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ABSTRACT. The aim of this paper is to investigate random variables taking on
values in vector lattices. In the first part a result of Chow and Lai [2] on
weighted sums of real valued random variables is extended to vector lattices. In
the second part an ergodic theorem for vector lattice-valued random variables is
proved.

I.

The terminology follows [3] and [5].

DEFINITION 1. Let (Z,S,P) be a probability space, E a vector lattice. A
sequence (f,) of functions from Z to E converges to a function f: Z — E
almost uniformly if for every e > 0 there exist a set A € S such that P(A4) <e,
a sequence (ay) of real numbers converging to zero and an element r € E such
that | fr(z) — f(2)| < anr foreach z€ Z — A.

DEFINITION 2. A function f: Z — E is called a random variable if there
exists a sequence (f,) of simple E-valued functions such that (f,) converges
to f .almost uniformly.

In what follows the notion of the o-complete vector lattice with the
.o-property as well as that of F-lattice are needed.

DEFINITION 3. A vector lattice F is said to be o-complete if every non-empty
at most countable subset of E which is bounded from above has a supremum.
E is said to have the o-property if every countable set in E is included in a
principal ideal of E (cf. [5]).
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DEFINITION 4. An Archimedean vector lattice £ with a monotonous F-norm
(not-necessarily homogeneous) complete with respect to it is called a Fréchet
lattice (F-lattice for short) (cf. [9]).

In several former papers we studied the order-convergence of weighted sums of
F-lattice valued random variables. The novelty of this paper is that the weights
are allowed to take on their values randomly.

PROPOSITION 1. Let E be an F-lattice, P a complete probability measure.
Then each random variable is a random element in the sense of [6], i.e., a mea-
surable map from Z to E.

See [8] for the proof.

THEOREM 1. Let E be a o-complete F-lattice with the o-property. If f,
are independent, identically distributed, symmetric random variables in E such
that

§ P{z; |fi(2)| £na}¢ < oo forsome a€ E, a>0,
andn;:zk are real random variables such that
P{lim sup zn: a2, <G}=1 for some constant G, then
. k=1
n~! S anpfr — 0 with probability one.

k=1

Proof. Foreach n let (fux) be a sequence of simple functions converging
almost uniformly to f, . It means that there are at most countable many different
regulators of the order-convergence. Because of the assumption of the o-property
and because of the inequality

|fn| < Ifn - fnkl + |fnk!

we obtain that all values of f, belong to an ideal generated by a single element,
say u,u € E. Let us denote this ideal by"I,, the set of all values which the
variables fnr, n, k € N take on by (y,)52; and put yo = u. Consider the
countable set A of all linear combinations of the elements y, with the rational
coefficients. It is evident that the set

B= ﬂ U{a:EIu; |z7%| < ru},

rEQacA

where @ stands for the set of all rationals is a linear subspace of I, . Equipped
with the order — unit norm inherited from I, B, being a closed subset of I,
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‘becomes a separable Banach space. This space will be denoted by (B, ]| ||u).
Denote by W, the Borel o-algebra subsets of B generated by the open balls
and by Wr the o-algebra generated by the subsets of B which are open in the
original topology. Because of the equality

<et—n}=

{z€B; ||z —zi|s <&} = UBm {z eI, ||z — zi|lu
n
=Bn| J{z € L; |z — @ <e(1—n"")u},
~ _

which holds for each open ball we have that W, C Wr. It follows then that
fn can be regarded as independent, identically distributed, symmetric random
variables in (B, || ||.) . Moreover we have

Blfillu <1+ Y P(lfallu >n) =1+ Y P (sl <nu)® <oo.

n=1 n=1

The rest of the proof follows from [6], Theorem 6.1.2. O

II.

Ergodic theorems for vector-lattice valued random variables can be found,
e.g., in [4]. They are proved, however, under stringent conditions on random
variables. In our version random variables are allowed to be far more general.
For terminology see [1].

DEFINITION 5. Let (Z,S,P) be a probability space, E a o-complete vector
lattice with the o-property. A non-negative function f: Z — FE is called an
integrable Tandom variable if there exists a non-decreasing sequence (f,) of
non-negative simple functions such that (f,) converges to f almost uniformly
and the sequence (Ef,) of their expectations converges relatively uniformly. We
define the integral (the expected value) of f by Ef =ru-lim Ef,.

A function f: Z — FE is said to be an integrable random wvariable if there
exist non-negative integrable random variables f; and fs suchthat f = fi—f5.
The integral (the expected value) is defined by setting Ef = Ef; — Efs.

The correctness of this definition is proved in [7]. Moreover we showed that
the following theorem holds.

THEOREM 2. If (f,) is a non-decreasing sequence of random variables with
expected values Ef, almost uniformly converging to a random variable f and
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such that ru-lim Ef, exists, then f has the expected value Ef and Ef =
ru-lim B f, .

We recall that a probability preserving transformation T': Z — Z is ergodic
if P(B) =0 or P(B) =1 for each set B € S invariant under T .

THEOREM 3. Let (Z,S,P) be a probability space, let T: Z — Z be a prob-
ability preserving transformation. Then for every integrable random Variable f

there exists an invariant integrable random variable f* such that hm Z -
T! = f* almost surely with respect to the order and Ef* = Ef. If T is an
ergodic transformation, then lim 1 Z f+-T* = Ef almost surely with respect
to the order.

Proof. Let f =clIg,c€ E, B€ S. Then by [1] Th. 1.3 there exists an
invariant set A € S, P (A®) = 0 and a bounded invariant integrable real random

variable g such that lim 1 Z Ip(T*z) = g(z) for each z € A. It follows that
lim £ Z f(T2) = c g(2) Wrth respect to the order for each z € A. Moreover cg
is an 1nvar1ant integrable random variable and E(c g) =cEg=cEIg=Ef.
If T is an ergodic transformatlon then limi Z Ig(T'z) = EIp almost
surely and hence hm Z f(T'2) = E f almost surely.
If f is a simple funct1on, that is f = iaiIBm a;, € B, B €S, i=

1,...,n, then by the first part of the proof there exist invariant integrable
random variables ff, ¢t =1,...,n and invariant A;, ¢ = 1,...,n such that

lim 1 Z fi(Tz) = f;(z) for each z € A;, where f; = a; Ip;, 7=1,.
Moreover Ef; = Ef;. It follows that f* Z [ is an invariant mtegrable ran-
dom variable and A = ﬂ A; is an invariant set such that P(A®) =P U AY =0.

We have lim £ Z f(T%z) =lim £ Z_:
0 0

aj I, (T'z) = '21 lim ¢ ZOJ BT =
j=

f*(z) for each z € A and Ef* = ZEf; = Y E f; = Ef. The part of the
1 1

theorem concerning the ergodic transformation can be proved analogically.

Let f be a non-negative integrable random variable. Then by Definition 5
there exists a non-decreasing sequence of simple functions almost uniformly
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converging to f. Omitting if necessary a set of probability 0, we have, by
this definition, that there exists a countable partition (Bj) of Z such that
|fn(z)— F(2)| < akr, foreach z € By, 7€ E,af |# 0, af €R, n,k=1,2,....
The existence of a common regulator of the order-convergence r follows from
the fact that E has the o-property.

For each n there exists, by the previous part of the proof, an invariant integrable
random variable f, such that

n

k—1
lim = Y fa(T'2) = fi(2) foreach z€ A, An €5, P(A7)=0.
0

ol

Since all A, are invariant sets, the set A =()A, is also invariant and
k—1 . 1 k—1 .
P(A) = 1.Denoting + 3 f(T%2) by Sk(2), k=1,... wehave |1 Y fu(T'2)—
0 - 0

Sk(2)| < air on B; and hence f3(z) —af,r < limsup Si(2) < fi(z) +afr

for each 2z € AN B;, j = 1,2,.... Since the similar inequality holds for
k-1

liminf Si(z), we obtain that lim+ Y f(T"z) exists almost surely. Define the
0

k=1
function f* as follows: f*(z) =limt Y f(T%z) for z € A and f*(z) =other-
0

wise, and put g, = fi I4, n = 1,2,.... Since A is an invariant set, g,
are invariant functions. Moreover since f, < fp4+1 for each natural n, the se-
quence (gy) is non-decreasing. It follows from the above inequality that (g,) ru-
converges. Hence, by Theorem 2, f* is an integrable random variable such that
Ef* =limEg, = imE f, = Ef. Since f*(z) = limgy(z) = limg,(T2) =
[*(Tz) we have that f* is an invariant function.

If T is an ergodic transformation, f} = E f,, almost surely implies g, = E f,
almost surely and finally f* =1lim F f, = E f almost surely.

If f is an arbitrary integrable random variable, then there exist non-negative
integrable random variables f; and f; such that f = f; — fo. This part of the
proof is obvious and therefore will be omitted. O
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