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ON FOURIER—STIELTJES
TRANSFORMS IN VECTOR LATTICES

MirLosLav DUCHON

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. This paper is concerned with a characterization of finite Fourier—
Stieltjes transforms of some functions taking their values in vector lattices. As for
the terminology and some results of ordered spaces we make use of [1].

1. Preliminaries

Let Y be a (Dedekind) complete vector lattice. Denote by L°(X,Y) the
vector space of all o-bounded operators on the normed space X into Y, that
is, if U € L°(X,Y), then {U(z);|/z|| < 1} is an o-bounded subset of Y . For
UeL°(X,Y) we put

[U1l = sup{|U ()] ; ||| < 1}

Let T be a finite closed interval of the real line and let C(T') denote the
space of all scalar continuous functions on T with the usual sup norm. If
Ue L°(C(T),Y), T = [0,2n], then an element of ¥ of the form

ﬁ(n) = U(e_int)a
is called the n-th Fourier coefficient of U. The (formal) series
n€Z

is called the Fourier series of U . It is clear that there exists an element 0 < C €
Y such that
{U(n)' <G, neZ.
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In the following let T denote the quotient group R/27Z (R and Z denoting
the additive group of reals, integers, respectively), as a model we may think of
the interval [0,27) . A trigonometric polynomial on T is a function a = a(t)

defined on T by a(t) = ) aje”’t. Denote by p(T) the set of all trigonometric

polynomials on T. We shall need the following theorem [3, Th. 2.12] asserting
that trigonometric polynomials are dense in G(T).

THEOREM A. For every f € C(T) we have o,(f) — f, n — oo, in the
C(T) norm.

Recall that

n

=35 (1= ) e

where f (j) is the j-th Fourier-Lebesgue coefficient of f defined by

/ f(t)e ¥t de.

The following simple lemma will be useful for us.

(The integration is taken over T.)

LEMMA. Let U : C(T) — Y be an o-bounded linear mapping. For every
n n A

a=> a;e’" we have U(a) =) a;U(—j) and |U(a)| < |la||||U||, where
b —-n

lal = sup a()] .

We have the following result.

THEOREM 1 (Parseval’s formula). Let f € C(T) and U € L°(C(T),Y).
Then

0= g > (1- 7)) F0) 0.

Proof. Since f = lim 0,(f) in the C(T) norm, it follows from lemma

and the fact that U is o-bounded (hence o-continuous) that

U(f) =U(lim on(f)) = lim U(on(f)) =

:,}L‘EOZ<1_ 2 )f(J)U( —3)-
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Remark. The fact that the preceding limit exists is an implicit part of
the theorem. It is equivalent to the C-1 (Cesadro) summability of the series

> Ff(7)U(=3), the members of which are elements of the space Y. If this last
series converges then clearly

[ee]
U()=>_ 1) 0(=3).
COROLLARY (Uniqueness theorem). If U(j) = 0 for all j € Z, then

U=0.

Parseval’s formula enables us to characterize sequences of Fourier coefficients
of o-bounded linear operators on C(T) similar to the case of linear functionals

(I3, 7.3] or [2]).

THEOREM 2. Let (y;) be a two-way sequence of elements of Y . Then the
following two conditions are equivalent:

(a) There is a mapping U € L°(C(T),Y) with ||U|| < C € Y such that
U(j) =y, forall j €Z.

!
(b) For all trigonometric polynomials a =) aje*t there holds

<|alC with0<CeY.

l
Z; 855

Proof. Clearly (a) implies (b) since
l l

D ays| = {Z a—;U(j)
) )

! !
= Za_jU(e_ijt) Za_je_ijt
—1

-1

< U]l -sup < Clla .

Conversely let for {y;} CY for some C €Y

! l

2 g E : o1t
a—;y; a_je .

-l -1

< Csup
t

Put l l
U (Z ajeijt> = Za_jyj :
—1 1
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Then

! !
U(Z a_je~"t) Za_je"ijt .
— -1

It follows that U is an o-bounded operator on trigonometric polynomials, these
are dense in C(T), hence U has an o-bounded extension to C(T). Also we

obtain U(j) = Yj - |

< Csup
t

Let (y;) be a two-way sequence of elements of Y . Put

N .
on(Yit) =) (1 = N|]+| 1) y_je ¥t N=1,2,...
-N

and denote by Sy(Y) the o-bounded linear mapping on C(T) defined by

SNV = 5 / fWon(VH)dt, feC(T), N=142,...
T

If U e L°(C(T),Y) and if y; = U(j), we shall write
O'N(Y,t)=O'N(U,t) and SN(Y)‘—:SN(U).
‘We have

SN(Y)(f) = 5= / F(Q)on (Y, t) dt =
T

- i\
-3 (1) s, secm, Nt

We may now prove the following.

THEOREM 3. The members of a two-way sequence (y;) in Y are the Fourier
coefficients of some U € L°" M)Y), with ||U| < C € Y, if and only if
SN <C, N=12,....

Proof. The necessity. Let y; = U(j) for some U € L°(C(T),Y) with
|IU|| < C. Then Sy(Y) = Sn(U), N =1,2,... Recall that [lox(f)|| < (£l
for all f € C(T). Since, for f € C(T), Sn(U)(f) =U(on(f)), we have

1Sn (V)| = [1Sn (U)]| = sup{[Sn(U)(f)] : f € C(T), If <1} =
sup{|(U(on(f))]: f € C(T), |fl <1} <
sup{|U(f)| : f € C(T), I <1} = U} £ C,
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for N=1,2,....

l ..
The sufficiency. Take a =) aje*’*. Then we have
-1

l N .
: j :
> y-ja; = Jim > (1 - N|+| 1) y-ja; = Jim Sy(Y)(a).
=1 _N
Thus

l
> y-ja;

1
According to preceding theorem there exists U € L°(C(T),Y) such that y; =
U(j) and Ul <C. O

= Jim S (Y)(a)| < Jlal| sup [Sn (V)| < [laf| C -

2. Fourier—Stieltjes coefficients of
vector functions of o-bounded variation

Recall that a function g, defined on T and taking values in Y, is said to be
of o-bounded variation, if the set of all elements of the form

Z lg(tj+1) —g(t)l,

corresponding to all finite partitions of the interval T', is o-bounded. We shall
denote by o- var g(t) the least upper bound of this set.
€

We shall need the following result [1, 7.1.5].

The general form of the o-bounded linear operator U : C(T') — Y is given
by the formula

znﬁzfﬂﬂ@m,
T

where g : T — Y is a function of o-bounded variation.

Denote by BV°(T,Y) the vector space of all functions on T' with values in
Y of the o-bounded variation. Further if g € BV°(T,Y), T = [0, 27|, then an
element of Y of the form

o) = 5= [ dg(t)
T

is called the n-th Fourier—Stieltjes coeflicient of g.
Now we may reformulate the Theorem 2 in the following form.
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THEOREM 4. Let Y be a complete vector lattice. Let (y;) be a two-way
sequence of elements of Y . Then the following two conditions are equivalent:

(a) There is a function g : T — Y of o-bounded variation with
o-var g(t) < C € Y such that y; are Fourier-Stieltjes coefficients of g(t),

€
ie.,

1 =
y;i =§(j) = 5}—/(1# dg(t) forall jeZ.
P

!
(b) For all trigonometric polynomials a =Y a;e¥* € p(T) there holds
-1

<lellC

l
> a_jy;
)

for some C €Y.
Proof. Clearly (a) implies (b) since

Za_JyJ 'Z a“’z e~ dg(t)| =

/(Za- e~ dg(t) ) <l [O-tvg;g(t)] ;

by using (1, 7.1.4, Corollary].

If we assume (b), then, since p(T) = p(T), the linear mapping U : p(T) =
p(T) — Y from the proof of Theorem 2 is an o-bounded linear mapping that
admits an extension that is an o-bounded linear mapping on C(T) with ||U]| <
C. By the Stone-Weierstrass theorem C(T) is (uniform) dense in C(T). Hence
according to [1, 6.3.3, Proposition 1] U can be extended to C(T') with the same
vector norm ||U]| < C €Y . But according to [1, 7.1.3, Corollary] there exists a
function g of o-bounded variation such that

U(f) = / f(H)dg(t),  fec().

Clearly U(j) = §(j) = v; - O
If g € BV°(T,Y), then the (formal) series

nez
is called the Fourier-Stieltjes series of g. We may now prove the following.
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THEOREM 5. Let Y be a complete vector lattice. The trigonometric series
Zyjein:z:, Yj € Y7
nez

is the Fourier—Stieltjes series of the function g of the o-bounded variation, i.e.,
y; =§(j), j € Z, if and only if there exists an element 0 < C € Y such that

ISvM)II<C,  N=1,2,...

Proof. If there exists a function g of o-bounded variation, g €
BV°(T,Y) such that y; = §(j), j € Z, then as we know the equation

U(f) = / f(Hdg(®), feom),
T

defines an o-bounded linear mapping U : C(T) — Y with |U|| < C for some
0 < C €Y. In particular U is an o-bounded linear mapping on C(T) into Y
with same vector norm ||U|| < C. Hence according to Theorem 3 we have

SNl = ISv@)l = ISn(@)l <C, N=1,2,....

Conversely, if ||Sy(Y)||<C, N=1,2,..., for some 0 < C €Y, then accord-
ing to Theorem 3 there exists an o-bounded linear mapping U : C(T) —» Y

such that U(j) = y; - By the Stone-Weierstrass theorem U admits an extension
to C(T'). But then there exists a function g of o-bounded variation such that

U(f) = / f(Hde(t),  fec().
T

But [|U]| = o-var g(¢) < C. Clearly UG)=8() =y, j€Z. O

It is useful to establish the Parseval formula explicitly also for the Fourier—
Stieltjes series of the function g of o-bounded variation.

THEOREM 6. Let Y be a complete vector lattice and let f € C(T). Then we
have

[ @ dgte) = Jim 3 (1 - M—) #6) (=)
J N—oo &~ N+1
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Proof. By the Parseval formula from Theorem 1 the last equality holds for
f € C(T). But since C(T) is dense in C(T') by the Stone-Weierstrass theorem
we obtain the required result. O

It is a very important fact that we have established not only a characterization
of the Fourier-Stieltjes (Fourier) series of the function of o-bounded variation
(of the o-bounded linear mapping on C(T') into Y ) but also a method how to
recapture the function (the mapping) by meaus of its Fourier—Stieltjes (Fourier)
series. Theorem 6 (Theorem 1) gives a recipe how to recover the function (the
mapping). In this sense we may, by abuse of notation, write

dg(t) ~ > a(5)e”
JEZ

for g € BV°(T,Y).
It is easy to see that if the function g : T' — Y is nondecreasing then g is
of o-bounded variation. Hence we may establish the following.

THEOREM 7. Let Y be a complete vector lattice. The necessary and sufficient
condition for

Z m eikm

kez

to be the Fourier—Stieltjes series of nondecreasing function g with the values in
Y is that on(Y,t) >0 forall N in T.

Proof. The necessity. If yx = g(k) for a nondecreasing function g and if
f € C(T) is nonnegative we have

N
[ foenvna =3 (1- 51 o) = [onti0da 20,
T T

-N

since g is nondecreasing and o, (f,t) > 0. Since this is true for arbitrary non-
negative f, we have on(Y,t) >0 on T'.

Assumring on(Y,t) > 0 we obtain

ISx()ll = sup /f(t on(¥,0)dt| = 5 [ ow(¥,t)dt =,

T

and by Theorem 5

Z yjeijr

JEZ
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is the Fourier—Stieltjes series for some g € BV?(T,Y’). For arbitrary nonnegative

fec(T)

[ 10490 = Jim 5= [ fon(v a0,
T T

and it follows that g is nondecreasing. O
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