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A PHYSICAL EXAMPLE OF QUANTUM
FUZZY SETS, AND THE CLASSICAL LIMIT

DIEDERIK AERTS — THOMAS DURT — BRUNO VAN BOGAERT

ABSTRACT. We present an explicit physical ~xample of an experimental sit-
uation on a physical entity that gives rise to a fuzzy set. The fuzziness in the
example is due to fluctuations of the experimental apparatus, and not’'to"an inde-
termination about the states of the physical entity, and is described by a varying
parameter ¢. For zero value of the parameter (no fluctuations), the example re-
duces to a classical mechanics situation, and the corresponding fuzzy set is a
quasi-crisp set. For maximal value (maximal fluctuations), the example gives rise
to a quantum fuzzy set, more precisely a spin-model. In between, we have a con-
tinuum of fuzzy situations, neither classical, nor quantum. We believe that the
example can make us understand the nature of the quantum mechanical fuzziness
and probability, and how these are related to the classical situation.

Introduction

After the now rather commonly accepted failure of ‘local’ hidden variable
theories to offer a model that could substitute for quantum mechanics [1, 2, 3, 4,
5, 6, 7], it is often thought that an ‘understandable’ explanation for the proba- .
bilities of quantum mechanics is now impossible, and that only the rather vague
view of the presence of ontological probabilities, inherent in nature, remains. As
we know, hidden variable theories in general try to explain the quantum prob-
abilities as being due to a lack of knowledge about the complete reality of the
state of the entity under study, because this is indeed the way in which classical
probabilities appear in classical theories. There is, however, another possibility,
namely to explain the presence of the quantum probabilities as being due to a
lack of knowledge about the complete reality of the experimental situations that
are considered in relation with the entity under study [8, 9, 10]. In this paper we
want to elaborate this approach, as it has been put forward in ref. [9], [10], [11]
and [12], but now to vary by means of a parameter ¢ the fluctuations that have
been introduced. The reason why we want to study this example with varying
fluctuations on the experimental situations, is because we want to investigate
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whether this approach makes it possible to define the classical limit. If this is
true, we have possibly found a way to unify classical and quantum mechanics
in a completely new way, in accordance with the proposed explanation of the
quantum probabilities due to a lack of knowledge about the complete reality of
the experimental situations. We also want to investigate which the fuzzy sets -
are that can be introduced naturally in this physically well defined situation.

The model

In quantum mechanics the state p of a physical entity S is represented by a
unit vector z, in a Hilbert space H . An experiment e on the physical entity S
is represented by a self-adjoint operator A, on H . If the experiment e has only
two possible outcomes, that we call “yes” and “no”, the self-adjoint operator that
represents it is an orthogonal projector E.. The probability P(e = yes | p)- to
get an outcome “yes” for the experiment e is given by ||E.(z,)||? . The presence
of this quantum mechanical probability leads in a natural way to the introduction
of fuzzy sets [13, 14], related to a quantum mechanical measurement situation.
1) If T is the set of states of an entity S, then any experiment e defines a
fuzzy set on T as follows pe : & — [0, 1]; pe(p) = [|Ee(zp)|?. 2) H T is
the set of yes-no experiments, then any state p defines a fuzzy set on T as
follows v, : T — [0, 1]; vp(e) = ||Ee(zp)||*. Let us present our example. As
we mentioned, we introduce the quantum fuzziness as fluctuations on a classical
and deterministic measuring apparatus. Our physical entity S is a particle with
fixed negative charge ¢ in a state pgg such that it is located on a sphere

(o,B)

6.9

Fig. 1. ' Fig. 2.

of radius r at a point (r,0, ). The experiment eg consists of the following
operation: we choose two particles with positive charges ¢; and ¢z such that
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_q1+q2 = Q. The charge g; is chosen at random between lng and %’EQ This
choice represents the lack of knowledge about the experimental situation and €
is the parameter describing the amount of lack of knowledge.Once the charges
q1 and ¢ are chosen we put the two particles diametrically on the sphere, such
that ¢ is in the point (r,a,B) and ¢z is in the point (r,7 — a,7 + B). This
is the set-up of the experiment e,g, the entity being in the state pss. Under
the influence of the Coulomb forces Fy (between ¢ and. ¢; ) and Fp (between
q and g3 ), the charge ¢ will move, and, since we suppose that this happens in
a viscous medium, under the influence of friction, finally will end up at ¢; or at
gz . We suppose that if |Fy|| > ||| (||F2]l > [|F1]]), ¢ endsup at ¢1 (g2 ), we
give the outcome e; (ez) to eng and the effect of enp changes the state pgy
in pag(Pr—a,x+p)- If 7 is the angle between (r,6,4) and (r,«, ), then

a1q
Al|l=s——F"——
- I3 4megr? sin® /2’
IFZH _ 929

4regr? cos? v /2
Y

Let us now evaluate the probability p(esg = e1|pgg) that we get the outcome
ey for eqnp if the particle ¢ is in the state pgg:

P(eap = e1|pog) = P (|| F1|| > || F2|)) =

= P (g1 cos’ /2 > gy 5in® 7/2) = P (q1 > @sin®7/2).

We can visualize this with the following picture. For the clearness of the figure we
represent < in the interval [—7, +n] although the angle between space directions
is limited to [0,7]. For simplicity the direction (a,f) of the measuring rod is
represented in the middle of the diagram. The state pgy forms an angle v = 3

- Y

Fig. 3.

with the measuring rod. The condition ¢; > @sin? v/2 is fulfilled in the dashed
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zone. So, for any experiment such that (v,¢;) belongs to the dashed zone we
obtain e; as outcome. Now, ¢ is submitted to fluctuations, whose magnitude

labelled by € : g1, is uniformly distributed in the interval [QQE—Q, Qil—;ri) .
This allows us to compute P(g; > @sin® 4/2), which is given by the ratio of the

length of the interval for which g¢; fulfills the condition, divided by the length
of the total interval, which is Qe.

ql
Q af. 6¢
o0 Za
Qe \ /
(1-¢)
5% 1=
- noY
Fig. 4.
12 Y 14e 02y 1—e
max (sin® %, 1te max (sin® 1, 17
We obtain p(eaﬂ=61|pg¢)= ( 52, 2 )— ( 52’ 2 )
The limiting cases
€ =1. The quantum case — maximal fluctuations.
We get P(eag = e1|pog) = #’-’—/—3 = cos?y/2. These are the same proba-

bilities as the ones related to the outcomes of a Stern-Gerlach spin measurement
on a spinl/2 quantum particle, of which the state (6, $) is represented by the

4
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Fig. 5.

vector (e~*/2 cos £, e*/2sin §), and the experiment eqp by the self-adjoint op-
1 ( cosa e Psina
2 \ePsina —cosa

shows the equivalence between our model with ¢ = 1 and the quantum model

erator Sop = ) in a two dimensional Hilbert space, which
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tum model of a spin 1/2 particle. The fuzzy set defined by the state pgy is

veg: T — [0,1]; vog(eas) = P(eas = €1|peg) = cos® v/2, where T is the set of
all yes-no experiments. It is a pure quantum fuzzy set.

€ = 0. The classical case — no fluctuation.

Here, ¢; has no randomness at all, and is fixed once for all with the value
Q/2. Then P(eap = e1lpeg) = 1 if |7| € [0, F[, P(eap = e1|peg) = 0 if |7| €

Z,7]. The situation 4 = £J corresponds to a classical unstable equilibrium.

g=]
=

of 04

o ]
-

T
LN

Fig. 6.

A careful calculation gives then probability % for e;, and % for e;. The fuzzy
set induced by the state pgy we shall call a quasi-crisp set, because it takes
values 0 and 1, except on a zero-measure subset of Y. In a forthcoming paper
we shall study in detail these quasi-crisp sets, that in our approach represent the
classical objects. They are almost crisp sets and can almost be treated alike.

The intermediate case — ¢ =1/2.

Here, ¢ is distributed in the interval [%,%] For |y| smaller than J
. (bigger than 27 ), we have a deterministic behavior, where the outcome e; (ez)
. is certain (probability 1), independent of the fluctuations on ¢; . Physically,

9, of 69
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Fig. 7.
this reflects the fact that, when pgs is very close to pas (to pr—a,r+s), the
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¢-limited fluctuations on ¢; are not strong enough to cause indeterminism. For
|v| belonging to ]g, -2575[ we have an indeterministic quantum-like behavior. To
summarize this survey we give here the probability law resulting for the three

cases:

P(eop =¢; 1y, )
1
o e=1" quantum
e 0 Ty
1
0 €= % intermediate
-t 2 T 0 T 2t T
3 3 -3 3
1 e e o
' i e=1 . classical.
0 ] .
- I 0 T n
2 2
Fig. 8.

It is easy to show that the size of the classical zone 7 is given by cosvyq = ¢,

with ¢ = 0 in the quantum case, § for ¢ = % and 7 in the classical case.

Fuzzy connectives

A) Standard and bold definitions — a graphical approach

Two definitions of fuzzy sets are mentioned in reference 14 as being the
“standard” definition of Zadeh, and the “bold” definition of Giles. If A and B
are fuzzy sets on a set whose elements are denoted by p, and take values pa(p)
and pp(p) on them, it is possible to define fuzzy connectives in the following way:

pausB(p) = max(ua(p),£B(p)) and pansp(p) = min(pa(p), xa(p)) define
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the standard union and intersection of A and B; pau,s(p) = min(pa(p) +
#8(p), ]‘) and pan,p(p) = max(ua(p) + pa(p) — 1,0)‘ define the bold union
and intersection of A and B. We recover equivalent results in our model by
making use of a graphical method, as we show here. Let us take for simplicity two
directions A and B of the measuring rod, coplanar with the direction pgg4 of the
state and making angles I and 2?"' with pgg . We represent this on figure 9, with
p in the middle of the diagram. For any couple of points (7,q;) belonging to the
vertically dashed zone S4, the “yes zone” of A, g1 > Qsin?(y—+v4) and, hence,
if a state lies along the v direction, the values of the charge taken in S4 will give
the outcome “yes” for the measurement A. Similarly the horizontally dashed
zone Sp represents the “yes zone” of B. If now we define the measurements
AN B and AU B by assigning them the yes zones -S4 N S and S4 U Sp, we
get the following results:

| raus(p) =ZL—S"QU—SB = max (hg‘ ,%> = max(pa(p), uB(p)) = pauss(p),

ranB(p) =% =mi (% %) =min(pa(p)eB(p)) = pansa(p),

and we recover the standard result. If now, we replace Sp by 5%, obtained

Fig. 9.

from Sp by a permutation of ¢; and g2 = Q — g1 (see figure 10), we get

hs,usge )

pauB<(p) =—S‘Q—S = min(pa(p) + p5(p), 1) = pau,5(p),
h NSge

panBs(p) =LQL =max(ua(p) + 1B(p), 1) = pan,B(p),
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and we recover the bold definition.

Fig. 10.

B) A quantum induced definition for fuzzy connectives

In quantum mechanics, more specifically in the quantum logic approach [15,
16, 17], whenever two dichotomic experiments A and B are described by projec-
tors E4 and Ep on subspaces H4 and Hp of the Hilbert space H , disjunction
of A and B is represented by the projector E4V Ep on Ha @ Hp (the direct
sum of H4 and Hp) and conjunction of A and B is represented by the pro-
jector Ea A Ep on Hy N Hp. This leads us to propose the following definition
for fuzzy connectives (we will call them quantum connectives and label them by
the subscript ¢ ): '

- when pa(p) = |Ba(=p)I*, n18(p) = |Es(zp)|*,. =5 € H;
then pan,5(p) = |EaAEp(zp)|?, pav,s(p) = |EaV Ep(z)|.

This definition is more general, in the quantum case, than the standard and
bold definitions as shown here:

1) when H4 C Hp or Hp C Hj: standard connectives and quantum connec-
tives are equivalent,

2) when H4 N Hp = §: bold connectives and quantum connectives are equiva-
lent, ’

3) in any other situation it is possible to find states such that quantum con-
nectives are neither standard nor bold. Moreover, it is sometimes impossi-
ble to express ¢ connectives pau,B(p) and pan,B(p) as pointwise func-
tions of pa(p) and pp(p). For instance, take H , a four dimensional space,
with orthonormal base {e1,e2,e3,e4}, E4 the projector on lin(ey,ez) and
Ep the projector on lin(ez,e3). If z, = pie; + pzea + pses + paes, then
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pa(p) = o |? + llp21l? #8(p) = lIp2ll® + Ipsll?, au,8(p) = lIp111* + lIp2|* +
psll?, pan, B(p) = llp2/1® -

Nevertheless, for compatible measurements A and B, the following expres-

sion remains true: paup(p)+ pans(p) = pa(p)+ up(p) whenever we apply the
bold, standard or quantum definition of fuzzy connectives.

Conclusion

The e-charge-model that we have presented allows to define the ‘classical
limit’ inside this approach of ‘lack of knowledge about or fluctuations on the
experimental situation’. We are now investigating whether this classical limit
can be used to paste quantum theories with classical theories. Theoretical as
well as experimental questions have still to be answered. We wonder for example
whether a large molecule (smaller fluctuations) of spin 1/2 will deviate from the
quantum predictions along with our £-model. We also want to remark that the
¢-charge-model that we present here is a realization of a dynamical system-with
an explicit quantum-like structure. It is obvious that we can build along the same
lines dynamical quantum systems, by introducing a description of the effects of
experiments and fluctuations on these effects. Such an approach can perhaps
elucidate the relation between quantum-like indeterminism and irreversibility.
Indeed an essential feature of the construction of our model is the irreversible
motion of the charge.
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