

ON F-CONTINUITY OF REAL FUNCTIONS

Ján Borsík — Tibor Šalát

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. The concept of F-continuity of real numbers is based on the well-known notion of almost convergence of sequences of real numbers. From the F-continuity of a function at a point its linearity follows. This fact strengthens a result of E. $\ddot{\rm O}$ z t $\ddot{\rm u}$ k [7].

Introduction

In paper [7] the notion of almost continuity of real functions is introduced. This notion is based on the concept of F-convergence from [6] (see also [8], p. 59–60 and [9]). Since the term "almost continuity" has a different meaning in the theory of real functions (cf. [5], [11]), we shall use the notion F-continuity instead of almost continuity from [7].

Definitions and Notations

A sequence $(x_n)_{n=1}^{\infty}$ of real numbers is said to be almost convergent (or F-convergent) to the number s if

$$\lim_{p \to \infty} \frac{x_{n+1} + \dots + x_{n+p}}{p} = s \tag{1}$$

holds uniformly in $n=0,1,\ldots$ (cf. [6], [8] p. 59–60, [9]). If (1) holds uniformly in $n=0,1,\ldots$, then s is uniquely determined and we write $F-\lim x_n=s$ (see [6]).

If $(x_n)_{n=1}^{\infty}$ is a convergent sequence (in the usual sense), then it is also almost convergent and F- $\lim x_n = \lim_{n \to \infty} x_n$.

It is well-known that each almost convergent sequence is bounded (cf. [6]).

AMS Subject Classification (1991): Primary 26A15; Secondary 40A05. Key words: almost convergence, F-continuity, A-continuity.

JÁN BORSÍK — TIBOR ŠALÁT

DEFINITION 1. A function $f: \mathbb{R} \to \mathbb{R}$ is said to be F-continuous at $x_0 \in \mathbb{R}$ if

$$F$$
- $\lim x_n = x_0 \implies F$ - $\lim f(x_n) = f(x_0)$.

If f is F-continuous at each $x \in \mathbb{R}$, then f is called F-continuous on \mathbb{R} .

In what follows $y_n \to y \ (n \to \infty)$ denotes the usual convergence of the sequence $(y_n)_{n=1}^{\infty}$ to the number y.

The concept of F-continuity of functions is very similar to the concept of C-continuity of functions (cf. [10]). We recall that a sequence $(x_n)_{n=1}^{\infty}$ is said to be (C,1)-summable to $s \in \mathbb{R}$ if

$$\lim_{n \to \infty} \frac{x_1 + \dots + x_n}{n} = s \tag{2}$$

(we write for brevity (C, 1)- $\lim x_n = s$). A function $f: \mathbb{R} \to \mathbb{R}$ is said to be C-continuous at $x_0 \in \mathbb{R}$ if

$$(C, 1)$$
- $\lim x_n = x_0 \implies (C, 1)$ - $\lim f(x_n) = f(x_0)$.

A function f is said to be C-continuous on \mathbb{R} if it is C-continuous at each $x \in \mathbb{R}$.

It is proved in the solution of the Problem in [10] that if f is C-continuous at a point $x_0 \in \mathbb{R}$, then it is linear. The main aim of this note is to prove an analogous result for F-continuity of functions.

Main Results

In [7] the following result (formulated in our terminology) is proved (cf. [7], Theorem (3.2)):

THEOREM A. Let a function $f: \mathbb{R} \to \mathbb{R}$ be F-continuous at $x_0 \in \mathbb{R}$. Then f is continuous at x_0 if and only if

$$f(x_{n+1}) - f(x_n) \to 0 \quad (n \to \infty)$$

for each sequence $(x_n)_{n=1}^{\infty}$ converging to x_0 .

We shall strengthen this result by showing that each function $f: \mathbb{R} \to \mathbb{R}$ which is F-continuous at a point is already linear on \mathbb{R} , i.e. it has the form f(x) = ax + b, where a, b are constants.

Hence we shall prove the following

ON F-CONTINUITY OF REAL FUNCTIONS

THEOREM 1. If $f: \mathbb{R} \to \mathbb{R}$ is F-continuous at a point $x_0 \in \mathbb{R}$, then f is a linear function.

Remark 1. It can be easily checked that each linear function is F-continuous at every point $x \in \mathbb{R}$. Consequently Theorem 1 says that from F-continuity of a function at a single point its F-continuity on \mathbb{R} follows. If $f \colon \mathbb{R} \to \mathbb{R}$ is an arbitrary function and C_f^* is the set of all points at which f is F-continuous, then we have only the following two possibilities:

a)
$$C_f^* = \emptyset$$
 b) $C_f^* = \mathbb{R}$.

In the proof of Theorem 1 we shall use some ideas from the solution of Problem 4216 (cf. [10]) and the following lemma.

LEMMA 1. If $f: \mathbb{R} \to \mathbb{R}$ is F-continuous at $x_0 \in \mathbb{R}$, then it is continuous at x_0 .

Proof. First of all we prove that the function f is bounded at x_0 , i.e., that there exists a d>0 such that f is bounded on the interval (x_0-d,x_0+d) . To prove this it suffices to show that if $x_n\to x_0$ $(n\to\infty)$, then the sequence $(f(x_n))_{n=1}^{\infty}$ is bounded.

Let $x_n \to x_0$ $(n \to \infty)$. Then $F-\lim x_n = x_0$ and by the assumption of Lemma we have $F-\lim f(x_n) = f(x_0)$. Hence $(f(x_n))_{n=1}^{\infty}$ as an almost convergent sequence is bounded.

We now can prove the continuity of the function f at the point x_0 . Suppose that f is discontinuous at x_0 . Since it is bounded on an interval (x_0-d,x_0+d) (d>0), there exists a sequence $(y_n)_{n=1}^{\infty}$ of elements of (x_0-d,x_0+d) such that $y_n \to x_0$ $(n \to \infty)$ and $(f(y_n))_{n=1}^{\infty}$ converges to a number $b \neq f(x_0)$. From this we get

$$F-\lim f(y_n) = b. (3)$$

On the other hand from $y_n \to x_0$ $(n \to \infty)$ we have $F-\lim y_n = x_0$ and so by the assumption of Lemma we get

$$F$$
- $\lim f(y_n) = f(x_0) \neq b$.

This contradicts (3). The proof is finished.

Remark 2. It follows from Theorem 1 that Lemma 1 cannot be conversed.

Proof of Theorem 1. First of all we shall prove the following special case of Theorem 1. We shall assume that $g: \mathbb{R} \to \mathbb{R}$ is F-continuous at the point 0 and g(0) = 0.

Let a,b,c be real numbers such that a+b+c=0. Construct the sequence

$$(x_n)_{n=1}^{\infty} = a, b, c, a, b, c, \dots$$

We show that this sequence is almost convergent to 0. Indeed, put

$$A_{n,p} = \frac{x_{n+1} + \dots + x_{n+p}}{p} = \frac{B_{n,p}}{p} (n, p \in N).$$

Assume that p > 3. Then p can be expressed in the form p = 3q + r, $q \ge 1$, $0 \le r \le 2$, q, r are integers.

If $x_{n+1}=a$, then for $B_{n,p}$ we have the following possibilities: $B_{n,p}=q(a+b+c)=0$ (if r=0), $B_{n,p}=q(a+b+c)+a=a$ (if r=1) and $B_{n,p}=q(a+b+c)+a+b=a+b$ (if r=2).

If $x_{n+1} = b$, then $B_{n,p} = (q-1)(a+b+c) + (b+c) + a = 0$ (if r = 0), $B_{n,p} = (q-1)(a+b+c) + (b+c) + a + b = b$ (if r = 1) and $B_{n,p} = (q-1)(a+b+c) + (b+c) + (a+b+c) = b + c$ (if r = 2).

Finally if $x_{n+1} = c$, then $B_{n,p} = c + (q-1)(a+b+c) + a + b = 0$ (if r = 0), $B_{n,p} = c + q(a+b+c) = c$ (if r = 1), $B_{n,p} = c + q(a+b+c) + a = a + c$ (if r = 2).

Hence $A_{n,p}$ has one of the values:

$$\frac{0}{p},\;\frac{a}{p},\;\frac{a+b}{p},\;\frac{b}{p},\;\frac{b+c}{p},\;\frac{c}{p},\;\frac{a+c}{p}\quad\text{for each}\quad n\geqq 0$$

and p > 3. From this it is obvious that the $A_{n,p}$ by $p \to \infty$ converges to 0 uniformly in $n = 0, 1, \ldots$ According to the assumption of Theorem we have $F-\lim g(x_n) = g(0) = 0$ i.e. the sequence

$$(g(x_n))_{n=1}^{\infty} = g(a), g(b), g(c), g(a), g(b), g(c), \dots$$

is almost convergent to 0. But a direct calculation shows that

$$F-\lim g(x_n) = \frac{g(a) + g(b) + g(c)}{3}.$$

Hence

$$g(a) + g(b) + g(c) = 0$$
. (4)

Since c = -a - b, we get g(-a - b) = -g(a) - g(b).

Putting b = 0 we have

$$g(-a) = -g(a) \quad (a \in \mathbb{R}). \tag{5}$$

Let $x,y\in\mathbb{R}$ be arbitrary. Put c=x+y, a=-x, b=-y. Then a+b+c=0 and according to (4) and (5) we get g(x+y)=-g(-x)-g(-y)=g(x)+g(y).

ON F-CONTINUITY OF REAL FUNCTIONS

Hence the function $g: \mathbb{R} \to \mathbb{R}$ satisfies the Cauchy functional equation g(x+y) = g(x) + g(y) and according to Lemma 1 it is continuous at 0. On the basis of the well-known knowledge on Cauchy equation we get g(x) = ax for $x \in \mathbb{R}$, a being a constant (cf. [3], p. 44-45).

We shall now discuss the general case. Let $f: \mathbb{R} \to \mathbb{R}$ be F-continuous at a point $x_0 \in \mathbb{R}$. We introduce new coordinates $x' = x - x_0$, $y' = y - f(x_0)$. Put $g(x') = f(x) - f(x_0)$. It is easy to verify that from the F-continuity of f at x_0 the F-continuity of g at 0 follows. On the basis of the previous part of the proof the function g has the form g(x') = a x', i.e. $f(x) - f(x_0) = a(x - x_0) = a x - a x_0$, $f(x) = a x + (f(x_0) - a x_0) = a x + b$, where $b = f(x_0) - a x_0$. The proof is finished.

Considerations about C-continuity can be extended for arbitrary regular summation matrix A instead of the Cesàro matrix $(c_{nk})(c_{nk} = \frac{1}{n} \ (k = 1, 2, \ldots, n))$ and $c_{nk} = 0$ for k > n. Such extensions of C-continuity are discussed in papers [1] and [2]. The A-continuity of a function $f: \mathbb{R} \to \mathbb{R}$ can be defined in a similar manner as the C-continuity. Let A-lim y_n denote the number to which the sequence $(y_n)_{n=1}^{\infty}$ is summed by the matrix A. A function f is said to be A-continuous at $x_0 \in \mathbb{R}$ if

$$A$$
- $\lim x_n = x_0 \implies A$ - $\lim f(x_n) = f(x_0)$.

A function f is said to be A-continuous on \mathbb{R} if it is A-continuous at each $x \in \mathbb{R}$.

In the papers [1] and [2] sufficient conditions are given for from A-continuity of f on $\mathbb R$ or A-continuity of f at a single point the linearity of f follows. These conditions concern a wide class of regular matrices. Let us remark that almost convergence is not equivalent to A-summability where A is an arbitrary regular matrix. (Therefore our Theorem 1 is not a consequence of the mentioned results from [1] and [2] concerning the A-continuity). If namely the summability method given by A is equivalent to the convergence, then F-lim x_n exists for $x_n = (-1)^{n-1}$ $(n = 1, 2, \ldots)$, but A-lim x_n does not exists and if the method given by A is stronger than the convergence, then according to the well-known theorem of M a Z u Y and X or Y is X-summable, but X-lim Y cannot exist since X-convergence sequences are bounded (cf. [6]). Hence the convergence fields of the method X of almost convergence and of the method given by X cannot coincide.

REFERENCES

[1] ANTONI, J.: On the A-continuity of real functions II, Math. Slovaca 36 (1986), 283-288.

JÁN BORSÍK — TIBOR ŠALÁT

- [2] ANTONI, J.—ŠALÁT, T.: On the A-continuity of real functions, Acta Math. Univ. Comenian. 39 (1980), 159-164.
- [3] ACZÉL, J.: Vorlesungen über Funktionalgleichungen und ihre Anwendungen, VEB Deutsch. Verlag der Wissenschaften, Berlin, 1961.
- [4] COOKE, R. G.: Infinite Matrices and Sequence Spaces, (Russian Translation), Moskva, 1960.
- [5] HUSSAIN, T.: Almost continuous mappings, Prace Matem. 10 (1966), 1-7.
- [6] LORENTZ, G. G.: A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [7] ÖZTÜRK, E.: On almost-continuity and almost A-continuity of real functions, Comm. Fac. Sci. Univ. Ankara 32 (1983), 25-30.
- [8] PETERSEN, G. M.: Regular Matrix Transformations, Mc Graw Hill, New York-Toronto-Sydney, 1966.
- [9] PETERSEN, G. M.—ZAME, A.: Summability properties for the distribution of sequences, Monatsh. Math. 73 (1969), 147–158.
- [10] ROBBINS, H.: Problem 4216 [1946, 470], Amer. Math. Monthly, Solution by R. C. Buck in Amer. Math. Monthly 55 (1948), 36.
- [11] SINGAL, M. K.—SINGAL, A. R.: Almost continuous mappings, Yokohama Math. J. 16 (1968), 63-73.

Received September 30, 1992

Mathematical Institute Slovak Academy of Sciences Grešákova 6 040 01 Košice SLOVAKIA

Department of Algebra and Number Theory Comenius University Mlynská dolina 842 15 Bratislava SLOVAKIA