = m(z(4)) m(y(B))
whenever A € B(R), B € B(R).
Again we can define the sum of z and y by the formula
(z+y)(4) =h(g7'(4)),
where g: R?2 — R, g(u,v) = u + v and we can ask about the distribution
m((z + y)(—o0,t)) . The answer is the following.
THEOREM 3. Let x and y be two independent observables. Then

m((z +y)(—o0,1)) = mg X my({(u,v);u+v < t})

for every t € R.
Proof. We know that

oo oo

o (20) = U U (Fog) * (-omt- 7).

n=1i=—o00

hence
m(h(g‘l((—w,t)))) = lim z:izom(ar((zz_—nl, %)))m(y((—oo,t - é%))) =
o _Z me xmy (b Ly (— o0t = ) =

=mg X my(g~ (—00,t)) .
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