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ABSTRACT. Denote by D the family of Darboux functions, by P the family
of Peek’s functions ([10]) pointwise discontinuous on each union of sequence of
perfect sets, by G1 the family of functions pointwise discontinuous on each non-
empty set, and by @ the family of quasicontinuous functions. I investigate the
addition and the multiplication in P and DP . Moreover, I show that DP C @,
and that f € Gy iff for every perfect set E there is an open interval I such that
INE+#® and f|(I NE) is continuous.

Let R denote the set of all reals. For a given family K of functions f: R — R
define '

K+K={f+g:f,geK}, K- -K={fg:fgeK},

Bi(K) ={f: there is a sequence of functions f, € K
such that lim f, = f},
By(K) = {f: there is a sequence of functions f, € K

which uniformly converges to f},

M,(K)={f: foreachg€e K, f+g€ K},
M (K)={f: foreach g€ K, fge K}.

Moreover, let us put:

AMS Subject Classification (1991): 26A15, 26A21, 26A03, 26A99.
Key words: pointwise discontinuous functions on some sets, Darboux property, quasi-
continuity.

Supported by KBN research grant (1992-94) NR 2 1144 91 01.



ZBIGNIEW GRANDE

C={f:R—R: f is continuous },
D={f:R—R: f hasthe Darboux property %y

P={f:R—R: for each sequence of nonempty perfect sets P,

n=1,2,..., the restricted function f ' U P, is continuous at

n

some point x € UPn} ([10]),

n
G1={f: R —R: for every nonempty set E C R the restricted function

f|E is continuous at some point z € E}([5]),
Gy ={f: R—R: for every nonempty countable set £ C R

the restricted function f|E is continuous at some point z € E} ([5])

?

Bf ={f: R —R: for every nonempty perfect set E' C R there is an open

interval I such that I N E # 0 and f|(I N E) is continuous H(3)),
S={f:R—R: theset C(f) of all continuity points of f is dense }

Q= {f: R — R: f is quasicontinuous at each point z € R},

(f is quasicontinuous at z if for every 7 > 0 there is a nonempty open set

UcC(z~rz+r) with f(U) C (f(z) —r, f(z)+r) (18))),

F(K)={f € K: if f is discontinuous from the right (resp. left) at z,
then f(z) = 0 and there is a sequence =z, N\ Z (Y /" z) such that

Fzn) = 0(f(yn) = 0)} ([4]),
E(K)={f € K: f has a zero in each subinterval in which it changes sign}

(2.

It is known that P C Bl(C) ([10]),G1 = G2 g: P ([5]), Gl + Gl = Gl, Gl d
Gi =Gy, DB} +DB; = By ([6]), DB} - DB; = E(B}) ([6]), Ma(DB;) = C,
and Mp(DBf) = F(DB}) ([6]). In this paper I prove that G; = B,
B1(DGs) =SB, (B1(C)), Bu(DGa) = DQB;(C), P+P=P, P-P P, DP
Q, B1(DP) = SB1(By(C)), My(DP) = C, and M,,(DP) = F(DP).

THEOREM 1. G, =G, = B
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Proof. Let f € By and let E C R be a nonempty set. If there is an
isolated point z € E, then f|E is continuous at z. In the contrary case the
closure cl E of the set E is a perfect set and there is an open interval I such
that TNclE # 0 and f|(INclE) is continuous. So f|E is continuous at each
point z € INE and Bf C Gy = G3. Now, let f € G, andlet E C R be a
perfect set. If for every open interval I, with' INE # (0, the restriction f|(INE)
is discontinuous.at a point z € I N E, then there is a sequence of points z,, € E
such that cl({zn: n=1,2,...}) = E and osc(f|(C(f|E)U{zx}))(zs) >0, n =
1,2,....Let B={z,: n=1,2,...}.Since f € Gy, thereis a point u € B such
that f|B is continuous at u. Let b= osc(f|C(f|E))(u). Since u € B, b > 0.
There is an open interval I 5 u such that | f(¢)—f(u)| < b/4 foreach t € INB.
-We consider two cases:

(1) There are points v,w € I NC(f|E) such that |f(v) — f(w)| > 3b/4.
Then there are open intervals I;,I; C I such that v € I}, w € Iy,
| f(t) — f(v)| <b/8 for each t € ENI;, and | f(t) — f(w)| < b/8 for
each t € ENI;y. Let s,z € B such that s € I;, z € I,. We have

[ f(©) = )| = [ (f() = () + (£(s) = £(2)) + (£(2) = f(w)) | <
<b/8+ | f(s) — f2)1+b/8,

and

| f(s) = f(2)| > | f(v) — f(w)| —b/4 > 3b/4 —b/4=0b/2,
in contradiction with
| F(s) = F(2)| < [£(s) = f(w)| + | f(2) = fu)| <b/4+b/4=10/2.

(2) There is a point w € I N C(f|E) such that | f(w) — f(u)| > 3b/4. Let
J 3w be an open interval such that w € J C I and | f(¢) — f(w)| < b/4
for each t € ENJ. There is a point v € BN J. We have

| f(v) - f(U)ll > | f(w) — f(u)| - b/4 > 3b/4 - bj4=1b/2,

in contradiction with

| f(v) — f(u)] <b/4.
So there is an open interval I such that ENI # @ and f|(ENI) is
continuous. Consequently, f € Bf and the proof is completed. O

Remark 1. B]_(DGQ):SBl<Bl(C))

Proof. The proof is the same as the proof of Theorem 1 from [7]. O
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THEOREM 2. B,(DG;) = DQB;(C).

Proof. Since DBf C Q ([6]) and B, (Q) C Q ([9]) and B,(DBy(C)) =
DB1(C) ([1]), we have

Bu(DGs) = Bu(DBf) C DQBy(C).

Let f € DQB;1(C) be a function. Fix r > 0. There is a step-like functions (i.e.
for every nonempty set ' C R there is an open interval I such that ITNE # 0
and g|(I N E) is constant) such that | f(z) — g(z)| < r/8 for each z € R
([10]). The image g(R)' is countable ([5]), so g(R) = {y1,y2,...}. If (a,b) is
the interior of some component of the set g~ !(yx), then there is a continuous
function gqp: (a,b) — [yr — /2, yr + /2] such that both cluster sets

K*(gap,a) = {y € R: there is a sequence z, \, a such that ges(z,) — v},
and
K™ (gap, b) = {y € R: there is a sequence z,, /' b such that gep(zn) — y}

are equal to [yx — /2, yr + 7/2]. Let us put

of the level set g~ !(yx), k=1,2,..., and

gab(z) if = belongs to the interior (a,b) of some component
h(z)
g(z)  otherwise.

Since g € By, h € G2. Moreover
|h(z) — f(z)| < [A(z) —g(x)| + |9(z) — f(z)| <r/2+7/8<r

for each = € R. We shall show that h has the Darboux property. Fix u € R.
Since h is of Baire 1, it suffices to show ([1]) that there are sequences z, / u,
vn \, u such that h(z,) — h(u) and h(v,) — h(u). We shall show only the
existence of such sequence (z,). If u € int g7!(yx) (int denotes the interior) for
some k=1,2,..., then every sequence z, \, u is such that h(z,) — h(u).

If u is the left end of some component of the level set g~ (yk), k = 1,2,...,
then there is a sequence (z,) of points belonging to this component such that
zp, \, u and h(z,) — h(u). Suppose that u € g7 (yx) — int g~ (yx) for some
index k and u is not the left end of a component of the level set g~ ().
Since f € DQ@B;1(C) and |f(z) — g(z)| < r/8 for each = € R, there is a

sequence I, = (am, b) of the interiors of nondegenerate components of the
level sets g~ (yk,,) such that b, \, v and y, € (y&,, — 7/2, Yr,, +r/2) for
m=1,2,3,.... Really, the union U of all open intervals on which ¢ is constant

is dense. Thus, if such sequence (I;,) is not, then there is 7; > 0 such that

(i) |g(z)—yk| >r/2 foreach z€ (w,u+r)NU.
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But |g(z) —g(u)| < [f(z) —g(z)| + [ f(z) = f(u) | + |g(u) — f(w)] <
<r/8+4 |f(z) - f(u)| +7/8=|f(z) - f(u)| +r/4
for each z € R. Since f € D@, there is a point w € U N (u,u + r1) such that
| f(w) — f(u)| <r/4. Consequently,

l9(w) —yi | = |g(w) —g(w)| < | f(w) — f(w)| +r/4<r/d+r/d=1r/2,

in contradiction with (i). So, such sequence (I,,) must exist. In every interval
Im, m=1,2,...,thereis a point z,, such that h(z,,) = yr. Thus h(z,) — yx
and the proof is completed. . O

THEOREM 3. Let f,g € P and let (A,) be a sequence of perfect sets. There
is a point * € A =|J A, at which both restricted functions f|A, g|A are con-
tinuous. n

Proof. Suppose that such point z is not. Let
Anr, = {t € Ap: osc(f|A)(t) > 1/k},
B = {t € Ank: t is a point of condensation of A},
Cok = {t € An: osclglA)®) 2 1/R},

Dy, = {t € Cry: t is a point of condensation of Cpy} .

We have,
A= ] (AnkUChi) -
n,k=1
The set A is c-dense in itself and the set B = A— |J (BnprUDyg) is countable.
n,k=1

So, the set A — B is c-dense in itself and dense in A. There is an open interval

I such that TN A#Q and

IN{UBuk, or IN|JDnk
n,k n,k

is dense in I N A. We may assume that I N |J B, is dense in I N A. Since

n,k
every set B r(n,k=1,2,...) is perfect (whenever By # 0), and IN |J Bnk
is dense in I N A, the set n,k
E=In|]JAm
n,k
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is the union of a sequence of perfect sets. Consequently, there is a point v € E at
which the restricted function f|E is continuous. Since v € E, there are indices
no, ko such that v € Ap g, . Thus osc(f|4)(v) > 1/ko > 0. Let 7 = 1/8ky.
There is an open interval J C I such that v € J and |f(t) — f(v)| < r for
each point t € ENJ. Since osc(f|A)(v) > 1/kg = 8r, there is a point w € JNA
such that

Q) | f(w) = flw)| > 3r.

Evidently, w € (J N A) — F is a continuity point of the restricted function
f|A. Thus there is an open interval K C J such that w € K and

| f(w) — f(¢)| <r for each point t € KN A.Let u € KNE. Then
| f(w) = f()] <7, [fw)=flw)|<r,
and ;
[f(w) = f)| < [f(w) = F()| + [ f(w) = f0)| <747 =2r,

in contradiction with (i). This completes the proof. O
As an immediate corollary we obtain:

COROLLARY 1. Let F': R? — R be a continuous function and let f,g € P.
Then the function © — F(f(a:), g(m)) belongs to P. In particularity, f+g € P,
f-9€ P, max(f,g) € P, and min(f,g) € P.

THEOREM 4. DP C Q.

Proof. Suppose that there is f € DP — Q. Denote by G’(f|C(f)) the
graph of the restricted function f|C(f) and remark that there is a point z such
that (z,f(z)) ¢ cI((G(f|C(f))). Let r > 0 be such that [z —r, & + 7] X
[f(z) — 7, f(z) + 7] Ncl(G(FIC(f))) = 0. Since f € DP C DB;(C), the set
A= fY(f(z)—r f(@)+7))N(z —r, z+r) is the union of a sequence of
perfect sets. If there is an open interval I such that I N A is dense in I then
the restricted function f|I is discontinuous at each point ¢ € I, in contradiction
with f € By(C). Thus the set A is nowhere dense and consequently cl A is
also nowhere dense. Since f € P and A is the union of a sequence of perfect
sets, there is a point u € A at which the restricted function f|A is continuous.
Let I C (x — 7, z+r) be an open interval such that v € I and

(i) |ft)—f(z)] <ri<r foreach t€ ANI.

Let (a,b) be a component of the set R —cl A such that a (or b) belongs to
clA. Since f has the Darboux property and

| f(t) — f(z)| >r foreach te€ (a,b),
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we have

(i) |f(a)—flz)] =r.

From (i) and (ii) it follows that the restricted function f|(I NclA) is dis-
continuous at each point ¢ € INclA, in contradiction with f € B1(C). This
completes the proof. O

From Theorem 4 and Remark 1 it follows:
THEOREM 5. B;(DP)= SB:(B(C)).

From Theorem 4 and Theorem 2 it follows:
THEOREM 6. B,(DP)=DQB:(C).
THEOREM 7. M,(DP)=C.

The proof of this theorem is the same as the proof of Bruckner’s theorem 3.2
in [1].

THEOREM 8. M,,(DP)= F(DP).

Proof. The proof is a simple modification of the proof of Fleissner’s the-
orem from [4]. The proof of the inclusion F(D) C My, (DP) follows from
Corollary 1 and Fleissner’s theorem from [4]. For the proof of the inclusion
M,,(DP) C F(DP) we suppose that there is a function f € M,,(DP)—F(DP).
The same as in Fleissner’s proof from [4] we can limit the considerations to two
cases. .

Case 1. Suppose that f is discontinuous from the right at ¢ and f(z) >0
on (a,a+7](r > 0). Choose K > 0 such that there is a sequence p, “\, a where

nlLH;o f(pn) = K # f(a). Set

1/fla+r) forz>a+r,
g(z) =1 1/f(z) for z € (a, a+ 1),
1/K for z < g,

Then g € DP, but f(a)g(a) #1 and f(z)g(z) =1 on (a,a+7). So, fg has
not the Darboux property.

Case 2. Suppose that f is discontinuous from the right at a, f(a) >0 and
there exists a sequence p, \, a such that f(p,) = 0 for n = 1,2,.... Set
E={z >a: f(z) < f(a)/2}. Since f € DP CQ and p, € E,n=1,2,...,
there are disjoint closed intervals I, = [an, by), n = 1,2,..., contained in E
and such that a,41 < bpt1 < an,n=1,2,..., ap — a, b, — a. Consequently,
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there is a function g € DP such that 0 < g(z) < 1 for z € |JI,, g(z) = 0
for z € (a,00) = I, and g(z) =1 for z < a. Then g(a)f(a) = f(a) and
f(z)g(z) < f(a)/2 for £ >a. Thus fg has not the Darboux property. a

Remark 2. Well know that DB;(C)-DBy(C) = E(B:(C)) ([2]), and DB -
DB} = E(BY) ([6]). Remark that DP-DP # E(P). For example, if a sequence
(z,) is dense in R and

1/n fz=2, n=12...,

)= {

0 otherwise,

then f € E(P), but f is not the product of a finite family of quasicontinuous
functions.
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