

THE DARBOUX PROPERTY IN SOME FAMILIES OF BAIRE 1 FUNCTIONS

ZBIGNIEW GRANDE

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. Denote by D the family of Darboux functions, by P the family of Peek's functions ([10]) pointwise discontinuous on each union of sequence of perfect sets, by G_1 the family of functions pointwise discontinuous on each nonempty set, and by Q the family of quasicontinuous functions. I investigate the addition and the multiplication in P and DP. Moreover, I show that $DP \subset Q$, and that $f \in G_1$ iff for every perfect set E there is an open interval I such that $I \cap E \neq \emptyset$ and $f|(I \cap E)$ is continuous.

Let $\mathbb R$ denote the set of all reals. For a given family K of functions $f \colon \mathbb R \to \mathbb R$ define

$$K + K = \{f + g \colon f, g \in K\}, \qquad K \cdot K = \{fg \colon f, g \in K\},\$$

 $B_1(K) = \{f : \text{ there is a sequence of functions } f_n \in K$

such that $\lim_{n\to\infty} f_n = f$,

 $B_u(K) = \{f: \text{ there is a sequence of functions } f_n \in K$

which uniformly converges to f,

 $M_a(K) = \{f : \text{ for each } g \in K, f + g \in K\},$

 $M_m(K) = \{f : \text{ for each } g \in K, fg \in K\}.$

Moreover, let us put:

AMS Subject Classification (1991): 26A15, 26A21, 26A03, 26A99.

Key words: pointwise discontinuous functions on some sets, Darboux property, quasicontinuity.

Supported by KBN research grant (1992-94) NR 2 1144 91 01.

ZBIGNIEW GRANDE

```
C = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is continuous } \},
     D = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ has the Darboux property } \},
     P = \{f \colon \mathbb{R} \to \mathbb{R} \colon \text{ for each sequence of nonempty perfect sets } P_n,
             n=1,2,\ldots, the restricted function fig|igcup P_n is continuous at
                                                                     some point x \in \bigcup P_n ([10]),
    G_1 = \{f \colon \mathbb{R} \to \mathbb{R} \colon \text{ for every nonempty set } E \subset \mathbb{R} \text{ the restricted function } \}
                                              f|E is continuous at some point x \in E ([5]),
    G_2 = \{f \colon \mathbb{R} \to \mathbb{R} \colon \text{ for every nonempty countable set } E \subset \mathbb{R}
             the restricted function f|E is continuous at some point x \in E ([5]),
    B_1^* = \{f \colon \mathbb{R} \to \mathbb{R} \colon \text{ for every nonempty perfect set } E \subset \mathbb{R} \text{ there is an open} \}
                 interval I such that I \cap E \neq \emptyset and f|(I \cap E) is continuous \}([3]),
    S = \{f : \mathbb{R} \to \mathbb{R}: \text{ the set } C(f) \text{ of all continuity points of } f \text{ is dense } \}
    Q = \{f \colon \mathbb{R} \to \mathbb{R} \colon f \text{ is quasicontinuous at each point } x \in \mathbb{R}\},
 (f is quasicontinuous at x if for every r > 0 there is a nonempty open set
 \widetilde{U} \subset (x-r,x+r) \text{ with } f(U) \subset (f(x)-r\,,\,\,f(x)+r) \ ([8])\,),
    F(K) = \{ f \in K : \text{ if } f \text{ is discontinuous from the right (resp. left) at } x,
          then f(x) = 0 and there is a sequence x_n \setminus x (y_n \nearrow x) such that
                                                                      f(x_n) = 0 (f(y_n) = 0) \} ([4]),
   E(K) = \{ f \in K \colon f \text{ has a zero in each subinterval in which it changes sign} \}
    It is known that P \subset B_1(C) ([10]), G_1 = G_2 \nsubseteq P ([5]), G_1 + G_1 = G_1, G_1.
G_1 = G_1, DB_1^* + DB_1^* = B_1^* ([6]), DB_1^* \cdot DB_1^* = E(B_1^*) ([6]), M_a(DB_1^*) = C, and M_m(DB_1^*) = F(DB_1^*) ([6]). In this paper I prove that G_1 = B_1^*,
B_1(DG_2) = SB_1(B_1(C)), B_u(DG_2) = DQB_1(C), P + P = P, P \cdot P = P, DP \subset B_1(DG_2)
Q, B_1(DP) = SB_1(B_1(C)), M_a(DP) = C, \text{ and } M_m(DP) = F(DP).
```

THEOREM 1. $G_1 = G_2 = B_1^*$.

THE DARBOUX PROPERTY IN SOME FAMILIES OF BAIRE 1 FUNCTIONS

Proof. Let $f \in B_1^*$ and let $E \subset \mathbb{R}$ be a nonempty set. If there is an isolated point $x \in E$, then f|E is continuous at x. In the contrary case the closure cl E of the set E is a perfect set and there is an open interval I such that $I \cap cl E \neq \emptyset$ and $f|(I \cap cl E)$ is continuous. So f|E is continuous at each point $x \in I \cap E$ and $B_1^* \subset G_1 = G_2$. Now, let $f \in G_2$ and let $E \subset \mathbb{R}$ be a perfect set. If for every open interval I, with $I \cap E \neq \emptyset$, the restriction $f|(I \cap E)$ is discontinuous at a point $x \in I \cap E$, then there is a sequence of points $x_n \in E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ and $cl(\{x_n : n = 1, 2, \dots\}) = E$ and $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ and $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ and $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ and $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ and $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots\}) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that $cl(\{x_n : n = 1, 2, \dots]) = E$ such that

(1) There are points $v, w \in I \cap C(f|E)$ such that |f(v) - f(w)| > 3b/4. Then there are open intervals $I_1, I_2 \subset I$ such that $v \in I_1, w \in I_2$, |f(t) - f(v)| < b/8 for each $t \in E \cap I_1$, and |f(t) - f(w)| < b/8 for each $t \in E \cap I_2$. Let $s, z \in B$ such that $s \in I_1, z \in I_2$. We have

$$|f(v) - f(w)| = |(f(v) - f(s)) + (f(s) - f(z)) + (f(z) - f(w))| < b/8 + |f(s) - f(z)| + b/8,$$

and

$$|f(s) - f(z)| > |f(v) - f(w)| - b/4 > 3b/4 - b/4 = b/2,$$

in contradiction with

$$|f(s) - f(z)| \le |f(s) - f(u)| + |f(z) - f(u)| < b/4 + b/4 = b/2.$$

(2) There is a point $w \in I \cap C(f|E)$ such that |f(w) - f(u)| > 3b/4. Let $J \ni w$ be an open interval such that $w \in J \subset I$ and |f(t) - f(w)| < b/4 for each $t \in E \cap J$. There is a point $v \in B \cap J$. We have

$$|f(v) - f(u)| > |f(w) - f(u)| - b/4 > 3b/4 - b/4 = b/2$$

in contradiction with

$$|f(v)-f(u)|<.b/4.$$

So there is an open interval I such that $E \cap I \neq \emptyset$ and $f|(E \cap I)$ is continuous. Consequently, $f \in B_1^*$ and the proof is completed.

Remark 1. $B_1(DG_2) = SB_1(B_1(C))$.

Proof. The proof is the same as the proof of Theorem 1 from [7].

THEOREM 2. $B_u(DG_2) = DQB_1(C)$.

Proof. Since $DB_1^* \subset Q$ ([6]) and $B_u(Q) \subset Q$ ([9]) and $B_u(DB_1(C)) = DB_1(C)$ ([1]), we have

$$B_u(DG_2) = B_u(DB_1^*) \subset DQB_1(C).$$

Let $f \in DQB_1(C)$ be a function. Fix r > 0. There is a step-like functions (i.e. for every nonempty set $E \subset \mathbb{R}$ there is an open interval I such that $I \cap E \neq \emptyset$ and $g|(I \cap E)$ is constant) such that |f(x) - g(x)| < r/8 for each $x \in \mathbb{R}$ ([10]). The image $g(\mathbb{R})$ is countable ([5]), so $g(\mathbb{R}) = \{y_1, y_2, \ldots\}$. If (a, b) is the interior of some component of the set $g^{-1}(y_k)$, then there is a continuous function $g_{ab} \colon (a, b) \to [y_k - r/2, y_k + r/2]$ such that both cluster sets

 $K^+(g_{ab},a)=\{y\in\mathbb{R}\colon ext{ there is a sequence }x_n\searrow ext{ a such that }g_{ab}(x_n) o y\}\,,$ and

 $K^-(g_{ab},b)=\{y\in\mathbb{R}\colon \text{ there is a sequence }x_n\nearrow b \text{ such that }g_{ab}(x_n)\to y\}$ are equal to $[y_k-r/2,\,y_k+r/2]$. Let us put

$$h(x) = \left\{ egin{array}{ll} g_{ab}(x) & ext{if x belongs to the interior (a,b) of some component} \\ & ext{of the level set $g^{-1}(y_k)$, $k=1,2,\ldots$, and} \\ g(x) & ext{otherwise.} \end{array}
ight.$$

Since $g \in B_1^*$, $h \in G_2$. Moreover

$$|h(x) - f(x)| \le |h(x) - g(x)| + |g(x) - f(x)| \le r/2 + r/8 < r$$

for each $x \in \mathbb{R}$. We shall show that h has the Darboux property. Fix $u \in \mathbb{R}$. Since h is of Baire 1, it suffices to show ([1]) that there are sequences $x_n \nearrow u$, $v_n \searrow u$ such that $h(x_n) \to h(u)$ and $h(v_n) \to h(u)$. We shall show only the existence of such sequence (x_n) . If $u \in \inf g^{-1}(y_k)$ (int denotes the interior) for some $k = 1, 2, \ldots$, then every sequence $x_n \searrow u$ is such that $h(x_n) \to h(u)$. If u is the left end of some component of the level set $g^{-1}(y_k)$, $k = 1, 2, \ldots$, then there is a sequence (x_n) of points belonging to this component such that

then there is a sequence (x_n) of points belonging to this component such that $x_n \searrow u$ and $h(x_n) \to h(u)$. Suppose that $u \in g^{-1}(y_k) - \inf g^{-1}(y_k)$ for some index k and u is not the left end of a component of the level set $g^{-1}(y_k)$. Since $f \in DQB_1(C)$ and |f(x) - g(x)| < r/8 for each $x \in \mathbb{R}$, there is a sequence $I_m = (a_m, b_m)$ of the interiors of nondegenerate components of the level sets $g^{-1}(y_{k_m})$ such that $b_m \searrow u$ and $y_k \in (y_{k_m} - r/2, y_{k_m} + r/2)$ for $m = 1, 2, 3, \ldots$. Really, the union U of all open intervals on which g is constant is dense. Thus, if such sequence (I_m) is not, then there is $r_1 > 0$ such that

(i)
$$|g(x) - y_k| \ge r/2$$
 for each $x \in (u, u + r_1) \cap U$.

THE DARBOUX PROPERTY IN SOME FAMILIES OF BAIRE 1 FUNCTIONS

But
$$|g(x) - g(u)| \le |f(x) - g(x)| + |f(x) - f(u)| + |g(u) - f(u)| < r/8 + |f(x) - f(u)| + r/8 = |f(x) - f(u)| + r/4$$

for each $x \in \mathbb{R}$. Since $f \in DQ$, there is a point $w \in U \cap (u, u + r_1)$ such that |f(w) - f(u)| < r/4. Consequently,

$$|g(w) - y_k| = |g(w) - g(u)| \le |f(w) - f(u)| + r/4 < r/4 + r/4 = r/2,$$

in contradiction with (i). So, such sequence (I_m) must exist. In every interval I_m , $m=1,2,\ldots$, there is a point x_m such that $h(x_m)=y_k$. Thus $h(x_m)\to y_k$ and the proof is completed.

THEOREM 3. Let $f, g \in P$ and let (A_n) be a sequence of perfect sets. There is a point $x \in A = \bigcup_n A_n$ at which both restricted functions f|A, g|A are continuous.

Proof. Suppose that such point x is not. Let

$$A_{nk} = \{t \in A_n : \operatorname{osc}(f|A)(t) \ge 1/k\},\,$$

 $B_{nk} = \{t \in A_{nk} : t \text{ is a point of condensation of } A_{nk}\},$

$$C_{nk} = \{t \in A_n \colon \operatorname{osc}(g|A)(t) \ge 1/k\},\,$$

 $D_{nk} = \{t \in C_{nk} : t \text{ is a point of condensation of } C_{nk}\}.$

We have,

$$A = \bigcup_{n=1}^{\infty} (A_{nk} \cup C_{nk})$$
.

The set A is c-dense in itself and the set $B = A - \bigcup_{n,k=1}^{\infty} (B_{nk} \cup D_{nk})$ is countable.

So, the set A-B is c-dense in itself and dense in A. There is an open interval I such that $I\cap A\neq\emptyset$ and

$$I \cap \bigcup_{n,k} B_{nk}$$
, or $I \cap \bigcup_{n,k} D_{nk}$

is dense in $I \cap A$. We may assume that $I \cap \bigcup_{n,k} B_{n,k}$ is dense in $I \cap A$. Since every set $B_{n,k}(n,k=1,2,\ldots)$ is perfect (whenever $B_{nk} \neq \emptyset$), and $I \cap \bigcup_{n,k} B_{nk}$ is dense in $I \cap A$, the set

$$E = I \cap \bigcup_{n,k} A_{nk}$$

ZBIGNIEW GRANDE

is the union of a sequence of perfect sets. Consequently, there is a point $v \in E$ at which the restricted function f|E is continuous. Since $v \in E$, there are indices n_0, k_0 such that $v \in A_{n_0k_0}$. Thus $\operatorname{osc}(f|A)(v) \geq 1/k_0 > 0$. Let $r = 1/8k_0$. There is an open interval $J \subset I$ such that $v \in J$ and |f(t) - f(v)| < r for each point $t \in E \cap J$. Since $\operatorname{osc}(f|A)(v) \geq 1/k_0 = 8r$, there is a point $w \in J \cap A$ such that

(i)
$$|f(v) - f(w)| > 3r$$
.

Evidently, $w \in (J \cap A) - E$ is a continuity point of the restricted function f|A. Thus there is an open interval $K \subset J$ such that $w \in K$ and

$$|f(w) - f(t)| < r$$
 for each point $t \in K \cap A$. Let $u \in K \cap E$. Then $|f(u) - f(v)| < r$, $|f(u) - f(w)| < r$,

and

$$|f(w) - f(v)| \le |f(w) - f(u)| + |f(u) - f(v)| < r + r = 2r$$
, in contradiction with (i). This completes the proof.

As an immediate corollary we obtain:

COROLLARY 1. Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function and let $f, g \in P$. Then the function $x \to F(f(x), g(x))$ belongs to P. In particularity, $f+g \in P$, $f \cdot g \in P$, $\max(f,g) \in P$, and $\min(f,g) \in P$.

Theorem 4. $DP \subset Q$.

Proof. Suppose that there is $f \in DP - Q$. Denote by G(f|C(f)) the graph of the restricted function f|C(f) and remark that there is a point x such that $(x, f(x)) \notin \operatorname{cl}((G(f|C(f)))$. Let r > 0 be such that $[x - r, x + r] \times [f(x) - r, f(x) + r] \cap \operatorname{cl}(G(f|C(f))) = \emptyset$. Since $f \in DP \subset DB_1(C)$, the set $A = f^{-1}((f(x) - r, f(x) + r)) \cap (x - r, x + r)$ is the union of a sequence of perfect sets. If there is an open interval I such that $I \cap A$ is dense in I then the restricted function f|I is discontinuous at each point $t \in I$, in contradiction with $f \in B_1(C)$. Thus the set A is nowhere dense and consequently $\operatorname{cl} A$ is also nowhere dense. Since $f \in P$ and A is the union of a sequence of perfect sets, there is a point $u \in A$ at which the restricted function f|A is continuous. Let $I \subset (x - r, x + r)$ be an open interval such that $u \in I$ and

(i)
$$|f(t) - f(x)| < r_1 < r$$
 for each $t \in A \cap I$.

Let (a,b) be a component of the set $\mathbb{R} - \operatorname{cl} A$ such that a (or b) belongs to $\operatorname{cl} A$. Since f has the Darboux property and

$$|f(t) - f(x)| \ge r$$
 for each $t \in (a, b)$,

we have

(ii)
$$|f(a) - f(x)| \ge r$$
.

From (i) and (ii) it follows that the restricted function $f|(I \cap \operatorname{cl} A)$ is discontinuous at each point $t \in I \cap \operatorname{cl} A$, in contradiction with $f \in B_1(C)$. This completes the proof.

From Theorem 4 and Remark 1 it follows:

THEOREM 5.
$$B_1(DP) = SB_1(B_1(C))$$
.

From Theorem 4 and Theorem 2 it follows:

THEOREM 6.
$$B_u(DP) = DQB_1(C)$$
.

THEOREM 7.
$$M_a(DP) = C$$
.

The proof of this theorem is the same as the proof of Bruckner's theorem 3.2 in [1].

THEOREM 8.
$$M_m(DP) = F(DP)$$
.

Proof. The proof is a simple modification of the proof of Fleissner's theorem from [4]. The proof of the inclusion $F(D) \subset M_m(DP)$ follows from Corollary 1 and Fleissner's theorem from [4]. For the proof of the inclusion $M_m(DP) \subset F(DP)$ we suppose that there is a function $f \in M_m(DP) - F(DP)$. The same as in Fleissner's proof from [4] we can limit the considerations to two cases.

Case 1. Suppose that f is discontinuous from the right at a and f(x) > 0 on (a, a+r](r>0). Choose K>0 such that there is a sequence $p_n \searrow a$ where $\lim_{n\to\infty} f(p_n) = K \neq f(a)$. Set

$$g(x) = \begin{cases} 1/f(a+r) & \text{for } x \ge a+r, \\ 1/f(x) & \text{for } x \in (a, a+r), \\ 1/K & \text{for } x \le a, \end{cases}$$

Then $g \in DP$, but $f(a)g(a) \neq 1$ and f(x)g(x) = 1 on (a, a + r). So, fg has not the Darboux property.

Case 2. Suppose that f is discontinuous from the right at a, f(a) > 0 and there exists a sequence $p_n \searrow$ a such that $f(p_n) = 0$ for $n = 1, 2, \ldots$ Set $E = \{x > a : f(x) < f(a)/2\}$. Since $f \in DP \subset Q$ and $p_n \in E$, $n = 1, 2, \ldots$, there are disjoint closed intervals $I_n = [a_n, b_n]$, $n = 1, 2, \ldots$, contained in E and such that $a_{n+1} < b_{n+1} < a_n$, $n = 1, 2, \ldots$, $a_n \to a$, $b_n \to a$. Consequently,

ZBIGNIEW GRANDE

there is a function $g \in DP$ such that $0 < g(x) \le 1$ for $x \in \bigcup_n I_n$, g(x) = 0 for $x \in (a, \infty) - \bigcup_n I_n$, and g(x) = 1 for $x \le a$. Then g(a)f(a) = f(a) and f(x)g(x) < f(a)/2 for x > a. Thus fg has not the Darboux property.

Remark 2. Well know that $DB_1(C) \cdot DB_1(C) = E(B_1(C))$ ([2]), and $DB_1^* \cdot DB_1^* = E(B_1^*)$ ([6]). Remark that $DP \cdot DP \neq E(P)$. For example, if a sequence (x_n) is dense in \mathbb{R} and

$$f(x) = \begin{cases} 1/n & \text{if } x = x_n, \quad n = 1, 2, \dots, \\ 0 & \text{otherwise}, \end{cases}$$

then $f \in E(P)$, but f is not the product of a finite family of quasicontinuous functions.

REFERENCES

- BRUCKNER, A. M.: Differentiation of Real Functions, Lectures Notes in Math., Springer-Verlag, Vol. 659, 1978.
- [2] CEDER, J.: A necessary and sufficient condition for a Baire 1 functions to be a product of two Darboux Baire 1 functions, Rend. Circ. Mat. Palermo (2) 34 (1978), 78-84.
- [3] CSASZÁR, A—LACZKOVICH, M.: Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463-472.
- [4] FLEISSNER, R.: A note on Baire 1 functions, Real Anal. Exchange 3 (1977-78), 104-106.
- [5] GRANDE, Z.: Quelques remarques sur les familles de fonctions de Baire de première classe, Fund. Math. 84 (1974), 87-91.
- [6] GRANDE, Z.: On the sums and the products of Darboux Baire*1 functions, Real Anal. Exchange 18 (1992-93), 237-240.
- [7] GRANDE, Z.: Some remarks about Rosen's functions, Proc. Amer. Math. Soc. 113 (1991), 117-122.
- [8] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
- [9] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988-89), 259-306.
- [10] PEEK, D.: Baire functions and their restrictions to special sets, Proc. Amer. Math. Soc. 30 (1971), 303-307.

Received July 20, 1992

Department of Mathematics Pedagogical University ul. Arciszewskiego 22 a 76–200 Słupsk POLAND