

LAW OF LARGE NUMBERS ON D-POSET OF FUZZY SETS

FERDINAND CHOVANEC — MÁRIA JUREČKOVÁ

1. Introduction

F. K $\hat{\mathbf{o}}$ p k a defined the new structure a *D-poset* of fuzzy sets [1] and suggested how to construct the probability theory on it.

The D-poset of fuzzy sets is a family $F \subset [0,1]^x$ on which is defined the difference (we denote $g \setminus f$) for any $f, g \in F, f \leq g$ such that:

- (1) $g \setminus f \leq g$
- (2) $g \setminus (g \setminus f) = f$
- (3) if $f \leq g \leq h$, then $h \setminus g \leq h \setminus f$ and $(h \setminus f) \setminus (h \setminus g) = g \setminus f$ and F satisfies the following properties
- (4) if $1_x(t) = 1$ for every $t \in X$, then $1_x \in F$
- (5) if $\{f_n\}_{n\in\mathbb{N}}\subseteq F$, $f_n\nearrow f$, then $f\subseteq F$.

An observable on a D-poset F is a mapping $x: \mathcal{B}(\mathbb{R}) \to F$ with properties:

- $(6) \quad x(\mathbb{R}) = 1_x$
- (7) if $\{A\}_{n\in\mathbb{N}}\subset\mathcal{B}(\mathbb{R}),\ A_n\nearrow A$, then $x(A_n)\nearrow x(A)$
- (8) if $A, B \in \mathcal{B}(\mathbb{R})$, $A \subseteq B$, then $x(B \setminus A) = x(B) \setminus x(A)$,

where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of the real line \mathbb{R} .

A state is a mapping $m: F \to [0,1]$, such that:

- $(9) \quad m(1_x) = 1$
- (10) if $(f_n)_{n\in\mathbb{N}}\subset F$, $f_n\nearrow f$, then $m(f)=m(f_1)+\sum_{n=0}^{\infty}m(f_n\setminus f_{n-1})$.

The mapping $m_x : \mathcal{B}(\mathbb{R}) \to [0,1]$, defined by the formula $m_x : \mathcal{B}(A) := m(x(A))$ is a probability measure.

The mean value of the observable x in the state m is defined by the integral

$$E(x) := \int\limits_{\mathbb{R}} t \, \mathrm{d} m_x \quad ext{(if there exists)},$$

and the dispersion of x is integral

$$D(x) := \int_{\mathbb{R}} (t - E(x))^2 dm_x$$
 (if there exists).

We denote $L^2 = \{x, x \text{-observable: } \int t^2 dm_x < \infty \}$.

2. Definitions and notions

DEFINITION 1. We shall say that the observables $x_1, x_2, \ldots x_n$ are compatible, if there exists the observable y and the real-valued Borel measurable functions f_1, f_2, \ldots, f_n , such that $x_i = y \circ f_i^{-1}$ for $i = 1, 2, \ldots, n$.

By this definition we can introduce the calculus for compatible observables.

$$x_1 + x_2 + \dots + x_n = y \circ (f_1^{-1} + f_2^{-1} + \dots + f_n^{-1}),$$

 $x_1 \cdot x_2 \dots x_n = y \circ (f_1 \cdot f_2 \dots f_n)^{-1} x_i = y \circ f_i^{-1}.$

In [2] it is shown, when the observables are compatible.

DEFINITION 2. Let x_1, \ldots, x_n , $n \geq 2$, be the observables from F. Let the mapping $p_i : \mathbb{R}^n \to \mathbb{R}$ be the projection $p_i(t_1, \ldots, t_n) = t_i t_i \in \mathbb{R}$, $i = 1, 2, \ldots, n$. We shall say that the observables $x_1, x_2, \ldots x_n$ have a joint observable $w : B(\mathbb{R}^n) \to F$, if

- (i) $w(\mathbb{R}^n) = 1_x$.
- (ii) if $(A_n)_{n\in\mathbb{N}}\subset B(\mathbb{R}^n)$, $A_n\subset A_{n+1}$, $n\in\mathbb{N}$, then $\bigvee_{n\in\mathbb{N}}w(A_n)\in F$ and $w(\bigcup_{n\in\mathbb{N}}A_n)=\bigvee_{n\in\mathbb{N}}w(A_n)$.
- (iii) If $A, B \in B(\mathbb{R}^n)$, $A \subseteq B$, then $w(B \setminus A) = w(B) \setminus w(A)$
- (iv) $w(p_i^{-1}(E)) = x_i(E)$ for every $E \in B(\mathbb{R})$, $i = 1, 2, \dots, n$.

It is easy to prove the next theorem.

THEOREM 1. If the observables x_1, \ldots, x_n are compatible, then there exists a joint observable for x_1, \ldots, x_n .

LAW OF LARGE NUMBERS ON D-POSET OF FUZZY SETS

If the joint observable for x_1, \ldots, x_n exists, then we are able to construct some operations with x_1, \ldots, x_n . E. g.,

$$\begin{split} &\frac{1}{n}\sum_{i=1}^n x_i = w \circ g^{-1}, \quad \text{where } g \colon \mathbb{R}^n \to \mathbb{R} \,, \ g(t_1, \dots, t_n) = \frac{1}{n}\sum_{i=1}^n t_i \,, \\ &x_i \cdot x_j = w \circ h^{-1} \,, \quad \text{where } h(u_1, \dots u_n) = u_i \cdot u_j \,, \quad i, j = 1, \dots n. \end{split}$$

DEFINITION 3. We shall say that $(x_n)_{n\in\mathbb{N}}$ of observables is

- (i) finitely compatible if $x_1, \ldots x_n$ are compatible for every n,
- (ii) pairwise uncorrelated if $E(x_i \cdot x_j) = E(x_i) \cdot E(x_j)$.

3. Law of large numbers.

THEOREM 2. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of finitely compatible pairwise uncorrelated observables from L^2 such that $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n D(x_i)=0$. Then for every $\tilde{\varepsilon}>0$

$$\lim_{n\to\infty} m\left(\frac{1}{n}\sum_{i=1}^n (x_i - E(x_i))((-\varepsilon,\varepsilon))\right) = 1.$$

Proof. Let $J = \{1, 2, ..., n\}$, $n \in \mathbb{N}$, $J \subseteq N$ and let w be a joint observable for $x_1, ..., x_n$.

We define the mapping $P_J: B(\mathbb{R}^n) \to [0,1], \ P_J(A) = m(w(A))$, for every $A \in B(\mathbb{R}^n)$. By the Kolmogorov theorem there exists exactly one probability measure P on measurable space $(\mathbb{R}^N, \sigma(\mathcal{S}))$, $(\mathcal{S}$ being the algebra of all measurable cylinders in \mathbb{R}^N) such that $P(\pi_J^{-1}(A)) = P_J(A)$, for every $A \in B(\mathbb{R}^n)$ $(\pi_J: \mathbb{R}^N \to \mathbb{R}^n)$ being the corresponding projection).

We define the mapping $\xi_i: \mathbb{R}^N \to \mathbb{R}$ by the formula $\xi_i((t_n)_{n \in \mathbb{N}}) = t_i$.

We denote $\bar{t} = (t_n)_{n \in \mathbb{N}} \in \mathbb{R}^n$. Then

$$(\xi_1, \dots, \xi_N)^{-1}(A) = \{ \overline{t} \in \mathbb{R}^N \colon (\xi_1(\overline{t}), \dots, \xi_n(\overline{t})) \in A \} = \{ \overline{t} \in \mathbb{R}^N \colon (t_1, \dots, t_n) \in A \} = \{ \overline{t} \in \mathbb{R}^N \colon \pi_J(\overline{t}) \in A \} = \pi_J^{-1}(A) \}.$$

We obtain that $P((\xi_1,\ldots,\xi_n)^{-1}(A)) = P(\pi_J^{-1}(A)) = m(w(A))$ for every $A \in \mathcal{B}(\mathbb{R}^N)$.

It follows that $P((\xi_1,\ldots,\xi_n)^{-1}(g^{-1}(F))) = m(w(g^{-1}(F)))$ for every $F \in B(\mathbb{R})$ and every Borel function $g: \mathbb{R}^n \to \mathbb{R}$.

FERDINAND CHOVANEC - MÁRIA JUREČKOVÁ

If
$$g(t_1, \ldots, t_n) = \frac{1}{n} \sum_{i=1}^n (t_i - k_i)$$
, where $k_i = E(\xi_i)$ and $F = (-\varepsilon, \varepsilon)$, we obtain $P\left(\frac{1}{n} \sum_{i=1}^n (\xi_i - E(\xi_i))^{-1} ((-\varepsilon, \varepsilon))\right) = m\left(\frac{1}{n} \sum_{i=1}^n (x_i - E(x_i)) ((-\varepsilon, \varepsilon))\right)$. By the classical theory
$$\lim_{n \to \infty} P\left(\frac{1}{n} \sum_{i=1}^n (\xi_i - E(\xi_i))^{-1} ((-\varepsilon, \varepsilon))\right) = 1.$$

REFERENCES

- [1] KÔPKA, F.: D-posets of fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 85-89.
- [2] CHOVANEC, F., KÔPKA, F.: On a representation of observables in D-posets of fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 19-23.
- [3] RIEČAN, B.: Law of large numbers in certain ordered structures, To appear.

Technical University of Liptovský Mikuláš 031 19 Liptovský Mikuláš CZECHO-SLOVAKIA