

AN ABSTRACT FORM OF A CONDITIONAL CAUCHY'S EQUATION

PAVEL KOSTYRKO

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. Let D and E be non-void sets, let $\varphi \colon D \to D$, $\psi \colon D \to D$ and $\Phi \colon E \times E \to E$ be maps. The functional equation

$$\Phi(f(x), f(\varphi(x))) = f(\psi(x))$$

with one unknown function $f \colon D \to E$ is investigated and a problem of K. Lajkó is discussed.

The aim of the present paper is to give a general solution of an abstract functional equation $\Phi(f(x), f(\varphi(x))) = f(\psi(x))$ with one unknown function f. The investigation of the above functional equation has been motivated by the following problem of K. Lajkó formulated in [1] (Problem P214): Under what conditions is $f(x) = ax^2 + bx + c$, $x \in \mathbb{R}_+$ (\mathbb{R}_+ – the set of positive reals), the only solution of

$$f\left(x + \frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$$

for $x \in \mathbb{R}_+$? Note, that the Lajkó equation can be considered as a conditional Cauchy's functional equation f(x+y) = f(x) + f(y) postulated only for x and y satisfying xy = 1.

We shall show, under some assumptions, that any solution of the abstract functional equation is uniquely determined by its initial conditions.

Let D and E be non-void sets, let $\Phi \colon E \times E \to E$. Further, let φ and ψ be transformations of the set D, i.e., $\varphi \colon D \to D$ and $\psi \colon D \to D$. We shall deal with the functional equation

$$\Phi(f(x), f(\varphi(x))) = f(\psi(x)) \tag{1}$$

with one unknown function $f: D \to E$.

AMS Subject Classification (1991): Primary 39B70. Key words: a conditional Cauchy's equation, Cauchy functional equation.

PAVEL KOSTYRKO

THEOREM 1. Let sets D, E and the functions Φ , φ , ψ have the introduced meaning. Let

- (i) $D = D_0 \cup D_1 \cup D_2$, $D_1 \neq \emptyset$, $D_2 \neq \emptyset$, $D_i \cap D_j = \emptyset$ for $i \neq j$, such that $\varphi(D_0) \subset D_0$, $\varphi(D_1) \subset D_2$, $\varphi(D_2) \subset D_1$ and $\psi(D_0) \subset D_0 \cup D_2$, $\psi(D_1 \cup D_2) \subset D_2$;
- (ii) $\varphi \circ \varphi = I$ (*I* the identity transformation of *D*), $\psi \circ \varphi = \psi$;
- (iii) Φ be a symmetric function, i.e., $\Phi(X,Y) = \Phi(Y,X)$ whenever $X,Y \in E$.

Let $f_0: D_0 \cup \psi(D_0) \to E$ be a solution of (1) on D_0 , i.e., (1) holds for every $x \in D_0$. Let $g: D_2 \to E$ be an arbitrary function with $g(x) = f_0(x)$ for each $x \in D_2 \cap \psi(D_0)$. Further let

(iv) $\Psi: g(D_2) \times g(D_2) \to E$ be a function such that $Y = \Psi(X, Z)$ implies $Z = \Phi(X, Y)$ for every $X, Z \in g(D_2)$ and $Y \in E$.

Then $f: D \to E$ given by

$$f(x) = \begin{cases} = f_0(x), & \text{for } x \in D_0; \\ = \Psi(g(\varphi(x)), g(\psi(x))) & \text{for } x \in D_1; \\ = g(x) & \text{for } x \in D_2 \end{cases}$$
 (2)

is a solution of (1) with $f \mid D_0 \cup \psi(D_0) = f_0$.

Proof. If $f: D \to E$ is determined by (2), then obviously $f \mid D_0 \cup \psi(D_0) = f_0$.

Suppose $x \in D_0$. Then $\varphi(x) \in D_0$, $\psi(x) \in D_0 \cup \psi(D_0)$ and $\Phi(f(x), f(\varphi(x))) = \Phi(f_0(x), f_0(\varphi(x))) = f_0(\psi(x)) = f(\psi(x))$.

Suppose $x \in D_1$. Then $\varphi(x) \in D_2$, $\psi(x) \in D_2$ and $f(x) = \Psi(g(\varphi(x)), g(\psi(x)))$. Hence $f(\psi(x)) = g(\psi(x)) = \Phi(g(\varphi(x)), f(x)) = \Phi(f(x), f(\varphi(x)))$.

Suppose $x \in D_2$. Then $\varphi(x) \in D_1$, $\psi(x) \in D_2$ and $f(\varphi(x)) = \Psi(g(\varphi(x)))$, $g(\psi(\varphi(x))) = \Psi(g(x), g(\psi(x)))$. Hence $f(\psi(x)) = g(\psi(x)) = \Phi(g(x), f(\varphi(x))) = \Phi(f(x), f(\varphi(x)))$.

Remark. Theorem 1 asserts that an arbitrary function $g \colon D_2 \to E$ (with $g(x) = f_0(x)$ for $x \in D_2 \cap \psi(D_0)$) by means of (2) gives a solution of the equation (1). Because the function Ψ of the condition (iv) is not uniquely determined, we need not obtain, by this way, all solutions of (1). This shows the following example.

EXAMPLE. Let us consider the functional equation

$$f(x)^{2} + f(1-x)^{2} = f(x^{3}(1-x)^{3}), (3)$$

 $f: (0,1) \to \mathbb{R}$ (\mathbb{R} - the real line). Put $D_0 = \left\{\frac{1}{2}\right\}$, $D_1 = \left(\frac{1}{2},1\right)$, $D_2 = \left(0,\frac{1}{2}\right)$, $\varphi(x) = 1-x$, $\psi(x) = x^3(1-x)^3$, $Z = \Phi(X,Y) = X^2+Y^2$ and $Y = \Psi(X,Z) = \sqrt{-X^2+Z}$. Obviously $D_0 \cup \psi(D_0) = \left\{\frac{1}{64},\frac{1}{2}\right\}$. If we suppose $f_0\left(\frac{1}{2}\right) = \frac{1}{2}$, then (3) implies $f_0\left(\frac{1}{64}\right) = \frac{1}{2}$. Put $g(x) = \frac{1}{2}$ for $x \in \left(0,\frac{1}{2}\right)$. Then $g(D_2) = \left\{\frac{1}{2}\right\}$ and it is easy to verify that the assumptions of Theorem 1 are fulfilled. It follows from (2) that $f(x) = \frac{1}{2}$ for every $x \in (0,1)$. The functional equation (3) has still another solution $f^*: (0,1) \to \mathbb{R}$ (with $f^* \mid D_2 = g$) belonging to the function $Y = \Psi^*(X,Z) = -\sqrt{-X^2+Z}$: $f^*(x) = \frac{1}{2}$ for $x \in \left(0,\frac{1}{2}\right]$, $f^*(x) = -\frac{1}{2}$ for $x \in \left(\frac{1}{2},1\right)$.

The assumptions of Theorem 1 can be strengthened in such a way, that each solution of (1) can be obtained by a suitable choice of the function g.

THEOREM 2. Let the sets D, E and the functions Φ , φ , ψ have the introduced meaning. Let the assumptions (i), (ii), and (iii) of Theorem 1 be fulfilled and let the functions f_0 and g have the meaning of Theorem 1. Further let

(iv*) $\Psi: g(D_2) \times g(D_2) \to E$ be a function such that for every X, $Z \in g(D_2)$ and $Y \in E$ $Y = \Psi(X, Z)$ if and only if $Z = \Phi(X, Y)$.

Then $f: D \to E$ given by relations (2) is a solution of (1) with the property $f \mid D_0 \cup \psi(D_0) = f_0$, and, every solution of (1) with this property can be obtained using relations (2) and a suitable choice of the function $g: D_2 \to E$.

Proof. Let f_1 be a solution of (1). It is sufficient to show that every solution f of (1) with $f \mid D_0 \cup \psi(D_0) = f_0 = f_1 \mid D_0 \cup \psi(D_0)$ and $f \mid D_2 = g = f_1 \mid D_2$ is given by relations (2) and $f(x) = f_1(x)$ holds for every $x \in D$.

If $x \in D_0 \cup D_2$, then relations (2) and $f(x) = f_1(x)$ obviously hold. Suppose $x \in D_1$. Since (1) is fulfilled, we have $f(\psi(x)) = \Phi(f(\varphi(x)), f(x))$, $f(x) = \Psi(f(\varphi(x)), f(\psi(x))) = \Psi(g(\varphi(x)), g(\psi(x)))$ hence relations (2) are fulfilled. We prove $f(x) = f_1(x)$ for $x \in D_1$. The equality $\Phi(f_1(x), f_1(\varphi(x))) = f_1(\psi(x))$ is equivalent to $\Psi(f_1(\varphi(x)), f_1(\psi(x))) = f_1(x)$. Obviously $f(x) = \Psi(g(\varphi(x)), g(\psi(x))) = \Psi(f_1(\varphi(x)), f_1(\psi(x)))$. Consequently $f(x) = f_1(x)$. \square

EXAMPLES. We shall give a condition such that a quadratic function $f(x) = ax^2 + bx + c$ is the only solution of

$$f\left(x+\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right), \tag{4}$$

 $f: D \to \mathbb{R}, \ D \subset \mathbb{R}.$

a) Suppose $D=(0,1)\cup (1,\infty)$. Put $D_0=\emptyset$, $D_1=(0,1)$, $D_2=(1,\infty)$, $\varphi(x)=\frac{1}{x}$, $\psi(x)=x+\frac{1}{x}$, $\Phi(X,Y)=X+Y$ and $\Psi(X,Z)=-X+Z$. It

PAVEL KOSTYRKO

is easy to verify that the assumptions of Theorem 2 are fulfilled. Obviously necessary $g(x)=ax^2+bx+c$ holds for $x\in(1,\infty)$. The relations (2) imply that the solution of (4) is of the form $f(x)=ax^2+bx+2a$ for $x\in(0,1)$ and $f(x)=ax^2+bx+c$ for $x\in(1,\infty)$. Consequently, the equation (4) has on $D=(0,1)\cup(1,\infty)$ the only solution a quadratic function f if and only if $g=f\mid(1,\infty)$ is a quadratic function of the form $g(x)=ax^2+bx+2a$, where a,b are arbitrary real constants.

b) Suppose $D=(0,\infty)$. Put $D_0=\{1\}$ and D_1 , D_2 , φ , ψ , Φ , Ψ as in the case a). The assumptions of Theorem 2 are fulfilled and $D_0\cup\psi(D_0)=\{1,2\}$. If $f_0(1)=k$, then (4) implies $f_0(2)=2k$. Hence every solution f of (4) on $(0,\infty)$ (with f(1)=k) is determined by a function $g\colon (1,\infty)\to\mathbb{R}$ with g(2)=2k and by relations (2). A simple computation gives that (4) has on $D=(0,\infty)$ the only solution a quadratic function f if and only if $g=f\mid (1,\infty)$ is a quadratic function of the form $g(x)=ax^2+(k-3a)x+2a$, where $k=f_0(1)$ and a is an arbitrary real constant.

REFERENCE

[1] The Twentieth International Symposium on Functional Equations, August 1-7, 1982, Oberwolfach, Aequationes Math. 24 (1982), 261-297.

Received October 5, 1992

Department of Mathematics Comenius University 842 15 Bratislava SLOVAKIA