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ON THE LEVEL SETS OF LIPSCHITZ FUNCTIONS

SERGEI V. KONYAGIN

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. The paper gives the negative answer to the question of D. Preiss,
whether for any Lipschitz function f: R? — R and for almost all real numbers u
the level set f~!(u) can be covered by a countable number of rectifiable curves.

D. Preiss wondered whether for any Lipschitz function f: R? — R and
for almost all real numbers u the level set f~1(u) can be covered by a countable
number of rectifiable curves. Let us note that for almost all « this is true up to
a remainder of one-dimensional Hausdorff measure zero [1, 3.2.15]. Nevertheless,
the answer to the Preiss question is negative, i.e., this zero set cannot be replaced
by the empty set.

THEOREM 1. There exists a continuously differentiable function f: [-1,1]2 —
[-1,1] such that for any u € [-1,1] the set f~!(u) cannot be covered by a
countable number of rectifiable curves.

By f' we denote the Fréchet derivative of a function f and by B(z,r) the
closed ball of radius r about point z. Throughout the following the letters
c1,C2,... denote positive constants.

Let ¢(s) = 1 for s € [0,3], ¢(s) = sin’ws for s € [1,1], ¥(s) = 0 for
s 21, 9(s) =9(—s) for s <0.If z = (s,t) € R?, then we set ¢(z) = ¥(s)h(t),
and for a > 0 S(z,a) denotes the square [s —a,s+a] x [t — a,t + a]. Let f
be a continuous function defined on a subset of the plane containing a square
S = S(y,a). We denote

z— T — )
(7:5)(x) = (1- o( ¥)) 1@) +8(2Y) mins(2): = € a1}
a a
Then ®[f;S] coincides with f outside the square S, equals to minimum of
f on this square for z € S(y,a/2), and the values of ® on S depend only
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on the behaviour of f on it. From these properties it follows that for any fi-

nite collection ¥ of mutually nonoverlapping squares Si,...,S, the function
B[f; 3] = ®[®...®[f;51];...;5,] does not depend on an order of sets in 3.

LEMMA 1. For any function f continuously differentiable on a square S and
for any = € S the following inequalities are satisfied:

min{f(z): z € S} < ®[f; S|(z) < max{f(z): z € S};
[@[f; 8] ()]l < 14max{||f'(2)]: z € S}.
Proof. Let S= 5(y,a). Since 0 < ¢ <1 everywhere, for any z € S we

have: min{f(z): z € S} < ®[f; S|(z) < f(z) < max{f(z): z € S}. To prove the
second assertion, set m = min{f(z): z € S}, g = f —m. Then

2175 57(e) = 210581 (@) = (1-8(2Y) ) o) - C20(*Y),

and hence
Jotr; sy @) < @+ 22 |¢(222)). )
Note that
¢/ @)l = IF @ < max{|F)]: z € 5,
99) < 2 VBmax(|f () z € 5},
and if 2—Y = (s,t), then

o(520) | < (@@ v097 + 0l W) < o w1 = V.

Substituting this inequality into (1), we obtain
[@[f; 8] ()]l < (1 + 4m) max{|| f'(2)]|: 2 € S},
as required. The proof of Lemma 1 is complete. O

For a finite plane set E containing at least two points we denote

d(E)=) p(z,E), where p(z,E)=min{|lz-y|:yecE\{z}}.
T€EE

Note that the length of any rectifiable curve covering F is d(E)/2 at least.
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LEMMA 2. There exists a continuously differentiable function g: R% — [0, +0c0)
such that g(z) = 0 if = is outside the square [—1,1]> and for any u € (0,c]
there exists a finite set E = E, C g~ '(u) for which ¢'(z) # 0 on E and
d(E) > cou™(—Inu)~%/4.

Proof. Let us take c3 for which the condition

2 = 1
n=2

is satisfied. We set r, = can™'/2(Inn)~2/3, R, = csn~/2, B = B(zp, ),
= B(zy,2r,), B3 = B(z,, R,), where n =2,3,... and z, are points from

2 . .
the square S = [—%, %] . By induction on m, one can choose z,, such that

Ty & B2 for n<m ‘ (3)

and
Ty & B for n<m<2n. (4)
In fact, if z4,...,Zm-1 are chosen, then the balls BZ(n < m) and

B3(n < m < 2n) do not cover S because the sum of the areas of these
balls does not exceed

-1
(e 3 om)sr(sTag ¥ 2
n=2

n<m<2n n<m<2n

and by (2) it is less than the area of S. So there exists a point z,, satisfying
(3) and (4).

By (3) and decreasing of {r,}, the balls B} are disjoint. Let g(z) = (||z —
Tu||/Tn)TnAn , if T € B for some n, where A\, = (Inn)~'/12 and g(z) =0
otherwise. Obviously, g is continuously differentiable inside every ball B}, and
further, for any y € B} we have |g(y)| < cadn(rn— [y —zxl)/rn and ||g'(y)|| <
carn(rn — ||y — 2n||)/rn . If z is not an interior point of B, then, using the
inequality A\p(rp — |y — za|]) < Ap min(ry, ||z — y||) < min(Anrp, 2|z — y||), we
obtain

l9(W)| < callz — y|| min(A,, 2|z — yl|/ry),
lg' Wl < camin(An, 2]z — yll/rx) -

If ||z —y|| < AmTm/2 for some m, then min(A,,2||z —y||/r)n) < Ay, for any n
and we have |g(y)| < cadmllz — yl|, l¢’(¥)|lcarm . Consequently, if z is not an
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interior point of any B, then the values |g(y)|/|lz — vll, |l¢’()|| converge to
0 if y — z. This means that ¢’(z) =0 and ¢’ is continuous at z. Therefore,
the function g has a continuous derivative over the whole plane.

Let u > 0. The set g~'(u) N{z: ¢’(z) # 0} and the ball B} intersect if
and only if v < max{g(z): z € BL} =rpA,. For u < 1 this inequality holds if
2<n<m=[csu"?(—Inu)~%?]. In this case g~ 1(u) N {z: ¢'(z) # 0} and any
Bi,..., B}, intersect. For sufficiently small v we have m > 6 and the number
of balls B} for which n <m < 2n is > (m+1)/2 > 2. In each of these balls we
take a point belonging to g~ (u)N{z: ¢’(z) # 0} . E is defined as the collection
of such points. By (4), the distance between any two points of E is not less than
cgm~1/2 . Therefore,

dE) 2 3" cem ™2 > com™2(m +1)/2,
zeE

from which, using the definition of m, we easily obtain the conclusion of the
lemma. O

LEMMA 3. For any M > 0 there exist a continuously differentiable function
gm: R? — R and positive number 65; such that gp(z) =0 if = is outside the
square [—1,1]%, ||g4;(z)|| <1 everywhere, and for any u € [0,0.1] there exists
a finite set E = E, C gy (u), E C [~1,1]? satisfying the following conditions:

a) d(E)=M;

b) |lghs(2)]| < 0.01 for any z € E;

¢) |lz—yll > ém for any distinct elements z,y of E.

Proof. Let n be a sufficiently large positive integer depending on M . Set
£(s) =s(2—|s]),

bt ; k_ 1 k1 .
nﬁn if SE[;—E,E E]’OSA’<”;
—k—1 1 é(Anz—4k+2) . k 3 k 1
€n(s) = o T Ton T 12n , if 56[5_5’5_5]71§k<n’
0 if s>1-1,

é'n(—S), lf 5<0.

It is easy to verify that &, is a continuously differentiable function and ||¢;,(s)|| <

2 everywhere. Let us consider the function g on R?: u(s,t) = &,(s) — &n(t)/n.

Then p is a continuously differentiable function and ||p/(s,¢)|| < ||€L(s)]] +
[€7,()]l/n < 3 + & <1 everywhere. Note that on each square Si, = [£ — L,
% + 4—17;] X [% - ﬁ, % + %] p has constant value equal to wvg, = % — &5 Tt
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1. kn—¢

57 — aoz- (0 <k <n,0<?<n). To construct the required function g

we will correct p on these squares. Let g be a function satisfying Lemma 2,
-1

cr = (sup{llg’(2): = € R?}) ", and
i (z) = u(x) + cr(500m)" 122 dnz — (4k, 40)).
k=0 £=0

The function §ps vanishes outside [—1,1]?, and has a continuous derivative
on the plane. Furthermore, if z belongs to some square Si¢, then §j,(z) =
(cr/125) §' (4nz — (4k,4€)) and ||§)s(z)|| < 0.008, otherwise F),(z) = p'(z).

In both cases [|gj,(x)|| < 1. For arbitrary u € [cic7/500n,0.11] we consider

v=min{u~ (§~ &+ ghs — 450 u— (3- & +gh — 552 >0, 0 <

k<nO0<{< n} Then for 0 < j < jo = [0.012¢1e7n] — 1 there exists

0<k<n,0<¥¢<n for which u——(g—-s% 6_7112*%)—”'*'6112 and, using

the inequality (v-+ gﬁg) < ¢1¢7(500n) "1, we obtain, by Lemma 2, the existence
of set E; C SN gy (n) such that

4 -1 . __3/4
Ca 1 J —d J
d(E;) 1 (500nc7 (v+6 2)) < In (500nc7 (v+ 5 2)))

> Z—;(o.omcm)(j +1)"11In(0.012¢7n(j + 1)) "4 "
and
g;l/l(:c) 7& 0 for =z [= E (6)
n—1ln—1
Let E = U Ej. Then E C |J U Sk, and, consequently, ||§i,(z)| < 0.008
k=0 £=0

for z € E. Slnce p(z,E) > p(z, E;)/V2 for any z € E;, (5) implies that

Jo
d(E) > 0.003c2¢7 Y _(j + 1) In(0.012¢7n(j +1)~1) /%,
§=0

For large n the last expression is greater than M . Note that, by (6), for any
z € E and for any v close to u one can find y close to z such that gas(y) =v.
Therefore, there exist a neighbourhood U(u) of u, a number §(u) > 0, and the
sets Fy, for all v € U(u) such that E,, C g;; (u) d(Eyw) > M, ||gM(x)H <
0.01, ||z —y|| > &(u) for any v € U(u), = € Ey,, y € Ey,. By compactness
of the segment [c;c7/500m,0.11], it can be covered by a finite system of sets
U(u), u € Y. Setting 6y = min{6(u): u € Y} and gpr = ho gy, where h is
a suitable C-contraction with h(t) = 0 for ¢ < ¢;¢7/500n and h(t) = 0.1 for
t > 0.11, we finish the proof of Lemma 3. O
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LEMMA 4. There exist sequences of continuously differentiable functions fy,
numbers €, , where n =1,2,... , such that a finite set E, = E,(u) corresponds
to every n € N, u € [0,0.1] and the following conditions are satisfied:

a) falz)=0 for n>1,z ¢ [-1,1]%;

b) ||fi(z)|| £0.01-08"1 for n>1, z€E,;

c) Ifi(z)—fi_1(z)|| <08t for n>2;

d) 0<e<ep_1/20 for n>2;

e) |lz—yl|>e, for n>1,z€E,, yekE,, #y;
] B € ftum);

g) BEn= U EY,dEY >1,and |z —y||<0le,_y for n>2,
yEE'n—l
yeE, 1, z€EY.

Proof. We use induction on n. Let us take fi = g1, &1 = &, and
Ei(u) =E, (u€][0,0.1]), where g1,61, and E, were constructed in Lemma 3.
Then the conditions a), b), e) are satisfied for n = 1. Suppose that n > 2 and
the lemma holds for n — 1. Let N be such a large positive integer that

1 fne1(z) = faoa(®)l £0.001-0.8"7% if |l —yl| <2/N, (7)
2/N < 0.1ep_1 . (8)

Denote Sj ¢ = [% %] [T %] g Bt = (2’2“;,1, 2§Nl) where —N <k <N,
—N < £ < N. Then Skg = S(:Ekg, 2}\,) Let ¥ = {Sk,g. ||fn_1(a?k’g)” <

0.011-0.8"2}, D =y: S (y, 5% ) € T}. We set
0.17
fn(ﬂ?) = (I)[fn—l;z] + T . 0.8n_21126:Dg4N(4N($ - y)) .

where g4 is the function constructed in Lemma 3.

The property a) is evident. Let us verify the condition c). If z is not a point
of any square S € ¥, then f/(z)=f,_1(z). If Se X, S=S(y,ﬁ), T €S,
then, in virtue of the choice of ¥ and (7),

a1 @ < N fpar W+ 1fr-1(2) = faoa @I <
< 0.011-0.8""2 +0.001-0.8""2 < 0.012-0.8"2. (9)

It follows from Lemma 1, that ||®[f,—1;%)]'(z)|| < 0.168 - 0.8"~2. Therefore, if
¢ S(y,7%), then

1fn(@) = Fre1 @) < e @+ N Fn @) < N fro s (@) + (| @] frm1; Z)' (2)]| <
<0.012-0.8"724+0.168-0.8""2 =0.18-0.8" 2.
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It z € S(y, ) then fi(z) = 817 . 0.872. 4Ngyn (4N (z — y)) and, by
Lemma 3, [|f2 ()]l < % -0.8"2 . 4N < 0.68-0.8" and

12 (@) = fraca @) < I facy (@) + |1 £4 ()] <
<0.012-0.8"2 +0.68-0.8"2 < 0.7-0.8"2.

In all cases the condition c) is satisfied.
Fix u € [0,0.1] and consider arbitrary y € E,,_;. Then

fr—1(y) = u (10)
and, using b) for n — 1 instead of n, we have

"l fa—i (@)l < 0.01-0.8772, (11)

For some k,£ y € Sy,. From (11) and the choice of N it follows that
[l fn-1(zr,e)l] <0.011:0.8"72 ie. Sy, € . Let us denote v = min{f,_1(2): z €

Sk}, w= (%L 0.8”_2)_1«(u —v). Then -

0.17 _
falz)=v+ N 0.8" ?g4 (4N (z — Tpye)) for z e S(mk,g, ﬁ) . (12)

Using (9) for z € S and (10), we have

w17 -
ogu—vgo.012-o.8”72-\/§/N<%-0.8’1 4

le. 0 < w < 0.1. We take E, by Lemma 3 and set EY = zp,+ ﬁEw,
Ep = %{}’— - It follows from (8) that & < é45€e,_1/80, and, consequently, d) holds.
Furthermore, the assertions of Lemma 3 imply that:
1) fa(z) =u for any z € EY, and f) holds;
2) d(EY) > d(Ey)/(4N) > 1;
3) EY C Sy, and, by (8), g) holds;
4) if ©; € BY, 2y € EY, then lz1 — o > ‘14—](/.\’ = €n; if z; € EY,
22 € B}, y # 2, then [los —as]| > y ~ ]|  Jlo1 — gl |2 — 23] >
en—1—0.1ep_1 — 0161 > €,, by e) for n — 1 instead of n, d) and
f); so in both cases e) holds;
5) if = € EY, then, by (12), ||fi(z)|| < %37 - 0.8~2(4N)0.01 < 0.8"~1,
and b) also holds.
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The lemma is proved. O

We riow proceed directly to the proof of the theorem. We use the notation
of Lemma 4. It follows from c) and equality f,(1,1) =0 that {f,} uniformly
converges to a continuously differentiable function fo. Let us fix arbitrary
u € [0,0.1] and prove that fy*(u)N[—1,1]2 cannot be covered by a countable
number of rectifiable curves.

Let E be the set of points z for which there exists a sequence {z,} conver-
gent to z such that z, € E, (n=1,2,...). Then E is a closed set and

EC f7 ' (w)n[-1,1)2. (13)

For ne N and y € E, we denote
(0.0}
=01 ¢, E"(y)={z€E:|z-y|l <nn}. Note that, by d),

M <0.2¢e,. (14)

For any y = z, € E, one can construct a sequence {zni1 € Enyi(s),
Tpio € Epyo(zn +1),...,}. Then, by g), we have for n <k </

£—-1 £-1
lor—aill <3 lless — zll < 3015 = — e, (15)
i=k i=k

i.e. {z;} converges to some z € FE and ||z — y|| < 0, . Therefore,

E™(y)#0 for yekE,. (16)
Let us take arbitrary z € E, n € N, and € > 0. There exists z; € E; such
that ||z — z|le and £ > n. Then z; € Ep(xo_1) for some z4—1 € Eyp_y,...,
Tpt1 € Eny1(zy,) for some z, € E, . Using (15), we have

lz —zn|| e+ llze—znl|| <+ —me < e+ 70

Since the number & > 0 is an arbitrary one and the set E, is finite, ||z—y|| < 7,
for some y € E,, i.e. z € E™(y). We obtain that

Ec |J EMw). (17)

yEE,

Suppose that our assertion is not true. Then, by (13), E can be covered by a
countable number of curves whose lengths do not exceed 0.2. The intersection
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of at least one of these curves, say x, with E is not a nowhere dense set in E.
It means that for some zg € ¥ and n € N.

E N B(zo,2m,-1) C X - (18)
From (17) there follows the existence of such y € E,,_; that

o = yll < 71 (19)

By (16), we can correlate an element 7(z) € E™(z) to any z € E,. Denote
F = {7(z): z € E¥}. Then, using g), we obtain for any z € F:

Iz —yll <llz ==l + o =yl <mn +0.1en—1 =11

From this, (18), and (19) it follows that F C x.
Using (14) and e), we have for distinct z; € EY, z, € EY

[7(z1) — T(@2)|| 2 |21 — 22| = |21 — 7(21)]| = [J£2 — T(22)]| >

> ||lz1 — 22| — 0.2, — 0.27,, > 0.6||z1 — z2]| .

Consequently, p (7(z),F) > 0.6 p(z,EY) and d(F) > 0.6d(EY) > 0.6 by g).
Since F C x, the above implies that the length of x is 0.3 at least.
This contradicts our supposition.

Therefore, we have the continuously differentiable function f5: [-1,1]> = R

such that for any u € [0,0.1] the set f;'(u) cannot be covered by a countable
number of rectifiable curves. To complete the proof of the theorem, it is sufficient
to set f(z) = cos(10m fo(z)) . O

I should like to express gratitude to D. Preiss and L. Zaji¢ek for their
valuable advice and their interest in my work.
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