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Dedicated to the memory of Tibor Neubrunn

ABSTRACT. An axiomatic approach to the pseudo-addition and the pseudo-
multiplication is presented (to be a. basis for further study of pseudo-additive
measures and integrals). Under additional requirements we get different types of
these operations, e.g. Weber’s or Pap’s ones. An extension to the operations of
pseudo-subtraction and pseudo-division is shown.

1. Introduction

The axiomatic concepts of pseudo-addition and pseudo-multiplication on
[0, +o0] suggested by Sugeno and Murofushi [5] are the extensions of
well-known concepts of ¢-norm and ¢-conorm. They used them for the sake
of generalization of fuzzy integral introduced by Weber [6]. Other modifi-
cations of these concepts (non-axiomatic ones) can be found in the paper by
Ichihashi, Tanaka and Asai [1]. E. Pap [3, 4] applied a special
pseudo-addition and pseudo-multiplication to the building up of g-calculus and
described some interesting applications of it to the solution of some differential
equations.

In this paper we will present a pseudo-addition and a pseudo-multiplication
based on a suitable system of axioms leading to the concepts used in [1, 3, 4].
Using some results of Sugeno and Murofushi [5] we show that these conditions
are equivalent to the existence of a function g generating these operations. We
extend both pseudo-addition and pseudo-multiplication to the whole extended
real line [—o0, +00] . Moreover we introduce the operations of pseudo-subtraction
and pseudo-division. Our results will serve as a basis for the further investigation
of fuzzy measure theory.
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2. Pseudo-addition

We begin with the operation of pseudo-addition on [0, +oo].
DEFINITION 2.1. Pseudo-addition @ on [0,+oco] is a binary operation on
[0, +00] satisfying the following axioms:

(Al) z0=00z ==z, Vz €[0,400].

(A2) (z@y)Dz=z&(y®=z), Vz,y,2 € [0,400].

(A3) If z <z’ and y <y then 2Dy < 2’ @y for every z,y,2',y" €

[0, +00]. '
(A4) If z, >z and y, — y then z, Py, >z Dy.

(A5) If z > 0 and y € [0,400) then there exists n € N such that
zhrxD--- Bz >vy.
—_—

n -times

(A6) If £ < 400 and y < +oo then z®y < +oo.

The axioms (A1l)-(A4) are identical to axioms (P1)—(P4) in [5]. The fifth
axiom (A5) guarantees that pseudo-addition has the Archimedean property and
the last of axioms (A6) is the axiom of finiteness.

Using Sugeno and Murofushi [5] we obtain the following result.

THEOREM 2.2. A binary operation @ on [0,+oo] fulfills axioms (A1)—(A4)
iff it has a representation {((ax,0B%),gk); k € K}.

DEFINITION 2.3. Let {(a, Bi); k € K} be a family of disjoint open intervals
in [0,400] indexed by a countable set K and let for each k¥ € K exist a
continuous and strictly increasing function

9k [k, Br] — [0,+00],  gr(ek) =0.
We say that a binary operation & has a representation

{{(ax, Br), gr); k € K} iff

B gi (gk(z) +9k()), =,y € [ok, Bx), for some k € K,
max{z,y}, otherwise,

where g;, is the pseudo-inverse of g, defined by

gk(x) = sup{c € [ow, Bi], gr(c) < z} = gy * (min{z, gi(Br)}) -
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THEOREM 2.4. A binary operation @ on [0,+oo] is a pseudo-addition iff
there exists a continuous and strictly increasing function

g: [0,+00] — [0,+00], ¢(0) =0, g(+00)=+o0,
such that

Thy= g_l(g(:c) + g(y)) for every z,y € [0,400]. (1)

Proof. Let & be a pseudo-addition, i.e. it satisfies the axioms (A1)—(AS6).
By Theorem 2.2 it has a representation {((a, ), 9x); k € K}. When K =0
then

z ®y = max{z,y} for every z,y € [0, +o0],

and axiom (A5) cannot be fulfilled. Thus K # (0. The fifth axiom (A5) together
with the continuity (A4) are equivalent to the statement =z @ = > z for every
z € (0,400). Since all points ap, fr, kK € K from representation of binary
operation @ have the property y ®y =y (it’s easy to see from Definition 2.3)
so the only way to choose them is a; = 0 and 3; = +o0o. Hence we obtain this
representation in the form {((0,+o0),g)}. Then it holds:

rDy=g" (g(z) <+ g(y)) for every z,y € [0, +o0],

where g*(z) = g~ (min{g(+00), 2}) .
If g(+00) =M, M is a finite number then it follows from the continuity of
function g that there exits a number u < +o0o such that g(u) > % Hence we

have
u®u=g*(g(u)+ g(u)) = +oo

since g(u) + g(u) > M = g(+00).
This is in contradiction with the finiteness axiom (A6). Therefore g(+o0) = ++oo
and the pseudo-inverse function g* is identical with the inverse function g~!.

Thus we have proved that

cdy=g"(9(z) +9(v))

holds for every z,y € [0,+00].
It is easy to prove that a binary operation @ defined by (1) satisfies axioms

(A1)-(AS6). O

Remark 2.5. The function g generating pseudo-addition @ is not deter-
mined uniquely. For arbitrary positive constant ¢ € (0,4-00) the function c-g
generates the same pseudo-addition @ . Adding the condition g(1) =1 we have
unique relation between pseudo-addition @ and its generator g¢.
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EXAMPLE 2.6. Let g.(z) =2", z € [0,+00], r > 0.

Then this function g, generates pseudo-addition @ where
T

r®y=1/(z"+y"), =z,y€[0,+0c0]. '
T

3. Pseudo-multiplication

Now we define a pseudo-multiplication ® corresponding to the given pseudo-
addition & .

DEFINITION 3.1. A binary operation ® on interval [0,+o0] is said to be a
pseudo-multiplication corresponding to the pseudo-addition @ iff it satisfies the
following axioms:

(ML) 66 (z@y)=(202)®(@0y), Ya,z,y € [0,+o].
(M2) If a<bthen a®@z <bOz for every z € [0, +00].
(M3) a@z=0if a=0 or z=0.

(M4) There exists a left unit, i.e. an element e € [0,+o00] so that e®@z =z
for every z € [0, +o0].

(M5) If a, — a € (0,400) and z, — = then a, ®z, — a® z, and
(+o0) @z = lir_*l:l (a®@z).
a—-1+00

This system of axioms was formulated by Sugeno and Murofushi [5]. Using
Theorem 2.4 and Theorem 5.1 from [5] we obtain:

THEOREM 3.2. A binary operation ® is a pseudo-multiplication correspond-
ing to the pseudo-addition & generated by generator g iff there exists a con-
tinuous and strictly increasing function

h: [0,4+00] — [0,+00], h(0)=0, h(+o0)= 400
such that for every a,z € [0,+o00| it holds:

a@z =g '(h(a) - g(z)).

A pseudo-multiplication ® corresponding to a pseudo-addition @ need not
be commutative.
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THEOREM 3.3. A pseudo-multiplication ® corresponding to the pseudo-
addition @ generated by a generator g is commutative, i.e. satisfies the axiom

(M6) a®z=z®a, Ya,z € [0, +00]
iff the function h generating the operation ® has the form h = c- g, where
¢ € (0,400) is a constant.

Proof. i)Let h=c-g. Then

a@z=g" (c - g(a) - g(a:)) and zO®a= g_l(c - g(z) -g(a)).

It is evident that x@a=a 0O z.
ii) Let pseudo-multiplication ® be commutative, i.e. £ ®a = a ® . Then

g7 (h(a) - g(x)) = g7 (h(z) - g(a)), hence h(a) - g(z) = h(z) - g(a) for every
a,z € [0,+00]. For a = 1 we obtain

hiz) = %@ =h(1)-g(z) =c-g(z), where c=h(1)e€ (0,+0c0).

O

Moreover if we require that the unit of a pseudo-multiplication is just number
1, we obtain the following corollary.

COROLLARY 3.4. A pseudo-multiplication ® corresponding to the pseudo-
addition @ generated by the generator g is commutative and has the unit
e =1 iff it holds:

a®z= g_l(g(a) g(m)) for every a,z € [0,400]. (2)

DEFINITION 3.5. A pseudo-multiplication ® corresponding to the pseudo-
addition @ given by the formula (2), where g generates the operation @, is
said to be consistent with the pseudo-addition @ .

EXAMPLE 3.6. Let @ = @, i.e. the pseudo-addition @ is generated by the
T
function g.(z) = z", r > 0. Then the pseudo-multiplication ® consistent with
. T
the pseudo-addition @ is the nothing but the common multiplication, because
T
of

a@r=+va" -z"T=a-zx.

r

In the following theorem we show that the distributivity from the left is
equivalent to the commutativity of the operation ®.
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THEOREM 3.7. Let a pseudo-multiplication ® corresponding to the pseudo-
addition @ generated by the generator g be distributive from the left, i.e. for
every a,b,z € [0, +00]

(c®b)Oz=(aGz)d (bOz).

Then the operation ® is a commutative pseudo-multiplication.

Proof. By Theorem 3.2 we obtain
(a®b)Oz= g_l(h(a ob)- g(a:))
and
(@@z)® (boz)=g7"(h(a) - g(z) + h(b) - g(x)) -
Using the distributivity from the left it means that
h(a ® b) = h(a) + h(b) and a®b=nh""(h(a)+ h(b)).

Then the function h generates the same operation @ and by Remark 2.5 it has
the form h = c- g, where ¢ € (0,4+00) is a constant. Theorem 3.3 implies that
the pseudo-multiplication ® is commutative. O

Note that the axiom (M1), i.e. the distributivity from the right, together with
the commutativity imply the distributivity from the left.

Remark 3.8. A pseudo-multiplication ® consistent with a pseudo-addition
@ is associative, i.e.

(@a@b)@c=a@(bOCc) for every a,b,c € [0, +00].

THEOREM 3.9. A pseudo-multiplication ® corresponding to the pseudo-
addition @ (where @ is generated by g) satisfies the axioms:

(M7) (a+b)Oz=(a@z)® (bOz), Va,b,z € [0,+00],

(M8) (a-b)0oz=a0(bOz), Va,b,z € [0, +0o0]
iff h(a) = a and hence a ®z = g~ (a - g(x)).

Proof. Applying the formula (1) and Theorem 3.2 to the axiom (M7) we
obtain the equality h(a + b) = h(a) + h(b). The only continuous non-negative

solution is h(a) = c-a, where ¢ € (0,+400) is a constant. By the same manner we
get the equality h(a-b) = h(a)-h(b) from the axiom (M8). Then it is h(a) = a2,
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where d is a positive constant. Thus h(a) = a can be the only solution of this
problem. The opposite implication is trivial. O

Remark 3.10. Pseudo-multiplications satisfying the axioms of Theorem 3.9
have the following property: @z = 2(® . Weber’s theory of integration based
on the pseudo-additive measures uses just these pseudo-multiplications. If we
also require the commutativity then the only possibility is h = g = ¢, what is
the case of the common addition and multiplication.

EXAMPLE 3.11. Let the pseudo-addition @ be from Example 2.6 for r =2,

ie.
a®b=+/(a%2+b2), a,be]0,+00].

Then the pseudo-multiplication ® satisfying the conditions from Theorem 3.9
is given by the relation

a®@z=+a-z, a,z€]|0,+00].

and the pseudo-multiplication consistent with the pseudo-addition & is the com-
mon multiplication.

Remark 3.12. The extension of the above mentioned operations on interval
[—00, +060] may be realized immediately. It is sufficient to extend the function g
generating the pseudo-addition @ on the odd function putting g(z) = —g(—z)
for every z € [—00,0).

4. Pseudo-subtraction and pseudo-division

Now we introduce the operations of the pseudo-subtraction © and pseudo-
division @©.

DEFINITION 4.1. Let a function g be a generator of a pseudo-addition & on
interval [—oo,+00]. Binary operations © and @ on [—oco,+oo| defined by the
formulas

z0y=g "(9(z) —g(y)) and (3)
1 (9(=)
orer () 4
=7 e )
if expressions g¢(z) — g(y) and % have sense are said to be the pseudo-

subtraction and pseudo-division consistent with the pseudo-addition @.
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DEFINITION 4.2. Let g: [—0co,+00] — [—00,+00] be a continuous, strictly
increasing and odd function such that g(0) = 0, g(1) = 1, g(+00) = +oo.
The system of pseudo-arithmetical operations {®,0,®,®} generated by this
function is said to be the consistent system.

EXAMPLE 4.3. Let g: g(z) = z" where r is a positive and odd number. Then
the system of pseudo-arithmetical operations {®, 9,0, @} such that

w@Ob= Va1 F, acb= Vo=,

a®b and a@b are the common multiplication and division creates the consistent
system.
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