

ON FOURIER—STIELTJES TRANSFORMS IN VECTOR LATTICES

Miloslav Duchoň

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. This paper is concerned with a characterization of finite Fourier–Stieltjes transforms of some functions taking their values in vector lattices. As for the terminology and some results of ordered spaces we make use of [1].

1. Preliminaries

Let Y be a (Dedekind) complete vector lattice. Denote by $L^o(X,Y)$ the vector space of all o-bounded operators on the normed space X into Y, that is, if $U \in L^o(X,Y)$, then $\{U(x); \|x\| \leq 1\}$ is an o-bounded subset of Y. For $U \in L^o(X,Y)$ we put

$$||U|| = \sup\{|U(x)|; ||x|| \le 1\}.$$

Let T be a finite closed interval of the real line and let C(T) denote the space of all scalar continuous functions on T with the usual sup norm. If $U \in L^o(C(T), Y)$, $T = [0, 2\pi]$, then an element of Y of the form

$$\hat{U}(n) = U(e^{-int}),$$

is called the n-th Fourier coefficient of U. The (formal) series

$$\sum_{n\in\mathbb{Z}} \hat{U}(n)e^{inx}$$

is called the Fourier series of U . It is clear that there exists an element $0 \leq C \in Y$ such that

$$\left|\hat{U}(n)\right| \leq C, \qquad n \in \mathbb{Z}.$$

AMS Subject Classification (1991): 42A16, 42A32. Key words: vector lattice, order continuous mapping, Fourier-Stieltjes coefficients.

MILOSLAV DUCHOŇ

In the following let T denote the quotient group $\mathbb{R}/2\pi\mathbb{Z}$ (\mathbb{R} and \mathbb{Z} denoting the additive group of reals, integers, respectively), as a model we may think of the interval $[0, 2\pi)$. A trigonometric polynomial on T is a function a = a(t) defined on T by $a(t) = \sum_{-n}^{n} a_{j}e^{ijt}$. Denote by $p(\mathbf{T})$ the set of all trigonometric polynomials on T. We shall need the following theorem [3, Th. 2.12] asserting that trigonometric polynomials are dense in $C(\mathbf{T})$.

THEOREM A. For every $f \in C(\mathbb{T})$ we have $\sigma_n(f) \to f$, $n \to \infty$, in the $C(\mathbb{T})$ norm.

Recall that

$$\sigma_n(f,t) = \sum_{-n}^n \left(1 - \frac{|j|}{n+1}\right) \hat{f}(j) e^{ijt},$$

where $\hat{f}(j)$ is the j-th Fourier-Lebesgue coefficient of f defined by

$$\hat{f}(j) = \frac{1}{2\pi} \int f(t) e^{-ijt} dt.$$

(The integration is taken over T.)

The following simple lemma will be useful for us.

LEMMA. Let $U: C(\mathbb{T}) \to Y$ be an o-bounded linear mapping. For every $a = \sum_{n=0}^{\infty} a_j e^{ijt}$ we have $U(a) = \sum_{n=0}^{\infty} a_j \hat{U}(-j)$ and $|U(a)| \le ||a|| ||U||$, where

$$||a|| = \sup_{t} |a(t)|.$$

We have the following result.

THEOREM 1 (Parseval's formula). Let $f \in C(\mathbf{T})$ and $U \in L^o(C(\mathbf{T}), Y)$. Then

$$U(f) = \lim_{N \to \infty} \sum_{-N}^{N} \left(1 - \frac{|j|}{N+1} \right) \hat{f}(j) \, \hat{U}(-j) \,.$$

Proof. Since $f=\lim_{n\to\infty}\sigma_n(f)$ in the $C(\mathbb{T})$ norm, it follows from lemma and the fact that U is o-bounded (hence o-continuous) that

$$U(f) = U\left(\lim_{n \to \infty} \sigma_n(f)\right) = \lim_{n \to \infty} U\left(\sigma_n(f)\right) =$$
$$= \lim_{n \to \infty} \sum_{-n}^{n} \left(1 - \frac{|j|}{n+1}\right) \hat{f}(j) \, \hat{U}(-j).$$

ON FOURIER—STIELTJES TRANSFORMS IN VECTOR LATTICES

Remark. The fact that the preceding limit exists is an implicit part of the theorem. It is equivalent to the C-1 (Cesàro) summability of the series $\sum \hat{f}(j)\hat{U}(-j)$, the members of which are elements of the space Y. If this last series converges then clearly

$$U(f) = \sum_{-\infty}^{\infty} \hat{f}(j) \, \hat{U}(-j) \,.$$

COROLLARY (Uniqueness theorem). If $\hat{U}(j) = 0$ for all $j \in \mathbb{Z}$, then U = 0.

Parseval's formula enables us to characterize sequences of Fourier coefficients of o-bounded linear operators on $C(\mathbb{T})$ similar to the case of linear functionals ([3, 7.3] or [2]).

THEOREM 2. Let (y_j) be a two-way sequence of elements of Y. Then the following two conditions are equivalent:

- (a) There is a mapping $U \in L^o(C(\mathbf{T}), Y)$ with $||U|| \leq C \in Y$ such that $\hat{U}(j) = y_j$ for all $j \in \mathbb{Z}$.
- (b) For all trigonometric polynomials $a=\sum\limits_{-l}^{l}a_{j}e^{ijt}$ there holds $\left|\sum\limits_{-l}^{l}a_{-j}y_{j}\right|\leq\left\|a\right\|C\text{ with }0\leq C\in Y.$

Proof. Clearly (a) implies (b) since

$$\begin{split} \left| \sum_{-l}^{l} a_{-j} y_{j} \right| &= \left| \sum_{-l}^{l} a_{-j} \hat{U}(j) \right| = \\ &= \left| \sum_{-l}^{l} a_{-j} U(e^{-ijt}) \right| \leq \|U\| \cdot \sup_{t} \left| \sum_{-l}^{l} a_{-j} e^{-ijt} \right| \leq C \left\| a \right\| \,. \end{split}$$

Conversely let for $\{y_j\} \subset Y$ for some $C \in Y$

$$\left| \sum_{-l}^{l} a_{-j} y_{j} \right| \leq C \sup_{t} \left| \sum_{-l}^{l} a_{-j} e^{-ijt} \right|.$$

Put

$$U\left(\sum_{-l}^l a_j e^{ijt}\right) = \sum_{-l}^l a_{-j} y_j \,.$$

Then

$$\left| U(\sum_{-l}^{l} a_{-j} e^{-ijt}) \right| \le C \sup_{t} \left| \sum_{-l}^{l} a_{-j} e^{-ijt} \right|.$$

It follows that U is an o-bounded operator on trigonometric polynomials, these are dense in $C(\mathbf{T})$, hence U has an o-bounded extension to $C(\mathbf{T})$. Also we obtain $\hat{U}(j) = y_j$.

Let (y_i) be a two-way sequence of elements of Y. Put

$$\sigma_N(Y,t) = \sum_{-N}^N \left(1 - \frac{|j|}{N+1}\right) y_{-j} e^{-ijt}, \qquad N = 1, 2, \dots$$

and denote by $S_N(Y)$ the o-bounded linear mapping on $C(\mathbf{T})$ defined by

$$S_N(Y)(f) = \frac{1}{2\pi} \int_{\mathbf{T}} f(t)\sigma_N(Y,t) dt, \qquad f \in C(\mathbf{T}), \quad N = 1, 2, \dots$$

If
$$U\in L^o(C(\mathbb T),Y)$$
 and if $y_j=\hat U(j)$, we shall write
$$\sigma_N(Y,t)=\sigma_N(U,t)\qquad\text{and}\qquad S_N(Y)=S_N(U)\,.$$

We have

$$S_N(Y)(f) = \frac{1}{2\pi} \int_{\mathbf{T}} f(t)\sigma_N(Y,t) dt =$$

$$= \sum_{N=1}^{N} \left(1 - \frac{|j|}{N+1}\right) \hat{f}(j)y_{-j}, \qquad f \in C(\mathbf{T}), \quad N = 1, 2, \dots$$

We may now prove the following.

THEOREM 3. The members of a two-way sequence (y_j) in Y are the Fourier coefficients of some $U \in L^{ord}(T), Y)$, with $||U|| \leq C \in Y$, if and only if $||S_N(Y)|| \leq C$, $N = 1, 2, \ldots$

Proof. The necessity. Let $y_j = \hat{U}(j)$ for some $U \in L^o(C(\mathbf{T}), Y)$ with $||U|| \leq C$. Then $S_N(Y) = S_N(U)$, N = 1, 2, ... Recall that $||\sigma_N(f)|| \leq ||f||$ for all $f \in C(\mathbf{T})$. Since, for $f \in C(\mathbf{T})$, $S_N(U)(f) = U(\sigma_N(f))$, we have

$$||S_N(Y)|| = ||S_N(U)|| = \sup\{|S_N(U)(f)| : f \in C(\mathbf{T}), ||f|| \le 1\} = \sup\{|(U(\sigma_N(f))| : f \in C(\mathbf{T}), ||f|| \le 1\} \le \sup\{|U(f)| : f \in C(\mathbf{T}), ||f|| \le 1\} = ||U|| \le C,$$

for N = 1, 2, ...

The sufficiency. Take $\,a = \sum\limits_{-l}^{l} a_{j} e^{ijt}\,.$ Then we have

$$\sum_{-l}^{l} y_{-j} a_{j} = \lim_{N \to \infty} \sum_{-N}^{N} \left(1 - \frac{|j|}{N+1} \right) y_{-j} a_{j} = \lim_{N \to \infty} S_{N}(Y)(a).$$

Thus

$$\left| \sum_{j=1}^{l} y_{-j} a_{j} \right| = \lim_{N \to \infty} |S_{N}(Y)(a)| \le \|a\| \sup_{N} \|S_{N}(Y)\| \le \|a\| C.$$

According to preceding theorem there exists $U \in L^o(C(\mathbf{T}), Y)$ such that $y_j = \hat{U}(j)$ and $||U|| \leq C$.

2. Fourier-Stieltjes coefficients of vector functions of o-bounded variation

Recall that a function g, defined on T and taking values in Y, is said to be of o-bounded variation, if the set of all elements of the form

$$\sum_{j} |g(t_{j+1}) - g(t_j)|$$
 ,

corresponding to all finite partitions of the interval T, is o-bounded. We shall denote by o- $\operatorname{var}_{t \in T} g(t)$ the least upper bound of this set.

We shall need the following result [1, 7.1.5].

The general form of the o-bounded linear operator $U:C(T)\to Y$ is given by the formula

$$U(f) = \int_{T} f(t) d\boldsymbol{g}(t),$$

where $g: T \to Y$ is a function of o-bounded variation.

Denote by $BV^o(T,Y)$ the vector space of all functions on T with values in Y of the o-bounded variation. Further if $g \in BV^o(T,Y)$, $T = [0,2\pi]$, then an element of Y of the form

$$\hat{\boldsymbol{g}}(n) = \frac{1}{2\pi} \int_{T} e^{-int} d\boldsymbol{g}(t)$$

is called the $\,n\!$ -th Fourier–Stieltjes coefficient of $\,{\boldsymbol g}\,.$

Now we may reformulate the Theorem 2 in the following form.

MILOSLAV DUCHOŇ

THEOREM 4. Let Y be a complete vector lattice. Let (y_k) be a two-way sequence of elements of Y. Then the following two conditions are equivalent:

(a) There is a function $g: T \to Y$ of o-bounded variation with o- $\underset{t \in T}{\operatorname{var}} g(t) \leq C \in Y$ such that y_j are Fourier-Stieltjes coefficients of g(t), i.e.,

$$y_j = \hat{m{g}}(j) = rac{1}{2\pi} \int\limits_T e^{-ijt} \, dm{g}(t) \quad ext{for all} \qquad j \in \mathbb{Z}.$$

(b) For all trigonometric polynomials $a = \sum_{l=1}^{l} a_{j}e^{ijt} \in p(T)$ there holds

$$\left| \sum_{-l}^{l} a_{-j} y_{j} \right| \leq \|a\| \, C$$

for some $C \in Y$.

Proof. Clearly (a) implies (b) since

$$\begin{split} \left| \sum_{-l}^{l} a_{-j} y_{j} \right| &= \left| \sum_{-l}^{l} a_{-j} \frac{1}{2\pi} \int_{T} e^{-ijt} \, \mathrm{d}\boldsymbol{g}(t) \right| = \\ &= \left| \frac{1}{2\pi} \int_{T} \left(\sum_{-l}^{l} a_{-j} e^{-ijt} \, \mathrm{d}\boldsymbol{g}(t) \right) \right| \leq \|\boldsymbol{a}\| \left[o\text{-} \underset{t \in T}{\text{var}} \boldsymbol{g}(t) \right] \,, \end{split}$$

by using [1, 7.1.4, Corollary].

If we assume (b), then, since $p(T) = p(\mathbf{T})$, the linear mapping $U: p(T) = p(\mathbf{T}) \to Y$ from the proof of Theorem 2 is an o-bounded linear mapping that admits an extension that is an o-bounded linear mapping on $C(\mathbf{T})$ with $\|U\| \leq C$. By the Stone-Weierstrass theorem $C(\mathbf{T})$ is (uniform) dense in C(T). Hence according to [1, 6.3.3, Proposition 1] U can be extended to C(T) with the same vector norm $\|U\| \leq C \in Y$. But according to [1, 7.1.3, Corollary] there exists a function g of o-bounded variation such that

$$U(f) = \int_T f(t) d\mathbf{g}(t), \qquad f \in C(T).$$

Clearly $\hat{U}(j) = \hat{g}(j) = y_j$.

If $g \in BV^o(T, Y)$, then the (formal) series

$$\sum_{n\in\mathbb{Z}}\hat{m{g}}(n)e^{inx}$$

is called the Fourier–Stieltjes series of g. We may now prove the following.

ON FOURIER—STIELTJES TRANSFORMS IN VECTOR LATTICES

THEOREM 5. Let Y be a complete vector lattice. The trigonometric series

$$\sum_{n\in\mathbb{Z}} y_j e^{inx}, \qquad y_j \in Y,$$

is the Fourier-Stieltjes series of the function g of the o-bounded variation, i.e., $y_j = \hat{g}(j)$, $j \in \mathbb{Z}$, if and only if there exists an element $0 \le C \in Y$ such that

$$||S_N(Y)|| \le C, \qquad N = 1, 2, \dots$$

Proof. If there exists a function g of o-bounded variation, $g \in BV^o(T,Y)$ such that $y_j = \hat{g}(j)$, $j \in \mathbb{Z}$, then as we know the equation

$$U(f) = \int_T f(t) d\mathbf{g}(t), \qquad f \in C(T),$$

defines an o-bounded linear mapping $U:C(T)\to Y$ with $\|U\|\leq C$ for some $0\leq C\in Y$. In particular U is an o-bounded linear mapping on $C(\mathbf{T})$ into Y with same vector norm $\|U\|\leq C$. Hence according to Theorem 3 we have

$$||S_N(Y)|| = ||S_N(U)|| = ||S_N(g)|| \le C, \qquad N = 1, 2, \dots$$

Conversely, if $||S_N(Y)|| \leq C$, N = 1, 2, ..., for some $0 \leq C \in Y$, then according to Theorem 3 there exists an o-bounded linear mapping $U : C(\mathbf{T}) \to Y$ such that $\hat{U}(j) = y_j$. By the Stone-Weierstrass theorem U admits an extension to C(T). But then there exists a function g of o-bounded variation such that

$$U(f) = \int_T f(t) d\mathbf{g}(t), \qquad f \in C(T).$$

But
$$||U|| = o$$
- $\underset{t \in T}{\text{var}} g(t) \leq C$. Clearly $\hat{U}(j) = \hat{g}(j) = y_j$, $j \in \mathbb{Z}$.

It is useful to establish the Parseval formula explicitly also for the Fourier–Stieltjes series of the function g of o-bounded variation.

THEOREM 6. Let Y be a complete vector lattice and let $f \in C(T)$. Then we have

$$\int\limits_T f(t) \, d\boldsymbol{g}(t) = \lim_{N \to \infty} \sum_{-N}^N \left(1 - \frac{|y|}{N+1} \right) \hat{f}(j) \, \hat{\boldsymbol{g}}(-j) \, .$$

MILOSLAV DUCHOŇ

Proof. By the Parseval formula from Theorem 1 the last equality holds for $f \in C(\mathbf{T})$. But since $C(\mathbf{T})$ is dense in C(T) by the Stone-Weierstrass theorem we obtain the required result.

It is a very important fact that we have established not only a characterization of the Fourier–Stieltjes (Fourier) series of the function of o-bounded variation (of the o-bounded linear mapping on C(T) into Y) but also a method how to recapture the function (the mapping) by means of its Fourier–Stieltjes (Fourier) series. Theorem 6 (Theorem 1) gives a recipe how to recover the function (the mapping). In this sense we may, by abuse of notation, write

$$\mathrm{d} \boldsymbol{g}(t) \sim \sum_{j \in \mathbb{Z}} \hat{\boldsymbol{g}}(j) e^{ijx}$$

for $g \in BV^o(T, Y)$.

It is easy to see that if the function $g: T \to Y$ is nondecreasing then g is of o-bounded variation. Hence we may establish the following.

THEOREM 7. Let Y be a complete vector lattice. The necessary and sufficient condition for

$$\sum_{k\in\mathbb{Z}}y_ke^{ikx}$$

to be the Fourier–Stieltjes series of nondecreasing function g with the values in Y is that $\sigma_N(Y,t) \geq 0$ for all N in T.

Proof. The necessity. If $y_k = \hat{g}(k)$ for a nondecreasing function g and if $f \in C(T)$ is nonnegative we have

$$\frac{1}{2\pi} \int_{T} f(t) \sigma_N(Y, t) dt = \sum_{-N}^{N} \left(1 - \frac{|y|}{N+1} \right) \hat{f}(j) \, \hat{g}(-j) = \int_{T} \sigma_n(f, t) dg(t) \ge 0,$$

since g is nondecreasing and $\sigma_n(f,t) \geq 0$. Since this is true for arbitrary nonnegative f, we have $\sigma_N(Y,t) \geq 0$ on T.

Assuming $\sigma_N(Y,t) \geq 0$ we obtain

$$||S_N(Y)|| = \sup_{\|f\| \le 1} \left| \int_T f(t)\sigma_N(Y,t) dt \right| = \frac{1}{2\pi} \int_T \sigma_N(Y,t) dt = y_0,$$

and by Theorem 5

$$\sum_{j\in\mathbb{Z}}y_je^{ijx}\qquad \cdots$$

ON FOURIER-STIELTJES TRANSFORMS IN VECTOR LATTICES

is the Fourier–Stieltjes series for some $g \in BV^0(T,Y)$. For arbitrary nonnegative $f \in C(T)$

 $\int\limits_T f(t) \,\mathrm{d}\boldsymbol{g}(t) = \lim_{N \to \infty} \frac{1}{2\pi} \int\limits_T f(t) \sigma_N(Y, t) \,\mathrm{d}t \ge 0\,,$

and it follows that g is nondecreasing.

REFERENCES

- [1] CRISTESCU, R.: Ordered Vector Spaces and Linear Operators, Abacus Press. Kent, 1976.
- [2] EDWARDS, R. E.: Fourier Series II., 2nd ed., Springer-Verlag, Berlin, 1982.
- [3] KATZNELSON, Y.: An Introduction to Harmonic Analysis, 2nd ed., Dower Publications, Inc. New York, 1976.

Received September 16, 1992

Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 73 Bratislava SLOVAKIA