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ON F-CONTINUITY OF REAL FUNCTIONS

JAN BORSIK — TIBOR SALAT

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. The concept of F—continuity of real numbers is based on the well-
known notion of almost convergence of sequences of real numbers. From the F-
continuity of a function at a point its linearity follows. This fact strengthens a
result of E. Ozt iik [7].

Introduction

In paper (7] the notion of almost continuity of real functions is introduced.
This notion is based on the concept of F-convergence from [6] (see also [8], p.
59-60 and [9]). Since the term “almost continuity” has a different meaning in
the theory of real functions (cf. [5], [11]), we shall use the notion F-continuity
instead of almost continuity from [7]. '

Definitions and Notations

A sequence (z,)52; of real numbers is said to be almost convergent (or
F-convergent) to the number s if ‘

T e i W
p—00 p
holds uniformly in n=0,1,... (cf. [6], [8] p. 59-60, [9]). If (1) holds uniformly
in n=0,1,..., then s is uniquely determined and we write F-limz, = s (see

[6])-
If (zn)52; is a convergent sequence (in the usual sense), then it is also almost

convergent and F-limz, = lim z,.
n—00

It is well-known that each almost convergent sequence is bounded (cf. [6]).
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DEFINITION 1. A function f: R — R is said to be F-continuous at zo € R
if
F-limz, = z¢ = F-lim f(z,) = f(zo) .

If f is F—continuous at each z € R, then f is called F-continuous on R.

In what follows y, — y (n — oo) denotes the usual convergence of the
sequence (y,)22; to the number y.

The concept of F—continuity of functions is very similar to the concept of
C—continuity of functions (cf. [10]). We recall that a sequence (z,)5%, is said
to be (C,1)-summable to s € R if

jg Tt Ee 2)

n—oo n

(we write for brevity (C,1)-limz, = s). A function f: R — R is said to be
C—continuous at xg € R if

(C,1)-limz, =20 = (C,1)-lim f(z,) = f(zo).

A function f is said to be C-continuous on R if it is C—continuous at each
z € R.

It is proved in the solution of the Problem in [10] that if f is C-continuous
at a point zo € R, then it is linear. The main aim of this note is to prove an
analogous result for F'—continuity of functions.

Main Results
In [7] the following result (formulated in our terminology) is proved (cf. [7],
Theorem (3.2) ):

THEOREM A. Let a function f: R — R be F—continuous at g € R. Then
f is continuous at xq if and only if

f(@n41) = f(zn) =0 (n— o0)
for each sequence ()52 converging to zo.

We shall strengthen this result by showing that each function f: R — R
which is F—continuous at a point is already linear on R, i.e. it has the form
f(z) = az + b, where a,b are constants.

Hence we shall prove the following
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THEOREM 1. If f: R — R is F—continuous at a point o € R, then f isa
linear function.

Remark 1. Itcan beeasily checked that each linear function is F'~continuous
at every point z € R. Consequently Theorem 1 says that from F-continuity of
a function at a single point its F—continuity on R follows. If f: R — R is an
arbitrary function and C7 is the set of all points at which f is F—continuous,
then we have only the following two possibilities:

a) C’;:@ b) C; =R.

In the proof of Theorem 1 we shall use some ideas from the solution of
Problem 4216 (cf. [10]) and the following lemma.

LEMMA 1. If f: R — R is F-continuous at zo € R, then it is continuous at
Zo -

Proof. First of all we prove that the function f is bounded at zo, i.e.,
that there exists a d > 0 such that f is bounded on the interval (zo —d,
zo + d) . To prove this it suffices to show that if 2, — zo (n — 00), then the

sequence ( f(:t:n))zo=1 is bounded.

Let £, — o (n — o). Then F-limz, = zo and by the assumption of
Lemma we have F-lim f(z,) = f(zo). Hence (f (wn)):o=1 as an almost conver-
gent sequence is bounded.

We now can prove the continuity of the function f at the point xo. Suppose
that f is discontinuous at zo . Since it is bounded on an interval (zo—d, zo+d)
(d > 0), there exists a sequence ()32, of elements of (zo — d,zo + d) such

that y, — zo (n — o) and (f(yn))zo:l converges to a number b # f(xo).
From this we get

F-lim f(y,) = b. (3)

On the other hand from y, — =9 (n — oco) we have F-limy, = zo and so by
the assumption of Lemma we get

F-lim f(yn) = f(zo) #b.
This contradicts (3). The proof is finished. O
Remark 2. It follows from Theorem 1 that Lemma 1 cannot be conversed.

Proof of Theorem 1. First of all we shall prove the following special
case of Theorem 1. We shall assume that g: R — R is F—continuous at the
point 0 and g(0) =0.

Let a,b,c be real numbers such that a + b+ ¢ = 0. Construct the sequence

(zh);.lo=1 =a, b7 c a, b, Cyenn
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We show that this sequence is almost convergent to 0. Indeed, put

Ay, = ot = +p _ p’P (n,p € N).

Assume that p >3. Then p can be expressed in the form p = 3g+r,q21,
0<r <2, q,r are integers. _

If z,11 = a, then for B, we have the following possibilities: B, =
gla+b+c)=0 (if r =0), Bpp =gla+b+c)+a=a (if r =1) and
Bnp=qla+b+c)+a+b=a+b (if r=2). _

If £ny1 =0, then Bnp=(¢—1)(a+b+c)+ (b+c)+a=0 (if r =0),
Bnp =(@g—1(a+b+c)+(b+c)+a+b=2>b (if r = 1) and By p =
(=1 (a+b+c)+(b+c)+(atb+c)=b+c (if r=2).

Finally if 2,11 =c, then B, , =c+(¢—1)(a+b+c)+a+b=0 (if r =0),
Bop=c+qlatb+c)=c (if r=1), Byp=c+qla+b+c)+a=a+c (if
r=2).

Hence A, , has one of the values:

0 b b b
- E, e i =5 +C, E, lin foreach n=0
pp p p p

and p > 3. From this it is obvious that the App by p — oo converges to 0
uniformly in n = 0,1,.... According to the assumption of Theorem we have
F-lim g(z,) = g(0) = 0 i.e. the sequence

(9(zn))o, = g(a), 9(6), g(c), g(a), g(b), g(c), ...

is almost convergent to 0. But a direct calculation shows that

)= g(a) +9(6) +g(c)

F-li "
img(z E

Hence
g(a)+g(b) + g(c) = 0. (4)

Since ¢ = —a — b, we get g(—a — b) = —g(a) —g(b).
Putting b = 0 we have

g(—a) = —g(a) (a€R). (5)

Let z,y € R be arbitrary. Put ¢ =z+y, a = —z, b= —y. Then a+b-+c =0
and according to (4) and (5) we get g(z +y) = —g(—z) — g(—y) = 9(z) + g(y).
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Hence the function g: R — R satisfies the Cauchy functional equation g(z-+y) =
9(z) + g(y) and according to Lemma 1 it is continuous at 0. On the basis of
the well-known knowledge on Cauchy equation we get g(z) = az for z € R, a
being a constant (cf. [3], p. 44-45).

We shall now discuss the general case. Let f: R — R be F—continuous at a
point zo € R. We introduce new coordinates ' =z —zo, ¥’ = y — f(xo) . Put
g(z") = f(z) — f(=o). It is easy to verify that from the F-continuity of f at
zo the F-continuity of g at 0 follows. On the basis of the previous part of the
proof the function g has the form g(z') = az’,ie. f(z)— f(zo) = a(z — z0) =
ar—azo, f(z)=az+ (f(z0) — azo) = az +b, where b = f(zy) — azg. The
proof is finished. O

Considerations about C-continuity can be extended for arbitrary regular
summation matrix A instead of the Cesaro matrix (cax)(car = 1 (k = 1,2,
...,n) and ¢k =0 for k > n). Such extensions of C—continuity are discussed
in papers [1] and [2]. The A—continuity of a function f: R — R can be defined
in a similar manner as thé C—continuity. Let A-limy, denote the number to
which the sequence (y,)32; is summed by the matrix A. A function f is said

to be A-continuous at zg € R if
Adimz, = o = A-lim f(z,) = f(z0) -

A function f is said to be A-continuous on R if it is. A—continuous at each
z € R. ,

In the papers [1] and [2] sufficient conditions are given for from A-continuity
of f on R or A-—continuity of f at a single point the linearity of f follows.
These conditions concern a wide class of regular matrices. Let us remark that
almost convergence is not equivalent to A-summability where A is an arbitrary
regular matrix. (Therefore our Theorem, 1 is not a consequence of the mentioned
results from [1] and [2] concerning the A—-continuity). If namely the summability
method given by A is equivalent to the convergence, then F-limz,, exists for
z, = (-1)"! (n=1,2,...), but A-limz, does not exists and if the method
given by A is stronger than the convergence, then according to the well-known
theorem of Mazur and Orlicz (cf. [4], p. 375-376) at least one unbounded
sequence (y,)$° is A-summable, but F-limy, cannot exist since F-convergent
sequences are bounded (cf. [6]). Hence the convergence fields of the method F'
of almost convergence and of the method given by A cannot coincide.
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