

RADKO MESIAR — JÁN RYBÁRIK

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. An axiomatic approach to the pseudo-addition and the pseudo-multiplication is presented (to be a basis for further study of pseudo-additive measures and integrals). Under additional requirements we get different types of these operations, e.g. Weber's or Pap's ones. An extension to the operations of pseudo-subtraction and pseudo-division is shown.

1. Introduction

The axiomatic concepts of pseudo-addition and pseudo-multiplication on $[0,+\infty]$ suggested by Sugeno and Murofushi [5] are the extensions of well-known concepts of t-norm and t-conorm. They used them for the sake of generalization of fuzzy integral introduced by Weber [6]. Other modifications of these concepts (non-axiomatic ones) can be found in the paper by Ichihashi, Tanaka and Asai [1]. E. Pap [3, 4] applied a special pseudo-addition and pseudo-multiplication to the building up of g-calculus and described some interesting applications of it to the solution of some differential equations.

In this paper we will present a pseudo-addition and a pseudo-multiplication based on a suitable system of axioms leading to the concepts used in [1, 3, 4]. Using some results of Sugeno and Murofushi [5] we show that these conditions are equivalent to the existence of a function g generating these operations. We extend both pseudo-addition and pseudo-multiplication to the whole extended real line $[-\infty, +\infty]$. Moreover we introduce the operations of pseudo-subtraction and pseudo-division. Our results will serve as a basis for the further investigation of fuzzy measure theory.

AMS Subject Classification (1991): Primary: 28A15; Secondary: 28A25, 11A25. Key words: g-calculus, pseudo-addition, pseudo-multiplication.

2. Pseudo-addition

We begin with the operation of pseudo-addition on $[0, +\infty]$.

DEFINITION 2.1. Pseudo-addition \oplus on $[0, +\infty]$ is a binary operation on $[0, +\infty]$ satisfying the following axioms:

- (A1) $x \oplus 0 = 0 \oplus x = x, \forall x \in [0, +\infty].$
- (A2) $(x \oplus y) \oplus z = x \oplus (y \oplus z), \forall x, y, z \in [0, +\infty].$
- (A3) If $x \le x'$ and $y \le y'$ then $x \oplus y \le x' \oplus y'$ for every $x, y, x', y' \in [0, +\infty]$.
- (A4) If $x_n \to x$ and $y_n \to y$ then $x_n \oplus y_n \to x \oplus y$.
- (A5) If x > 0 and $y \in [0, +\infty)$ then there exists $n \in \mathbb{N}$ such that $\underbrace{x \oplus x \oplus \cdots \oplus x}_{n\text{-times}} \ge y$.
- (A6) If $x < +\infty$ and $y < +\infty$ then $x \oplus y < +\infty$.

The axioms (A1)-(A4) are identical to axioms (P1)-(P4) in [5]. The fifth axiom (A5) guarantees that pseudo-addition has the Archimedean property and the last of axioms (A6) is the axiom of finiteness.

Using Sugeno and Murofushi [5] we obtain the following result.

THEOREM 2.2. A binary operation \oplus on $[0, +\infty]$ fulfills axioms (A1)-(A4) iff it has a representation $\{\langle (\alpha_k, \beta_k), g_k \rangle; k \in K \}$.

DEFINITION 2.3. Let $\{(\alpha_k, \beta_k); k \in K\}$ be a family of disjoint open intervals in $[0, +\infty]$ indexed by a countable set K and let for each $k \in K$ exist a continuous and strictly increasing function

$$g_k \colon [\alpha_k, \beta_k] o [0, +\infty] \,, \quad g_k(\alpha_k) = 0 \,.$$

We say that a binary operation \oplus has a representation

$$\{\langle (\alpha_k, \beta_k), g_k \rangle; k \in K\}$$
 iff

$$x \oplus y = \begin{cases} g_k^* \big(g_k(x) + g_k(y) \big), & x, y \in [\alpha_k, \beta_k], \text{ for some } k \in K, \\ \max\{x, y\}, & \text{otherwise,} \end{cases}$$

where g_k^* is the pseudo-inverse of g_k defined by

$$g_k^*(x) = \sup\{c \in [\alpha_k, \beta_k], \ g_k(c) < x\} = g_k^{-1}(\min\{x, g_k(\beta_k)\}).$$

THEOREM 2.4. A binary operation \oplus on $[0, +\infty]$ is a pseudo-addition iff there exists a continuous and strictly increasing function

$$g: [0, +\infty] \to [0, +\infty], \quad g(0) = 0, \quad g(+\infty) = +\infty,$$

such that

$$x \oplus y = g^{-1}(g(x) + g(y))$$
 for every $x, y \in [0, +\infty]$. (1)

Proof. Let \oplus be a pseudo-addition, i.e. it satisfies the axioms (A1)–(A6). By Theorem 2.2 it has a representation $\{\langle (\alpha_k, \beta_k), g_k \rangle; k \in K \}$. When $K = \emptyset$ then

$$x \oplus y = \max\{x, y\}$$
 for every $x, y \in [0, +\infty]$,

and axiom (A5) cannot be fulfilled. Thus $K \neq \emptyset$. The fifth axiom (A5) together with the continuity (A4) are equivalent to the statement $x \oplus x > x$ for every $x \in (0, +\infty)$. Since all points α_k , β_k , $k \in K$ from representation of binary operation \oplus have the property $y \oplus y = y$ (it's easy to see from Definition 2.3) so the only way to choose them is $\alpha_1 = 0$ and $\beta_1 = +\infty$. Hence we obtain this representation in the form $\{\langle (0, +\infty), g \rangle \}$. Then it holds:

$$x \oplus y = g^*(g(x) + g(y))$$
 for every $x, y \in [0, +\infty]$,

where $q^*(x) = q^{-1}(\min\{g(+\infty), x\})$.

If $g(+\infty)=M$, M is a finite number then it follows from the continuity of function g that there exits a number $u<+\infty$ such that $g(u)>\frac{M}{2}$. Hence we have

$$u \oplus u = g^* (g(u) + g(u)) = +\infty$$

since $g(u) + g(u) > M = g(+\infty)$.

This is in contradiction with the finiteness axiom (A6). Therefore $g(+\infty) = +\infty$ and the pseudo-inverse function g^* is identical with the inverse function g^{-1} . Thus we have proved that

$$x \oplus y = g^{-1} \big(g(x) + g(y) \big)$$

holds for every $x, y \in [0, +\infty]$.

It is easy to prove that a binary operation \oplus defined by (1) satisfies axioms (A1)–(A6).

Remark 2.5. The function g generating pseudo-addition \oplus is not determined uniquely. For arbitrary positive constant $c \in (0, +\infty)$ the function $c \cdot g$ generates the same pseudo-addition \oplus . Adding the condition g(1) = 1 we have unique relation between pseudo-addition \oplus and its generator g.

RADKO MESIAR — JÁN RYBÁRIK

EXAMPLE 2.6. Let $g_r(x) = x^r$, $x \in [0, +\infty]$, r > 0.

Then this function g_r generates pseudo-addition \bigoplus_r where

$$x \underset{r}{\oplus} y = \sqrt[r]{(x^r + y^r)}, \quad x, y \in [0, +\infty].$$

3. Pseudo-multiplication

Now we define a pseudo-multiplication \odot corresponding to the given pseudo-addition \oplus .

DEFINITION 3.1. A binary operation \odot on interval $[0, +\infty]$ is said to be a pseudo-multiplication corresponding to the pseudo-addition \oplus iff it satisfies the following axioms:

- (M1) $a \odot (x \oplus y) = (a \odot x) \oplus (a \odot y), \forall a, x, y \in [0, +\infty].$
- (M2) If $a \le b$ then $a \odot x \le b \odot x$ for every $x \in [0, +\infty]$.
- (M3) $a \odot x = 0$ iff a = 0 or x = 0.
- (M4) There exists a left unit, i.e. an element $e \in [0, +\infty]$ so that $e \odot x = x$ for every $x \in [0, +\infty]$.
- (M5) If $a_n \to a \in (0, +\infty)$ and $x_n \to x$ then $a_n \odot x_n \to a \odot x$, and $(+\infty) \odot x = \lim_{a \to +\infty} (a \odot x)$.

This system of axioms was formulated by Sugeno and Murofushi [5]. Using Theorem 2.4 and Theorem 5.1 from [5] we obtain:

THEOREM 3.2. A binary operation \odot is a pseudo-multiplication corresponding to the pseudo-addition \oplus generated by generator g iff there exists a continuous and strictly increasing function

$$h: [0, +\infty] \rightarrow [0, +\infty], \quad h(0) = 0, \quad h(+\infty) = +\infty$$

such that for every $a, x \in [0, +\infty]$ it holds:

$$a \odot x = g^{-1}(h(a) \cdot g(x)).$$

A pseudo-multiplication \odot corresponding to a pseudo-addition \oplus need not be commutative.

THEOREM 3.3. A pseudo-multiplication \odot corresponding to the pseudo-addition \oplus generated by a generator g is commutative, i.e. satisfies the axiom

(M6)
$$a \odot x = x \odot a, \forall a, x \in [0, +\infty]$$

iff the function h generating the operation \odot has the form $h=c\cdot g$, where $c\in (0,+\infty)$ is a constant.

Proof. i) Let $h = c \cdot g$. Then

$$a \odot x = g^{-1}(c \cdot g(a) \cdot g(x))$$
 and $x \odot a = g^{-1}(c \cdot g(x) \cdot g(a))$.

It is evident that $x \odot a = a \odot x$.

ii) Let pseudo-multiplication \odot be commutative, i.e. $x \odot a = a \odot x$. Then $g^{-1}\big(h(a)\cdot g(x)\big) = g^{-1}\big(h(x)\cdot g(a)\big)$, hence $h(a)\cdot g(x) = h(x)\cdot g(a)$ for every $a,x\in[0,+\infty]$. For a=1 we obtain

$$h(x) = \frac{h(1) \cdot g(x)}{g(1)} = h(1) \cdot g(x) = c \cdot g(x) \,, \quad \text{where} \quad c = h(1) \in (0, +\infty) \,.$$

Moreover if we require that the unit of a pseudo-multiplication is just number 1, we obtain the following corollary.

COROLLARY 3.4. A pseudo-multiplication \odot corresponding to the pseudo-addition \oplus generated by the generator g is commutative and has the unit e=1 iff it holds:

$$a \odot x = g^{-1}(g(a) \cdot g(x))$$
 for every $a, x \in [0, +\infty]$. (2)

DEFINITION 3.5. A pseudo-multiplication \odot corresponding to the pseudo-addition \oplus given by the formula (2), where g generates the operation \oplus , is said to be *consistent with the pseudo-addition* \oplus .

EXAMPLE 3.6. Let $\oplus = \bigoplus_r$, i.e. the pseudo-addition \oplus is generated by the function $g_r(x) = x^r$, r > 0. Then the pseudo-multiplication \odot consistent with the pseudo-addition \bigoplus_r is the nothing but the common multiplication, because of

$$a \underset{r}{\odot} x = \sqrt[r]{a^r \cdot x^r} = a \cdot x$$
.

In the following theorem we show that the distributivity from the left is equivalent to the commutativity of the operation \odot .

RADKO MESIAR — JÁN RYBÁRIK

THEOREM 3.7. Let a pseudo-multiplication \odot corresponding to the pseudo-addition \oplus generated by the generator g be distributive from the left, i.e. for every $a, b, x \in [0, +\infty]$

$$(a \oplus b) \odot x = (a \odot x) \oplus (b \odot x)$$
.

Then the operation \odot is a commutative pseudo-multiplication.

Proof. By Theorem 3.2 we obtain

$$(a \oplus b) \odot x = g^{-1} (h(a \oplus b) \cdot g(x))$$

and

$$(a \odot x) \oplus (b \odot x) = g^{-1} (h(a) \cdot g(x) + h(b) \cdot g(x)).$$

Using the distributivity from the left it means that

$$h(a \oplus b) = h(a) + h(b)$$
 and $a \oplus b = h^{-1}(h(a) + h(b))$.

Then the function h generates the same operation \oplus and by Remark 2.5 it has the form $h = c \cdot g$, where $c \in (0, +\infty)$ is a constant. Theorem 3.3 implies that the pseudo-multiplication \odot is commutative.

Note that the axiom (M1), i.e. the distributivity from the right, together with the commutativity imply the distributivity from the left.

Remark 3.8. A pseudo-multiplication \odot consistent with a pseudo-addition \oplus is associative, i.e.

$$(a \odot b) \odot c = a \odot (b \odot c)$$
 for every $a, b, c \in [0, +\infty]$.

THEOREM 3.9. A pseudo-multiplication \odot corresponding to the pseudo-addition \oplus (where \oplus is generated by g) satisfies the axioms:

(M7)
$$(a+b) \odot x = (a \odot x) \oplus (b \odot x), \forall a,b,x \in [0,+\infty],$$

(M8)
$$(a \cdot b) \odot x = a \odot (b \odot x), \forall a, b, x \in [0, +\infty]$$

iff
$$h(a) = a$$
 and hence $a \odot x = g^{-1}(a \cdot g(x))$.

Proof. Applying the formula (1) and Theorem 3.2 to the axiom (M7) we obtain the equality h(a+b)=h(a)+h(b). The only continuous non-negative solution is $h(a)=c\cdot a$, where $c\in (0,+\infty)$ is a constant. By the same manner we get the equality $h(a\cdot b)=h(a)\cdot h(b)$ from the axiom (M8). Then it is $h(a)=a^d$,

where d is a positive constant. Thus h(a) = a can be the only solution of this problem. The opposite implication is trivial.

Remark 3.10. Pseudo-multiplications satisfying the axioms of Theorem 3.9 have the following property: $x \oplus x = 2 \odot x$. Weber's theory of integration based on the pseudo-additive measures uses just these pseudo-multiplications. If we also require the commutativity then the only possibility is h=g=i, what is the case of the common addition and multiplication.

EXAMPLE 3.11. Let the pseudo-addition \oplus be from Example 2.6 for r=2, i.e.

 $a\oplus b=\sqrt{(a^2+b^2)}\,,\quad a,b\in[0,+\infty]\,.$

Then the pseudo-multiplication \odot satisfying the conditions from Theorem 3.9 is given by the relation

$$a \odot x = \sqrt{a} \cdot x$$
, $a, x \in [0, +\infty]$.

and the pseudo-multiplication consistent with the pseudo-addition \oplus is the common multiplication.

Remark 3.12. The extension of the above mentioned operations on interval $[-\infty, +\infty]$ may be realized immediately. It is sufficient to extend the function g generating the pseudo-addition \oplus on the odd function putting g(x) = -g(-x) for every $x \in [-\infty, 0)$.

4. Pseudo-subtraction and pseudo-division

Now we introduce the operations of the pseudo-subtraction \ominus and pseudo-division \oslash .

DEFINITION 4.1. Let a function g be a generator of a pseudo-addition \oplus on interval $[-\infty, +\infty]$. Binary operations \ominus and \oslash on $[-\infty, +\infty]$ defined by the formulas

$$x \ominus y = g^{-1}(g(x) - g(y)) \quad \text{and}$$
 (3)

$$x \oslash y = g^{-1} \left(\frac{g(x)}{g(y)} \right) \tag{4}$$

if expressions g(x) - g(y) and $\frac{g(x)}{g(y)}$ have sense are said to be the pseudo-subtraction and pseudo-division consistent with the pseudo-addition \oplus .

RADKO MESIAR — JÁN RYBÁRIK

DEFINITION 4.2. Let $g: [-\infty, +\infty] \to [-\infty, +\infty]$ be a continuous, strictly increasing and odd function such that g(0) = 0, g(1) = 1, $g(+\infty) = +\infty$. The system of pseudo-arithmetical operations $\{\oplus, \ominus, \odot, \emptyset\}$ generated by this function is said to be the consistent system.

EXAMPLE 4.3. Let $g: g(x) = x^r$ where r is a positive and odd number. Then the system of pseudo-arithmetical operations $\{\oplus,\ominus,\odot,\odot\}$ such that

$$a \oplus b = \sqrt[r]{a^r + b^r}, \quad a \ominus b = \sqrt[r]{a^r - b^r},$$

 $a\odot b$ and $a\oslash b$ are the common multiplication and division creates the consistent system.

REFERENCES

- [1] ICHIHASHI, H.—TANAKA, H.—ASAI, K.: Fuzzy Integrals based on Pseudo-additions and multiplications, J. Math. Anal. Appl. 130 (1988), 354-364.
- [2] LING, C. H.: Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189-212.
- [3] PAP, E.: Decomposable measures and applications on nonlinear partial differential equations, Rend. Circ. Mat. Palermo (2) 28 (1992).
- [4] PAP, E.: g-calculus, Univ. u N. Sadu, Zb. radova PMF, Ser. Mat. (to appear).
- [5] SUGENO, M.—MUROFUSHI, T.: Pseudo-additive Measures and Integrals, J. Math. Anal. Appl. 122 (1987), 197-222.
- [6] WEBER, S.:

 ⊥-decomposable measures and integrals for Archimedean t-conorms

 ⊥, J. Math. Anal. Appl. 101 (1984), 114–138.

Received September 16, 1992

Slovak Technical University Department of Mathematics Radlinského 11 813 68 Bratislava SLOVAKIA

Technical University
Department of Mathematics
031 19 Liptovský Mikuláš
SLOVAKIA