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BOOLEAN METHODS IN F-QUANTUM SPACES
C. A. DR0oSS0OS* — M. SHAKHATREH

ABSTRACT. In this paper, we present a Boolean, point-free characterization of
fuzzy observables, using Boolean-valued Dedekind cuts and the theory of Boolean
powers. In the second part of the paper we study the links of Quantum spaces
with the theory of orthospaces and its associated tolerance spaces. Finally in the
third part using a soft Booléan algebra, we construct a Boolean model which
incorporates all the previous ideas.

g Introduction

Starting from Suppes’ (1966) model of quantum probability and replacing
subsets with indicator functions, one can immediately see that the indicators
can be generalized to:

(1) Functions with values in [0,1], i.e., ordinary fuzzy sets or,

(i1) Functions with values in a Boolean algebra, getting in this way Boolean
valued models and B -fuzzy sets [5], [7].

Dvureéenskij and Riec¢an [11] [12] combining the Suppes approach
with the Piasecki concept of soft fuzzy o-algebra and fuzzy p-measures,
suggested a generalization of Suppes’ model, known as F-Quantum space. This
model has been suggested in order to grasp and express the vagueness associ-
ated with quantum mechanical events. See [13], for a review of Fuzzy Quantum
Spaces.

A corresponding calculus of fuzzy observables has been developed, and results
such as: the Randon-Nikodym theorem, the central limit theorem, a generalized
Loomis-Sikorski theorems, etc. have been obtained, see [18], [13], for a review of
these developments.

The similarity of these results with the ones in classical probability, and the
representations of fuzzy observables by ordinary random variables, led many
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researchers to look for methods of reduction of F-Quantum spaces to ordinary
probability algebras. It is also true that this striking similarity exists between
Piasecki’s fuzzy probability spaces and a kind of point-free probability theory .
see [16].

In this paper we first give a representation of fuzzy observables using Boolean-
valued Dedekind cuts, and then using some soft Boolean o -algebra we construct
a Boolean power model of the reals. The real numbers in this model are discrete
fuzzy observables. We use this model of reals IR[IB] as a non-Cantorian analogue
of the Cantorian and absolute concept of a Hilbert space.

Next we introduce methods of reduction of this model, using ultrafilters and
“tolerant ultrafilters” in order to construct a model for a quantum logic based
on similarity and tolerance or proximity relations.

2. Soft probability o-algebras

In this section we shall briefly review the various Boolean o -algebras that
can be derived from a soft probability space (Q,F,P), i.e. £ is a non-empty
set, called universum, F is a so called soft fuzzy o -algebra, i.e., F C [0,1]%
such that: o

(i) la()eF.

() (VFEF)feF = ft=1-feF].

(i) fieF, i>21, = U;fi:=supf; €F, where
Uifi:=sup fi, Nifi:=inff;, and aAb:=anbtubnat.

(iv) 1 ¢F where J(w):=3 forall we Q;

and P(-): F — [0,1] is a fuzzy P-measure, i.e.
@) P(fVFY =1, feF;
i) PV fi) = & P(F), whenever fi < f, i#3.
Let
Wo(F): ={and:a€F},

the set of all W -empty sets, and
Wi(F): ={aVd:ac F},

the set of all W -universums.
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Let also, for each a € F,
H(a):=a""[(3,1]] (high values),
M(a):=a""' [{3}] (middle values),
L(a) :=a™" [[0,1)] (low values),

- then @ = H(a) UM(a)U L(a), a € F.

2.1 DEFINITION. A o-ideal on F is a subset I C f such that, for all
a,b,a; € F, 1 € N, we have:

(i) WoClI,

(ii) a<b & bel = a€l, .

() e;€l,ie N = \;c; a; €1,

(iv) beWi &a Abel = acl.

From [11] we have the following:

2.2 THEOREM. If IB is a Boolean o -algebra and h : F — IB is a o -ho-
momorphism, then the kernel ker(h) = {a € F : h(a) = 0} is a o -ideal on
F, conversely if I is a o-ideal on F, then the canonical map hy: F — F/I,
where hr(a) := {b € F : alAb € I} is a o-homomorphism and F/I is a
Boolean o -algebra. X

Some o -ideals have been proposed so far:

(i) Wo is not quite a o -ideal since, although it beloﬁgs to the kernel of every
o -homomorphism, it is not the kernel of a ¢-homomorphism. However

Iy: ={aeF: (3c€W1)[a/\c§%]} .

is the least o-ideal containing Wy, see [11].

(ii) We may directly regard (Q,F,P) as a measure space and perform the
usual construction to get the corresponding measure algebra with respect
to the o-ideal of fuzzy sets of P-measure zero, ie. I,: = {a € F :
P(a) =0}, and By,: = F/I,.

(iii) In [19], [20] another approach is introduced. Let

Ko(F):=0{H(a):a € F}

be the ordinary o -algebra generated by the collection {H(a) : a € F},
and define the map

H(): F — Eo(F);
aw H(a).
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"The o -algebra Ky(F) contains also sets of the form L(a)& M(a), a€

F.
Put
J: ={A€ Ko(F): (JaeF)[AC M(a)]}.

Then J is a o-ideal in Ko(F) and IB: = Ko(F)/J is a Boolean o -
algebra, moreover, Ko(F)/J = F)/Iy, see also [14].

In [20] in order to get Boolean representations of an F-quantum space, in
which the corresponding o -homomorphism should respect not only the

" - fuzzy observables but also states on F, minimal and mammal Boolean
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representation are introduced,
Bmin = -7:/IZ7 Bmaz :=.7'-/IA,
where I, is the intersection of all o-ideals and
Is={a€ F: H(a) € F}
and Iz = (] s71(0), where s(F) is the set of states on F.
SES(F)

Also Bpe: = Ko(F)/J and hyoH is a maximal Boolean representation,
where hz is the canonical mapping hy : Ko(F) — Ko(F)/T .
In [23], [10], an ordinary o -field of subsets of Q is introduced

K(F): ={ACQ: (aeF)la>3]CACa>1]}

where
[a> 1] :=={weQ:a(w)> 1},

similarly for [a > -;—] . Let also,
Ii: ={aeF:(Ice W1)[aAce W}

and IB(Iy): = F/I, is a Boolean o -algebra and by the soft Loomis-

Sikorski Theorem of Dvureéenskij [10], there is an onto ¢-homomorphism

ho: K(F) — B(I).

In [18] there is given a kind of structure of soft fuzzy o -algebras.
For u € W; let ‘

Fu ={a€F: avVd =u}U{0g,10}.
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then F, is a soft fuzzy o -algebra which induces a corresponding crisp
o-subalgebra K(F,).
We have:

F=J A ad KF) =] KEF).

vEW, ; uEW,
Furthermore we have that for |
u,weEWr, u<v, K(F,)2K(F,).
Now if we set 1x(r) := K(F) and Or) := enW K(F.), tilen the function
o) : W - P(R(F);
ume(u):=J K(F), -

u<s
has the properties of a P(K(F))-Boolean valued cut in K (F), this can

be given an interpretation that {c(u): u € W} forms a “continuum” of
subalgebras.

LY
All the above are byproducts towards the main objective:

To reduce the theory of soft fuzzy probability spaces (R, F, P) to the theory of
ordinary probability theory. Since the soft Boolean algebra IBj, is.complete,
one may reduce the theory of soft fuzzy probability spaces 19, F,P) to a point
free probability algebra (IBj,,p).

Using point-free representations of F-quantum spaces and the following propo-
sition in [4], one can easily see that F-Quantum spaces can be reduced to point-
free probability theory.

2.3 PROPOSITION. An ortholattice £ is a Boolean algebra iff
z<y* < zAy=0
for all z,y € L. ‘
The only difference in the F-quantum case is that = A y € Wy . But using

point-free probability spaces this also disappears.
3. Boolean Representation of F-Quantum Spaces

First we will recall some concepts and results from [8].
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3.1 DEFINITION. Let IB be a cBa, then the functions
(-):IR— B, u(-):IR— B
are called IB -valued Dedekind cuté iff they satisfy the following properties:

i) V cz)=1B, A c(z)=0p, where c=u or I

z€R z€R
(i) u(z)=V u(y) [ order continuity from the right ]
<y
and,
I(z)=V Uy) [ order continuity from the left ]
y<z :

since Q is dense in IR, then by (ii) we may restrict the supremums to Q.

“Let € be the elementary stochastic space with respect to a complete Boolean
algebra IB, see [16]. In [6] it is proved that £ is isomorphic to the Boolean
powers IR[IB] of the reals and both constitute IB-models of the reals, see also
[5]. The completion of £ or IR[IB] will be denoted by V, and is called the
stochastic space over IB. Elements X € V will be called random variables. £
and IR[IB] are o-dense in V. Let (R, 4, P) be any probability space, which
represents set-theoretically the probability algebra (IB,p). Then we have the
following theorem, see [16].

3.2 THEOREM. Let (IB,P) be a probability o -algebra and (2, A, P) be any
probability space, which represents set-theoretically (IB,p). Let V be the sto-
chastic space over (IB,p) and M be the set of all A-measurable real-valued
functions defined on Q. .

Then every r.v X € V is characterized by one of the following:

(1) A class of almost everywhere equal elements of M,
(ii) A B -valued Dedekind cut,
(iii) A o-homomorphism h: IB(IR) — IB.

From now on we suppose that IB, is a complete soft Boolean o -algebra and
v: F — IB, is the canonical o-homomorphism. Let z: IB(IR) — F be a fuzzy
observable, i.e., an almost ¢ -homomorphism, then since IB(IR) = 0{C}, where
C = {(z,00): z € IR}, we may have the following diagram:
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x-1
F —

= s bR
o e

5

B, ——
c

where A\ is the isomorphism which identifies each real z € IR, with the cut
u(z) 1= (z,00). ‘ :

Then since z(-) and 7(-) are o -homomorphisms we have that ¢ := yozoioA
have the following properties: : :

@ V er) =1m, A ) = 0s,,

rER r€ER
() o) = V <o)
r<s
that is ¢(-) is a Boolean-valued Dedekind cut, or a Boolean-valued “real num-
ber”.

Conversely, if (IB,,p) is a probability o -algebra and
¢(-): R — IB,

is a function with properties (i) and (iz), then ¢(-) determines a fuzzy observ-

able
z: B(R) — F.

This is clear from the Basic Representation Theorem (Theorem 3.2). Thus we
have proved the following: .

3.3 THEOREM. The set of all P -almost surely equal fuzzy observables on F
is isomorphic to
(i) V the set of all random variables on IB.
(i1) IR.[IB], the set of all IB-Dedekind cuts on IR.
(ili) H the set of all o -homomorphisms h: B(IR) — IB.

We may regard the above spaces from an external-absolute point of view, in
which case V for example is a vector lattice, see [16]. However we may view
these spaces from an internal-local point of view, and using some- IB -syntactic
methods we manage to see V or IR.[IB] as a set of Boolean n-valued reals. In
particular the Boolean power IR[IB] is dense in IR.[IB], see [6].
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On IR [IB] we may define a structure of “real numbers”. If f, g€ IR.[IB] we
define :

If<gll="\ [f@)Agv)]

z,yER:
z<y

V @ Asw)]

z,yER:
zty=z

= \/ [f(:v) Ag(z— z)] (*)

z€R

Il

(f+9)2):

It is worth noting in [10, Theorem 3.1] that Boolean-valued Dedekind cuts are
.used and the sum of two observdbles is defined through the sum of the corre-
'sponding Boolean-Dedekind cuts, exactly like in (%), see also [14]. We may use
the denseness of IR[IB] in IR.[IB], and transfer the whole real analysis into a
Boolean analysis of observables. From an external absolute point of view, we
may follow for example [21] to develop a whole calculus of fuzzy observables.

For discrete fuzzy observables Theorem 3.3 takes the following form:

3.4 THEOREM. The set of all P-almost surely equal elementary fuzzy observ-
ables on F is isomorphic to: :

(i) The elementary stochastic space £ on IB,
(ii) The Boolean power IR[IB,], of IR.

To each X € V and so to each fuzzy observable we may also give an integrai
representation, see [16]. The spectrum of X in V is defined as follows:

I%X(): R— J(IB) C V;
€ IX(Q) = Lo (),

where
1 ift=sx(€),
0 otherwise,

Lix(o)(t) = {

and

sx(§):=[X<¢, (eR.

Then we have,

S
x= [ ear¥.
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For details see [16].

Now that the theory of F-Quantum spaces seems to be reducible to the
theory of Boolean algebras, one may argue that soft fuzzy o -algebras loose
importance for quantum theories, see also [19]. However the true lesson from
the above reduction should be that the Boolean models for the reals should re-
place the classical model of IR, as a model for quantum measurements. Thus
starting from nonstandard models of the real numbers, one can build up a
non-Cantorian model for quantum mechanics, parallel in many respects to the
absolute-Cantorian model of Birkhoff-von Neumann. In the next section, we shall
indicate the general lines towards to such a development.

4. The Theory of Orthospaces

In a series of papers [1], [2], [3], Bell has developed a theory of orthospaces
based on a proximity or tolerance relations. Let us first review some of the
concepts and results.

4.1 DEFINITION. A prozimity structure (or tolerance structure), (X,=~) is
a pair, where X is a set and ~ is a binary relation which is symmetric and
reflexive, i.e.

(i) s~z forall z€ X,

(i) z=y=y=~z, z,yeX.

In general “~” is not transitive. If it is, then  is called a similarity relation.
These relations play an important role in the theory of fuzzy relations, see [22].

The dual of (X,~) denoted as (X, L) is known as an orthogonality space
see [15]. The relation “_L” is the set-theoretic complement of ~ in X x X, and
conversely, thus,

zly = z#y.

Usually in an orthogonality space, we also include a bottom element 0, in sym-
bols we have (X, L,0).

An orthospace (X, <, L, 0) is a structure such that (X, <) is a preordered
set (< is only reflexive and transitive), with least elements 0 and (X, 1, 0)
is an orthogonality space such that for all z,y € X

z<y&ylz —zlsz.

4.2 DEFINITION. Let (X,~) be a proximity space. For every z € X, we
define the quantum at z to be

Q: ={yeX:z=y}.
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Zeeman [24] suggested that the quantum @, should be considered as made
up from all indistinguishable to z elements. Thus we perceive Q. as a “plot”
“or “monad”, X may be viewed as the set of outcomes of experiment, or the set
of states of a quantum system and & as a relation of equality up to the limits
of experimental error. Thus @, is the “outcome within a specified margin of
error” of experimental practice.

4.3 EXAMPLE. (i) If *IR is the Robinsonian nonstandard set of reals, then
the monads of *IR with respect to the similarity relation of “infinitely close”,
can be taken as quanta, and zly iff z % y, that is z is orthogonal to y iff =
and y belong to different monads.

(ii) If H-is a Hilbert space, and X := H — {0}, then

st <s,t>#0 (i.e., s is not orthogonal to t),

then “~” is a proximity relation."
(iii) If F is an F-quantum space then, for a,b € F,

axb = a Ab = a+b>1

and

a=pb = a Arb a/\b>~;-.

4.4 DEFINITION. Let A C X be a classical subset of X . However, due to
the presence of proximity relation, we may define a non-classical part of X as

follows:
U @-.

T€EA
and

Parts(X): = { U Q.: Ae P(X)}.

z€EA

This definition can be generalized by taking instead of P a o -field of subset
of X. . :

4.5 THEOREM. [1] The family Parts(X) of parts of a proximity structure
(X,=), forms a complete ortholattice, under set inclusion, set union and inter-
section, as supremum and infimum correspondingly and in which the orthocom-
plement A+ of A € parts(X) is defined as the parts of X , which are “outside”
of X, ie.

At=|] Q={zeX:(FyeX)|y¢gA&kzmyl}
ygA
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4.6 THEOREM. [1] Any ortholattice L is comp]e%e]y embeddable in a complete
ortholattice of Parts(X) of a proximity space (X,=).

4.7 THEOREM. [1] [15] Each complete ortholattice L is isomorphic to one of
the form Parts(X), for some proximity space (X,=).

4.8 EXAMPLE. In the Hilbert space example, the *-lattice of parts of X = H\
{0} is isomorphic to the *-ortholattice of closed subspaces of H . Consequently
*-lattices of parts of proximity spaces include the *-lattices of closed subspaces
of Hilbert spaces, i.e., the Birkhoff-von Neumann’s Quantum logic.

According to Bell, the topologically valid formulas coincide with the tautolo-
gies of intuitionistic logic, the formulas associated with discrete spaces with the
tautologies of classical logic, and the proximity valid formulas as the tautologies
of quantum mechanics.

5. Soft Boolean Powers

In this section using the previous concepts, we shall try to give a non-
Cantorian analogue of the Hilbert space models.

Let IB be a complete soft Boolean algebra, and consider the Boolean power

IR[IB]. On IR[IB] we have:

@ IIf=fl=1B, . :
() If=gll = llg=fl,
(i) [If =gll-llg =Rl < If = gll.
So that the relation f =p ¢ iff ||f = g|| = 1 is a similarity on IR[IB]. However
since ||f =g|| =1m iff f =g as function, the equivalent classes,

(f]1:={g € R[B]: f =B g}

contain exactly one element.

In order to construct some structure of the form, Parts(IR[IB]), we need
some quantum that contains more than one element. To this end consider the
Boolean ultrapower IR[IB]/ =~y , with respect to a §-incomplete ultrafilter U
see [17]. Then *IR := IR[IB]/ =y is a model for the reals which contain stochas-
tic infinitesimals (equivalent classes of elementary random variables), and which
generalizes the usual models of infinitesimal analysis. The “infinitely close” re-
lation “=” is a similarity relation and thus we may construct the structure

(Parts("(), <, U, N, +),
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which according to Theorem 4.5 is a complete ortholattice. This structure
can be regarded as a non-Cantorian framework for quantum logics. In form-
ing Parts(*IR), we may use instead of P(*IR) either the o -algebra generated
by the internal subsets, or the algebra of the internal subsets themselves.
Finally the last possibility is to use instead of an §-incomplete ultrafilter,

which giveS rise to a similarity relation on *IR, a “tolerance ultrafilter” U, as
one might call it, that is U C IB such that:

i) 1BeU &0peU,
(ii) a,beU = aAbeU.
Then the relation induced by this U is a tolerance relation, and we may proceed
to construct again the ortholattice of parts. This will give a more pure quantum
logic model.
Acknowledgments. The authors wish to express their thanks to Prof. B.
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