

ON A TYPE OF ENTROPY OF DYNAMICAL SYSTEMS

BELOSLAV RIEČAN

This contribution has three aims. First we compare the concept by D. Dumitrescu [2], [3] (see also [11]) with that by P. Maličký and the author [5]. Secondly we present two counting formulas for the entropy [5]. Finally we present some remarks concerning the fuzzy entropy and especially we repeat the suggestion of P. Maličký to define a very close but different invariant for fuzzy dynamical systems.

1. Measure preserving transformation and the entropy of a fuzzy partition

Rimerial of the said

Following [2] and [3] we shall use the following definitions.

A family $\mathcal{F} \subset (0,1)^X$ of fuzzy subsets of a set X is said to be a σ -algebra, if the following axioms are satisfied:

- (i) $1_X \in \mathcal{F}$.
- (ii) If $f, g \in \mathcal{F}$, then $f \cdot g \in \mathcal{F}$, $f g \in \mathcal{F}$, where $f \cdot g(x) = f(x)g(x)$, $f g(x) = \max(f(x) g(x), 0)$.

(iii) If
$$f_n \in \mathcal{F}$$
 $(n = 1, 2, ...)$, then $\bigcup_{n=1}^{\infty} f_n \in \mathcal{F}$, where $\bigcup_{n=1}^{\infty} f_n(x) = \min\left(\sum_{n=1}^{\infty} f_n(x), 1\right)$.

A function $m: \mathcal{F} \to (0, \infty)$ is called a fuzzy measure, if

- (i) $m(0_X) = 0$.
- (ii) $m\left(\bigcup_{n=1}^{\infty} f_n\right) = \sum_{n=1}^{\infty} m(f_n)$, whenever $f_n \in \mathcal{F}$ (n = 1, 2, ...) and

BELOSLAV RIEČAN

A fuzzy partition is a finite collection $\mathcal{A} = \{f_1, \ldots, f_n\}$ of members of \mathcal{F} such that $\sum_{i=1}^n f_i(x) = 1$ for all $x \in X$.

A fuzzy partition $\mathcal{A} = \{f_1, \ldots, f_n\}$ is a refinement of a fuzzy partition $\mathcal{B} = \{g_1, \ldots, g_m\}$, if there are disjoint sets $I(1), \ldots, I(m) \subset \{1, \ldots, n\}$ such that

$$g_i = \sum_{j \in I(i)} f_j,$$

for every $i=1,\ldots,m$. If $\mathcal A$ is a refinement of $\mathcal B$, we write $\mathcal A\geqq\mathcal B$.

A common refinement of two fuzzy partitions $\mathcal{A} = \{f_1, \ldots, f_n\},\ \mathcal{B} = \{g_1, \ldots, g_m\}$ is the collection

$$\mathcal{A} \vee \mathcal{B} = \{f_i \cdot g_j : i = 1, \ldots, n, \ j = 1, \ldots, m\}.$$

(Of course, $A \lor B \ge A$, $A \lor B \ge B$.)

A transformation $T:X\to X$ is called measure preserving, if the following implication holds:

$$f \in \mathcal{F} \implies f \circ T \in \mathcal{F}, \quad m(f \circ T) = m(f).$$

If $A = \{f_1, \ldots, f_n\}$ is a fuzzy partition, then we define

$$T^{-1} = \{f_1 \circ T, \ldots, f_n \circ T\}.$$

If $A = \{f_1, \ldots, f_n\}$ is a fuzzy partition, then its entropy H(A) is defined by the formula

$$H(A) = \sum_{i=1}^{n} \varphi(m(f_i)),$$

where $\varphi:(0,1)\to R$ is defined by $\varphi(x)=-x\log x \ (x>0), \ \varphi(0)=0$. Now if \mathcal{A} is a fuzzy partition, then we define

$$H_n(A) = H(A \vee T^{-1}A \vee \cdots \vee T^{-(n-1)}A)$$

$$h(\mathcal{A},T) = \lim_{n \to \infty} \frac{1}{n} H_n(\mathcal{A}),$$

 $h(T) = \sup\{h(A, T); A \text{ is a fuzzy partition}\}.$

The previous definition is taken from [3]. Of course, the same definition has been presented in [5] in a more special case, where \mathcal{F} is a set of all measurable functions (with respect to a σ -algebra $\mathcal{S} \subset 2^X$) and $m(f) = \int f \, \mathrm{d}P$, where $P \colon \mathcal{S} \to \langle 0, 1 \rangle$ is a probability measure.

2. An alternative characterization of entropy

First we shall repeat some properties of the entropy H(A) and the conditional entropy

$$H(A \mid B) = \sum_{i} \sum_{j} m(g_j) \varphi\left(\frac{m(f_i \cdot g_j)}{m(g_j)}\right),$$

where the sum is taken over all j for which $m(q_i) > 0$.

PROPOSITION 1. If A, B, C are an arbitrary fuzzy partition, then

- (i) $H(A \lor B) = H(B) + H(A \mid B)$,
- (ii) $A \leq B \implies H(A \mid C) \leq H(B \mid C)$, (iii) $A \leq B \implies H(C \mid A) \geq H(C \mid B)$.

Theorem 1.
$$h(A,T) = \lim_{n \to \infty} H\left(A \mid \bigvee_{i=1}^{n} T^{-1}A\right)$$
.

Proof. By Proposition 1 (i) we obtain

$$\begin{split} H\left(\bigvee_{i=0}^{k}T^{-i}\mathcal{A}\right) &= H\left(\mathcal{A}\vee T^{-1}\left(\bigvee_{i=0}^{k-1}T^{-i}\mathcal{A}\right)\right) = \\ &= H\left(T^{-1}\left(\bigvee_{i=0}^{k-1}T^{-i}\mathcal{A}\right)\right) + H\left(\mathcal{A}\mid\bigvee_{i=1}^{k}T^{-i}\mathcal{A}\right) = \\ &= H\left(\bigvee_{i=0}^{k-1}T^{-i}\mathcal{A}\right) + H\left(\mathcal{A}\mid\bigvee_{i=1}^{k}T^{-i}\mathcal{A}\right). \end{split}$$

Now by induction we obtain

(iv)
$$H\left(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{A}\right) = H(\mathcal{A}) + \sum_{k=1}^{n-1} H\left(\mathcal{A} \mid \bigvee_{i=1}^{k} T^{-i} \mathcal{A}\right).$$

By (iii) we obtain that $H\left(A \mid \bigvee_{i=1}^{n} T^{-1}A\right)$ is decreasing, so that

$$\lim_{n \to \infty} H\left(\mathcal{A} \mid \bigvee_{i=1}^{n} T^{-1} \mathcal{A}\right)$$

exists. But then there exists also the limit of the Cesaro means

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n H\left(\mathcal{A}\mid\bigvee_{i=1}^k T^{-1}\mathcal{A}\right).$$

By (iv) we obtain

$$\begin{split} \lim_{n \to \infty} H\left(\mathcal{A} \mid \bigvee_{i=1}^n T^{-1} \mathcal{A}\right) &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n H\left(\mathcal{A} \mid \bigvee_{i=1}^k T^{-i} \mathcal{A}\right) = \\ &= \lim_{n \to \infty} \frac{1}{n} \left(H(\mathcal{A}) + \sum_{l=1}^{n-1} H\left(\mathcal{A} \mid \bigvee_{i=1}^k T^{-i} \mathcal{A}\right)\right) = \\ &= \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{A}\right) = h(\mathcal{A}, T). \end{split}$$

Entropy and generators

The classical Kolmogorov-Sinaj theorem states that

$$h(T) = h(T, \mathcal{A}),$$

whenever \mathcal{A} is a generator of the dynamical system. A functional (= fuzzy) version of the generator theorem was presented in [5]. Here we want to present a generalization of the theorem in the general case (another modification is contained in [10]). The key is a representation theorem [1]:

PROPOSITION 2. Denote by S the family $\{A \subset X ; \mathcal{X}_A \in \mathcal{F}\}$ and define $\mu \colon S \to \mathcal{R}$ by $\mu(A) = m(\mathcal{X}_A)$. Then every function $f \in \mathcal{F}$ is S-measurable and

$$m(f) = \int_X f \, \mathrm{d}\mu\,,$$

for every $f \in \mathcal{F}$.

According to Proposition 2 the Dumitrescu entropy h(T) (with respect to X, \mathcal{F}, m, T) coincides with the Maličký and Riečan entropy $h_G(T)$ (with respect to X, \mathcal{S}, μ, T). Moreover, in [5] an arbitrary set G of functions is considered with $G \subset \mathcal{F}$ and then an invariant $h_G(T)$ is defined by

$$h_G(T) = \sup\{h(A, T); A \text{ is a finite partition, } A \subset G\}.$$

Evidently $h_{\mathcal{F}}(T) = h(T)$.

Now as a corollary of a theorem of [5] we can obtain the following theorem for the fuzzy entropy.

ON A TYPE OF ENTROPY OF DYNAMICAL SYSTEMS

THEOREM 2. If $A = \{X_{E_1}, \dots, X_{E_n}\}$ is a fuzzy partition consisting of crisp sets generating the σ -algebra S, then

sets generating the
$$\sigma$$
 -algebra \mathcal{S} , then $h_G(T) \leq h(\mathcal{A},T) + L_G$,

where
$$L_G = \sup\{m\Big(\sum_{j=1}^n arphi(g_j)\Big); \ \{g_1,\ldots,g_n\} \subset G \ ext{is a fuzzy partition}\}.$$

Proof. By Proposition 2 there exists $\mu: \mathcal{S} \to \mathcal{R}$ such that

The proof of the second proof
$$m(g)=\int g\,\mathrm{d}\,\mu$$
 . The last form $m(g)=1$ is the first second proof of the $m(g)$ and the proof of $m(g)=1$ is a second proof of the $m(g)$ and the proof of $m(g)$ is a second proof of $m(g)$ and $m(g)$ is a second proof

Now it is possible to use Theorem 1 from [5]:

$$h_G(T) \leq h(\mathcal{A},T) + K_G$$

$$K_G = \sup \Big\{ \int \sum_{j=1}^n \varphi(g_j) \mathrm{d}\mu \, ; \, \{g_1, \ldots, g_n\} \quad \text{is a fuzzy partition,} \quad g_j \in G \Big\}.$$

Evidently $K_G = L_G$. III EVENERAL I. The enfrome of the elemental design BEGREEN 45 (1891), 34-26

Concluding remarks

The generalization of the Kolmogorov-Sinaj invariant due to Dumitrescu, Maličký and the author has the following two advantages:

- 1. It can have a positive value also in some cases, when the Kolmogorov entropy is zero, hence the new invariant could better distinguish non-isomorphic dynamical systems.
 - 2. It is applicable also for the case of fuzzy dynamical systems.

Of course, in many cases $h_G(T) = \infty$, e.g. if G contains all constant fuzzy sets.

3. As a solution of this problem P. Maličký in [5] suggested the following modification: instead of $H(A \vee T^{-1}A \vee T^{-(n-i)}A)$ to consider

$$H_n(\mathcal{A}) = \inf\{H \mid \mathcal{C}\}; \ \mathcal{C} \geq \mathcal{A}, \ \mathcal{C} \geq T^{-1}\mathcal{A}, \ldots, \mathcal{C} \geq T^{-n-1}\mathcal{A}\}.$$

- 4. Another solution of the preceding problem has been suggested by T. Hudetz in [4].
- 5. Another modification, we suggested in [5], is to consider a Markov operator $U: \mathcal{F} \to \mathcal{F}$ instead of the special case $U = U_T$ defined by $U_T(f) = f \circ T$.

BELOSLAV RIEČAN

REFERENCES

- [1] BUTNARIU, D.—KLEMENT, E. P.: Triangular norm-based measures and their Markov kernel representation, J. Math. Anal. Appl. 162 (1991), 111-143.
- [2] DUMITRESCU, D.: Measure preserving transformation and the entropy of fuzzy partition, In: 13th Linz seminar on Fuzzy set Theory (Linz 1991), pp. 25-27.
- [3] DUMITRESCU, D.: Fuzzy measures and the entropy of fuzzy partitions., J. Math. Anal. Appl. (to appear).
- [4] HUDETZ, T.: Entropy and dynamical entropy for continuous fuzzy partitions, J. Math. Anal. Appl. (to appear).
- [5] MALIČKÝ, P.—RIEČAN, B.: On the entropy of dynamical systems, In: Proc. Ergodic Theory and Related Topics II. (Georgenthal 1986), Teubner, Berlin, 1987, pp. 135-138.
- [6] MARKECHOVÁ, D.: The entropy on F-quantum spaces, Math. Slovaca 40 (1990), 177-190.
- [7] MARKECHOVÁ, D.: The entropy of fuzzy dynamical systems and generators, Fuzzy Sets and Systems (to appear).
- [8] MESIAR, R.: The Bayes formula and the entropy on fuzzy probability spaces, Int. J. General Systems 20 (1991), 67-71.
- [9] NOVÁK, V.: Fuzzy Sets and their Applications, Hilger, Bristol, 1989.
- [10] RIEČAN, B.: On the entropy and generators of dynamical systems, Appl. Math. (to appear).
- [11] RYBÁRIK, J.: The entropy of Q-F-dynamical system, BUSEFAL 48 (1991), 24-26.

Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 73 Bratislava CZECHO-SLOVAKIA