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T-FUZZY OBSERVABLES

A. KOLESAROVA — B. RIECAN

ABSTRACT. In the paper the notion of T-fuzzy observable is given and the
properties of T-fuzzy observables are studied. The relation between T-fuzzy ob-
servables and random variables with values in the fuzzy real line, see, e.g. [4], is
shown, especially, the one-to-one correspondence between T -fuzzy observables
and finite fuzzy valued random variables is proved. The last section of the paper
concerns with the calculus of T-fuzzy observables.

1. Introduction

The notion of T-fuzzy observable arose as a common generalization of two
types of fuzzy observables. The first type was introduced by B. Rie&an in [10].
In his concept the Zadeh fuzzy connectives are used (e.g., z A y = min(z,y),
z Vy = max(z,y)). Recently J. Pykacz [9] has suggested (from a physical
point of view) to use the Giles connectives (¢ ® y = max(z +y—1,0), 2@y =
min(z +y,1)). Again, the corresponding notion of observable was introduced by
Riec¢an [11]. The min(z,y) and max(z+y—1,0) are only the special types of
triangular norms, namely min(z,y) = To(z,y) and max(z+y—1,0) = Teo(z,y),
which was the motivation for introducing T-fuzzy observables for any triangular
norm T'.

Let T':(0,1) x (0,1) — (0,1) be a triangular norm (t-norm), i.e., a binary
operation which is commutative, associative, nondecreasing in each component
and T'(z,1) = z for each z € (0,1) and let S beits dual conorm, i.e. a function
5:(0,1) x (0,1) — (0,1) defined by S(z,y) =1~T(1 —=z,1—1y).

A continuous t-norm T is said to be strict if for each z € (0,1) T(z,y) <
T(x,z) whenever y < z and Archimedean if T(z,z) < z for each z € (0,1).

There is an important system {Ts}se(0,00y Of Frank’s t-norms T, which are
called fundamental t-norms.These ¢-norms T and their t-conorms S are given
by:
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min(z,y) s=0,
max(z +y — 1,0) s =00,
T(z,y) = z.y s=1,

log, (1 ¥ (—‘”:‘;—”:‘—)) s€(0,1)U(1,00),

max(z,y) s=0,
min(l,z +y) s=o00,
S(z,y) = z+y—z-y s=1,
1—log, (1+(——'—””_(-1"—“—:ll) s €(0,1)U(1,00),

Remarkl. Let usnotice that the t-norms T for s € (0, 00) are strict (and
so Archimedean), T is not Archimedean and the t-norm T, is Archimedean,
but not strict.

In the following we give a definition of a fuzzy observable in a more general
form than it was done in {10] and [11]. :

Let (2,S) be a measurable space and let T C (0, 1)® be the generated fuzzy
o-algebra, i.e. the set of all § — B((0,1) )-measurable functions and let T be a
measurable ¢-norm.

DEFINITION 1. A T-fuzzy observable of (2,7) is a mapping x : B(R) — 7
satisfying the conditions

(i) x(E°)=x(E) =1-x(E) for each E € B(R)

() {Ealnen B, BB =0, i £5 = x(U En) = S x(Fu)

where S Up, = lim S u; and S uj = S( S ui un) (B((0,1)) is the system’

n—oo 1=1

of all Borel subsets of the mterval {0,1) and B(R) denotes the system of all
Borel subsets of the real line).

Note that the cases mentioned above (when Zadeh’s or Giles’ fuzzy connec-
tives are used) are, of course, included in this definition.

Directly from this definition and the properties of {-norms we obtain the
following results.

PROPOSITION 1. Let T be an Archimedean t-norm and let x be a T-fuzzy
observable of (2, 7). Then x(R) = 1q.

Proof. Let w € Q. Then x()(w) = x(0 U B)(w) = S(x(B)(w), x(§)(w)) .
Since T is an Archimedean t-norm, x(§)(w) # (0,1). Let E,F € B(R),
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ECF.As x(F — E)w) 2 0 and a t-conorm S is monotone, there holds:
S(x(E)(w), x(F — E)(w)) > S(x(E)(w),0). If we use (ii) of Definition 1 and the
dual property to T'(a,1) =1 (i.e. S(a,0) = a), we get x(F)(w) > x(E)(w).
It means that the T'-fuzzy observable x is a non-decreasing function. Hence

x(0) = 0q and x(R)=1q. O

Note that when a t-norm T is not Archimedean, then a T'-fuzzy observable
need not preserve the maximal and minimal elements.

PROPOSITION 2. Let T be a strict t-norm and let x be a T-fuzzy observable
of (,7). Then x(E)(w) € {0,1} for each E € B(R) and w € Q.

Proof. Let E € B(R), w € Q. By Definition 1, x(E)(w) = 1 — x(E)(w)
and S(x(E)(w),x(E°)(w)) = x(R)(w). Let us denote x(E)(w) = a. As T is
a strict ¢-norm, it is also Archimedean and so, from Proposition 1, we obtain
S(a,1~a) =1. This property can be valid only for a € {0,1}. Actually, if e.g.
e €(0,1) and a < 1—a, then

T(a,a) < T(a,1 —a)=1-S(a,1 —a)=0,

which is in contradiction with the properties of T'. Analogously for the other
cases. » O

By Proposition 2, if T is a strict ¢-norm.and x is.a T-fuzzy observable,
then x(E) is a crisp subset of @ for each E € B(R) and hence x = f!,
where f is a random variable on (12,S). So, the most interesting T'-fuzzy ob-
servables are those which are induced by Archimedean not strict ¢-norms. In the
case of Frank’s system {T},¢(0,00) Of fundamental ¢-norms it means Tho-fuzzy
observables.

2. Fuzzy real line and fuzzy-valued random variables

Following the ideas of Hohle [2, 3], Rodabaugh [12] and others,
Klement introduced a concept of fuzzy-valued functions [4, 5]. We recall
some basic notions. Let R = RU{—o0,+00} and I = (0,1). The extended fuzzy
real line R(I) is the set of all functions p: R — I such that

(i) p(—o00) =0 and p(+o0) =1
(i) p(r) =sup{p(s);s <r, s € R} for each r € R.

Note that the fuzzy real number p € R(I) is the cumulative distribution

function on R. A fuzzy number p can be interpreted as follows: p(r) is a
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degree at which p is less than (non-fuzzy) number r. A non-fuzzy number r is
identified with the characteristic function of the set (r,00). A fuzzy number p
is said to be finite if inf{p(r);r € R} = 0 and sup{p(r);r € R} = 1. A finite
fuzzy number is a cumulative distribution on R and vice versa. The set of all
finite fuzzy numbers will be denoted by R(I).

The partial ordering £ on R(I) is given by
plu <> VreR:p(r)>u(r).

Now, let f : (a,b) — (c,d) be a non-decreasing function, left-continuous in
(a,b) with f(a) = c. Then the quasi-inverse of f is a function [f]?: (c,d) —
{a,b) defined by

[1(s) = sup{r € (a,b); f(r)(s},
[A17(c) = a-”
The quasi-inverse of f is again a non-decreasing function, left-continuous in

(c,d) and [[f]9]? = f. The set of all quasi-inverses of fuzzy numbers p € R(I)
will be denoted by R'(I).

Due to the fact that the mapping ¢ : p — [p]? is an involution from R(I)
onto R’(I), it is possible to introduce an algebraic structure on R(I) as follows:

Let p,u € R(I). Then

plu <= [p|(e) < [u]¥(a) forall a€l, (1)

[p & ul*(@) = [p*(e) + [)*(<) | (2)
[P ® ul*(a) = sup{[p*)°(8) - [u*1"(8) + [p*)%(1 — B) - [u™17() +
+p718) - WA - )+ 1L - B) - [w TN — B);

B <a},
01 TSO’ p('f'), T_<_0a
here p*(r) = dp=(r) =
where pir) {p(r), r>0, ) {1, r>0.

"The previous formulae for p@ u and p ® u can be used if their right-hand
sides make sense. )

R(I) can be considered as a subspace of (0,1)®. Thus we can endow it
with the product o-algebra and it make sense to consider measurable functions
X : Q = R(I), which we will call fuzzy-valued random variables (measurability
of these functions is defined as usually).
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By Proposition 2.1. in [5], the measurability of a function-X : @ — R(I)
is equivalent to the existence of a Markov kernel X from (2,S) to (R, B(R))
such that for all (w,t) € 2 x R, X(w)(t) = K(w, (—00,1)).
Recall that a Markov kernel K from (2,S) to (R,B(B)) is a function K :
Q x B(R) — (0,1) fulfilling the properties:

K(-,E): Q@ — (0,1) is a measurable function for each E € B(R)

K(w,-) : B(R) — (0,1) is a probability distribution for each fixed w € Q.

Note that [5] deals only with non-negative fuzzy numbers. The extension to

R(J) is evident.

3. Ts,-fuzzy observables

Now let us deal in more detail with the properties of the Ts-fuzzy observables.

If s =0, then the Ty-fuzzy observable is a fuzzy observable introduced by
Rietan in [10]. The Tp-fuzzy observable x can be considered as a special kind
of random variables X with values in the extended fuzzy real line. Namely,

x(R)(w), &> f(w),

X:Q-RI), X)) =x((—o0,1))(w)= { x(0)(w), t< f(w)

for any t € R. f is a real random variable on (Q,Sj. For more details see, e.g.,
[8]. _

As it was shown above, T,-fuzzy observables for s € (0,00) are inverses of
random variables (Remark 1 and Proposition 2).

Recently Mesiar [7] pointed out the relation between To.-fuzzy observ-
ables and fuzzy-valued random variables. We have obtained the following results.

PROPOSITION 3. Let x be a Ty-fuzzy observable of (2,S).Then for any
fixed w € ) the set function x(-)(w) : B{R) — (0,1) is a probability measure
on B(R).

Proof. If we fix w € Q, then x(-)(w) is a set function defined on B(R)
with the following properties:
(i) x(R)w)=1,
(i) x(E°)(w) =1- x(E)(w) for each E € B(R),
(i) {En}nen CB(R), EiNE; =0 for t # ] =
x(U En) = Y x(Ey).

neN n€EN
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The property (i) is valid since Tw is an Archimedean ¢-norm and (ii) is a
part of the definition of any T—fuzzy observable. We have still to prove (iii).
There holds

x(|J En) = Smx(En)=min(1,Z,.x(E,,)).

If ZX(E )(w) <1 for any w, then min(1, EX(E (w)) =Y. x(Ex)(w) and so
(m) holds.
Let there exist w € Q such that Y x(E,)(w) > 1. Let us choose k,m such

that: 0 < z":l x(Ed)w) < 1; 0 < i x(E)w) < 1, but Xk:x(Ei)(w) +
= i=k+1

i X(Ei)(w) = Z X(E;)(w) > 1. Let'us put F = U E;. Then there holds:
i=k+1 i=1

k
x(F)(w) = x(U E)(w) = ,.§;’° x(E;)(w) =
k

k
= min(1 ZX(E )w)) =Zx (w)

i=1 i=1

m
Further, since |J E; C F° there holds:
i=k+1 3

k
X(F)w) =1-x(F)w) =1-)_ x(E:)(w) >

i=1
>x( | B)w)= Y x(E)w),

i=k+1 t=k+1 _
which implies
k m m
DoxX(E)w)+ Y x(Ei)w) = Y x(E)w) <1.

=1 i=k+1 i=1

The obtained result is in contradiction with the assumption and so (iii) is proved.
Hence x(-)(w) is a probability measure on B(R). ]
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COROLLARY 1. Let x be a Tw-fuzzy observable. Then for any fixed w € §2
the function x((—oo,-)){w) : R — (0,1) is a finite fuzzy number.

Proof. The function x((—oo, -))(w) is by Proposition 3 a probability dis-
tribution on R for each fixed w € . Thus by Section 2 it is a finite fuzzy
number. O

By the previous results the function X : @ — R(I) defined by X(w) = pu,
where p,(t) = x((—00,t))(w), is a finite fuzzy-valued function. In the follow-
ing theorem the relation between Teo-fuzzy observables and finite fuzzy-valued
random variables is given.

THEOREM 1. A mapping x : B(R) — 7 is a Tw-fuzzy observable of (£2,7)
if and only if x((—oo,t))(w) = X(w)(t), t € R defines a finite fuzzy-valued
random variable X on (£,S).

Proof. (i) Let x be a Tw-fuzzy observable of (,7). Let us define a
mapping K : Q x B(R) — (0,1) by K(w,E) = x(E — {—00,+00})(w). For
any E € B(R) K(-,E) is an element of 7, i.e. it is an S-measurable function.
Further for any fixed w € &, K(w,-) is a probability distribution on B(R), i.e.,
K is a Markov kernel. The finitness of X follows from Corollary 1.

(ii) Let X be a finite fuzzy-valued random variable on (f2,S). The Markov
kernel K corresponding to X induces, for any fixed w € 2, a probability
distribution on R. Hence K(w,E¢) = 1 — K(w, E) for any E € B(R) and

Kw, U En)= ¥ K(w,Ep) = SwK(w,Ey) for any sequence {E,} C B(R)
n€N n€EN
of pairwise disjoint sets. It is obvious that if we put

*(E) = K(aE)aE € B(R)

then x is a Too-fuzzy observable of (Q,7). a

4. Calculus for T;-fuzzy observables

- The caleulus for Ty-fuzzy observables was introduced by Dvureéenskij
and Tirpédkova [1]. They defined the sum 2z of two Tp-fuzzy observables
x,y by

z((—o0,1) = \/ {x((-—oo,'r)) Ay((~oo,t — r))]. (4)

reQ

If we define the sum for Too-fuzzy observables x,y in the same way as it was
done for Tp-fuzzy observables, we get the following statement.
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PROPOSITION 4. If x,y are Tw,-fuzzy observables, then z = x + y defined
by (4) is also a Tw.-fuzzy observable.

Proof. First we show that z((—oo,))(w) is for anyfixed w € Q a prob-
ability distribution on R.

It is evident that for any fixed w € 2, z((—o0,-))(w) is a non-decreasing
and left-continuous function on R.

Since x((-—oo,-))(w)’ and y((—o0,-)(w) are probability distributions on R,
for each € > 0 there exists o € R such that

x((—00,1))(w) < % and y((—o0,t))(w) < g forall < 7?0.

Let 7 € @. Then either r <tg or tg<r.If r <tg, then x((—oo,r))(w) < %
If to < r, which is the same as 2ty —r < tg, then y((—oo,2t0 -r))(w) < £ It
means that

x((—00,7))(w) A y((=00,2ty — 1)) (w) < %

for each r € @ and therefore

2((~00,2t0)) () = Vecalx((~oo, ) (@) A y((=00,2ts — r))(w)] <

Mlm

So we have shown that for each € > 0 there exists t* = 2to. Such that
z((—o00,t))(w) < € for all ¢ < #*. It means that

tlé{_noo z((—00,t))(w) =0.

The second boundary condition tlg& z((—00,t))(w) = 1 can be proved analo-
gously. ‘

Since z((—00,))(w) is a probability distribution on R, it is a finite fuzzy
number and the function ‘

Z:Q = R(I),Z(w)(t) = z((—o0,t))(w), t € R, is a fuzzy-valued random
variable (the measurability can be proved as in Theorem 1) and by Theorem 1,
z=1x+Yy is a T-fuzzy observable.

Let h : R — R be a Borel measurable mapping and let x be a T,-fuzzy
observable. Then the mapping defined by

h(x)(E) = x(h"}(E)) forany E € B(R)
is a T,-fuzzy observable.

80



T-FUZZY OBSERVABLES

Using this fact, the product of T,-fuzzy observables x,y can be defined by

x-y=3[(x+y)?-x*-y*. (5)

N =

For more details see e.g. [7].

As we have shown above, there is a one-to-one correspondence between Tpo-fuzzy
observables and finite fuzzy valued random variables. The sum and product of
fuzzy valued random variables X and Y is given pointwise

(X +7)w) =X(@) ® Y(w), weQ, (6)
(X Y)(w)=X(w)®Y(w). (7)

On the right-side the addition and multiplication of fuzzy numbers defined by
(2) and (3) is used.

The natural question arises, whether both types of calculus for T.-fuzzy
observables are equivalent. The following statement holds.

PROPOSITION 5. Let x,y be Teo-fuzzy observables and let X,Y be finite
fuzzy valued random variables corresponding to x and y by Theorem 1. Then
the sum X +Y defined by (6) corresponds to sum x + y defined by (4).

We omit the details of the proof.

The analogous statement for the product of Two-fuzzy observables given by
(5) and the product of finite fuzzy valued random variables given by (7) is not
true in general. More details can be found in another paper.
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