

A REPREENTATION OF FUZZY QUANTUM POSETS OF TYPE I, II

LE BA LONG

ABSTRACT. Let (Ω,M) be a fuzzy quantum poset of type I, II, or FQP of type I,II for short. For Boolean representations of fuzzy quantum spaces, see [5]. By a representation of (Ω,M) we mean a quantum logic \mathcal{M} (i.e. an orthocomplemented $\sigma-orthocomplete$ orthomodular poset, see [7]) with a homomorphism h: $M \xrightarrow{\text{onto}} \mathcal{M}$ such that for any state s on M and any observable \overline{X} on \mathcal{M} there is a state \overline{s} on \mathcal{M} and observable X on M such that the following diagram commutes (where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of the real line \mathbb{R}).

We prove that a representation of FQP of type I always exists and representation of FQP of type II exists in some cases.

1. Preliminaries.

We recall that two fuzzy sets a,b are said to be fuzzy orthogonal, we write $a \perp_F b$, iff $a \cap b := \inf(a, b) \leq 1/2$ and orthogonal, we write $a \perp b$, iff $a \leq b^{\perp}$.

Let Ω be a non-empty set, M be a system of fuzzy sets, $M\subseteq [0,1]^{\Omega}$, such that

(i) $\mathbf{1}(\omega) = 1$ for any $\omega \in \Omega$ then $\mathbf{1} \in M$;

Key words: Type I, II fuzzy quantum poset, fuzzy quantum space, quantum logic, q- σ -algebra, observable, state.

(ii) $a \in M$ then $a^{\perp} := 1 - a \in M$;

(iii) $1/2(\omega) = 1/2$ for any $\omega \in \Omega$ then $1/2 \notin M$;

a set $M \subseteq [0,1]^{\Omega}$ satisfying conditions (i)–(iii) is said to be an FQP of type II (of type II) if it is closed with respect to a union of any sequence of mutually fuzzy orthogonal (mutually orthogonal) fuzzy sets, respectively, where by union we mean the union of Zadeh's connective. If M is closed with respect to a union of any sequence of fuzzy sets from M then M is said to be a fuzzy quantum space, or FQS for short.

It is clear that $a \perp b$ then $a \perp_F b$ for any $a, b \in M$. So, an FQP of type I is an FQP of type II and an FQS is an FQP of type I. See [1,3,4,6].

An observable X on (Ω, M) is a mapping $X : \mathcal{B}(\mathbb{R}) \to M$ such that

(i) $X(E^c) = X(E)^{\perp}$ for any Borel set $E \in \mathcal{B}(\mathbb{R})$;

(ii)
$$X\left(\bigcup_{i=1}^{\infty} E_i\right) = \bigcup_{i=1}^{\infty} X(E_i)$$
 for any sequence $\{E_i\}_{i=1}^{\infty} \in \mathcal{B}(\mathbb{R})$.

Denote $\mathfrak{O}(M)$ be the set of all observables on (Ω, M) .

A mapping $m: M \to [0,1]$ is said to be a state of type I,II on (Ω, M) if

(i) $m(a) + m(a^{\perp}) = 1$ for any $a \in M$;

(ii)
$$m\left(\bigcup_{i=1}^{\infty}a_i\right)=\sum_{i=1}^{\infty}m(a_i)$$
 for any sequence of mutually fuzzy orthogonal, orthogonal fuzzy sets $\{a_i\}_{i=1}^{\infty}\subseteq M$, respectively.

Denote $\mathfrak{S}_{I}(M)$, $\mathfrak{S}_{II}(M)$ be the set of all states of type I,II on (Ω, M) , respectively.

PROPOSITION 1. Let (Ω, M) be an FQP of type I then,

- (i) $\mathfrak{S}_I(M) \subseteq \mathfrak{S}_{II}(M)$;
- (ii) if (Ω, M) is an FQS then $\mathfrak{S}_I(M) = \mathfrak{S}_{II}(M)$.

Now let (Ω, M) be an FQP of type I or FQP of type II such that

$$a \cap c \in M$$
 for any $a, c \in M, c \geqslant 1/2$. (2)

Consider a relation $\sim \subseteq M \times M$ defined by

$$a \sim b$$
 iff $a \cap b^{\perp}$, $a^{\perp} \cap b \leq 1/2$.

It is clear that (i) $a \sim a$ for any a from M; (ii) if $a \sim b$, then $a^{\perp} \sim b^{\perp}$; (iii) if $a \sim b$, then $b \sim a$, but \sim is not transitive, in general. Let \approx be the

A REPREENTATION OF FUZZY QUANTUM POSETS OF TYPE I. II

transitive closure of \sim , i.e., the smallest quivalence relation on M containing \sim . It is obvious that $a \approx b$ iff there are $a_1, a_2, \ldots, a_n \in M$ such that $a \sim a_1$, $a_1 \sim a_2, \ldots, a_n \sim b$.

It can be proved that $a \approx b$ iff there is an $c \in M$, $c \ge 1/2$ such that

$$a \cap b^{\perp} \cap c$$
, $a^{\perp}b \cap c \leq 1/2$;

or equivalently $\left\{a\cap b^{\perp}>1/2\right\}\bigcup\left\{a^{\perp}\cap b>1/2\right\}\subseteq\left\{c=1/2\right\},$ where $\left\{a\cap b^{\perp}>1/2\right\}:=\left\{\omega\in\Omega;(a\cap b^{\perp})(\omega)>1/2\right\},$ etc..

Note that if we consider $\Omega = [0, 1]$;

$$a(\omega) = \begin{cases} 0.7 & \text{if } 0 \le \omega < 0.6 \\ 0.3 & \text{if } 0.6 \le \omega \le 1; \end{cases} \qquad b(\omega) = \begin{cases} 0.4 & \text{if } 0 \le \omega < 0.6 \\ 0.6 & \text{if } 0.8 \le \omega \le 1; \end{cases}$$

 $c=a\cup a^\perp\,;\;d=b\cup b^\perp\,;\;e=d\cap a\,;\;f=d\cap a^\perp\,;\;g=a\cup f\,;\;h=b\cup e\,;\;i=e\cup d^\perp\,;\;k=e\cup e^\perp$ then

$$M = \{\mathbf{0}, \mathbf{1}, a, b, c, d, e, f, g, h, i, k, a^{\perp}, b^{\perp}, c^{\perp}, d^{\perp}, e^{\perp}, f^{\perp}, g^{\perp}, h^{\perp}, i^{\perp}, k^{\perp}\}$$

is an FQP of type II with (2) but not a type I.

The following results can be proved by the same ways as proofs in [2].

PROPOSITION 2. The transitive closure \approx is a proper congruence relation in M.

Now, for any $a \in M$, we put $\overline{a} := \{b \in M; b \approx a\}$, and $\mathcal{M} := \{\overline{a}; a \in M\}$. In \mathcal{M} we define a relation \leq via

$$\overline{a} \leq \overline{b}$$
 iff there is an $c \geqslant 1/2$ and $a \cap b^{\perp} \cap c \leqslant 1/2$

and the mapping $\bot : \mathcal{M} \to \mathcal{M}$ defined via $\overline{a} \mapsto \overline{a}^{\bot}, a \in M$ then \le and \bot are well-defined. It is easy to check that \le is an order relation and \bot is an orthocomplementation on \mathcal{M} .

LEMMA 3. Let (Ω, M) be an FQP of type I or FQP of type II with (2)

- (i) for any $a, c \in M, c \ge 1/2; a \approx a \cap c \cup c^{\perp}$;
- (ii) for any $a, b \in M, \overline{a} \leq \overline{b}$ then there are $a_1, b_1 \in M$ such that $a_1 \approx a, b_1 \approx b$ and $a_1 \leq b_1$.

Proof. (i) is clear. (ii) Since $\overline{a} \leq \overline{b}$, there is $c \in M$; $c \geq 1/2$ such that $a \cap b^{\perp} \cap c \leq 1/2$, then $a_1 := a \cap c \cup c^{\perp}$ and $b_1 := b \cap c \cup c^{\perp}$ satisfy conditions of theorem.

THEOREM 4. Let (Ω, M) be an FQP of type I or FQP of type II with (2) then \mathcal{M} equipped with an order relation \leq and an orthocomplementation \perp is a quantum logic with the least element $\overline{\mathbf{0}}$ and the greatest element $\overline{\mathbf{1}}$ and $h: M \to \mathcal{M}$ defined via $a \mapsto \overline{a}$ is an σ – homomorphism from M onto M (i.e. $h(a^{\perp}) = h(a)^{\perp}$ and $h\left(\bigcup_{i=1}^{\infty} a_i\right) = \bigcup_{i=1}^{\infty} h(a_i)$ for any sequence of mutually fuzzy orthogonal, orthogonal fuzzy sets, respectively).

Let (Ω, M) be an FQP of type II, we put

$$\mathcal{K}(M) = \{ A \subseteq \Omega; \exists a \in M; \{ a > 1/2 \} \subseteq A \subseteq \{ a \geqslant 1/2 \} \}$$

$$\mathcal{I}(M) = \{ A \subseteq \Omega; \exists a \in M; A \subseteq \{ a = 1/2 \} \}.$$
(3)

There are two constructions of representations of FQP [1,2]. The following Proposition shows that they are equivalent.

PROPOSITION 5. Let $(\hat{\Omega}, M)$ be an FQP of type I or FQP of type II with (2) then

- (i) $\mathcal{K}(M)$ is a q- σ -algebra and $\mathcal{I}(M)$ is an σ -ideal of $\mathcal{K}(M)$ (i.e. $\mathcal{K}(M)$ is a system of subsets of Ω which is closed with respect to complementation and countable union of mutually disjoint subsets, $\mathcal{I}(M)$ is a nonempty subset of $\mathcal{K}(M)$ closed with respect to countable union of mutually disjoint subsets and if $A \in \mathcal{K}(M)$, $B \in \mathcal{I}(M)$, $A \subseteq B$ then $A \in \mathcal{I}(M)$.
- (ii) Consider a mapping $g: \mathcal{K}(M) \to \mathcal{M}$, defined via $A \mapsto \overline{a}$, where A, a satisfy (3) then g defines well a σ homomorphism from $\mathcal{K}(M)$ onto \mathcal{M} and $g^{-1}(\overline{0}) = \mathcal{I}(M)$. Moreover, we consider on $\mathcal{K}(M)$ a relation θ : for any $A, B \in \mathcal{K}(M)$, $A\theta B$ iff $A \setminus B$, $B \setminus A \in \mathcal{I}(M)$ then θ is a congruence relation on $\mathcal{K}(M)$. Put, for any $A \in \mathcal{K}(M)$,

$$\overline{A}:=\{B\in\mathcal{K}(M);\,B\theta A\}\quad ext{and}\quad \mathcal{K}(M)/\theta:=\{\overline{A};\,A\in\mathcal{K}(M)\}$$
 Define

$$\overline{A}^{\perp} := \overline{A^c} \quad \text{and} \quad \overline{A} \leq \overline{B} \quad \text{iff} \quad A \setminus B \in \mathcal{I}(M),$$

then \perp, \leq is well defined an orthocomplementation and an order relation on $\mathcal{K}(M)/\theta$ such that $\mathcal{K}(M)/\theta$ with \perp, \leq is a quantum logic and the following diagram commutes

$$\mathcal{K}(M) \xrightarrow{g} \mathcal{M}$$
 $Pr \uparrow \simeq \mathcal{K}(M)/\theta$

where Pr is a projection.

2. A representation of type I, II FQP

THEOREM 6. Let (Ω, M) be an FQP of type I or FQP of type II with (2) then for any observable \overline{X} on M there is an observable X on M such that $\overline{X} = h \circ X$, where h M from Theorem 4.

Proof. Let \overline{X} be an observable on \mathcal{M} and \mathbb{Q} be the set of rational numbers. Consider $\overline{a_r} := \overline{X}\big((-\infty,r)\big)$, $r \in \mathbb{Q}$, then $\overline{a_r} \leq \overline{a_s}$ if $r \leq s$. Owing to Lemma 3, we can set up a sequence $b_r, r \in \mathbb{Q}$ such that $h(b_r) = \overline{a_r}$ and $b_r \leq b_s$ if $r \leq s$. Due to Theorem 1.4 [7], Theorem 4.5 [4], there is an observable X on M such that $X\big((-\infty,r)\big) = b_r$. Therefore, $\overline{X} = h \circ X$.

THEOREM 7. Let (Ω, M) be an FQP of type I then for any $m \in \mathfrak{S}_I(M), \overline{m}$: $\mathcal{M} \to [0,1]$ defined by $\overline{m}(\overline{a}) = m(a), a \in M$ is a state on M. Conversely, for any $s \in \mathfrak{S}_1(M)$ there is a state $m \in \mathfrak{S}_1(M)$ such that $\overline{m} = s$.

Proof. The theorem can be proved by the same ways as proofs in [1].

COROLLARY 8. Let (Ω, M) be an FQP of type II with (2) such that for any $m \in \mathfrak{S}_{II}(M)$; for any $a, b \in M$; $a \cap b^{\perp} \leq 1/2$, $a^{\perp} \cap b \leq 1/2$ imply m(a) = m(b) then for any $m \in \mathfrak{S}_{II}(M)$, $\overline{m} : \mathcal{M} \to [0, 1]$ defined by $\overline{m}(\overline{a}) = m(a)$, $a \in M$ is a state on M.

Conversely, for any $s \in \mathfrak{S}(\mathcal{M})$ there is a state $m \in \mathfrak{S}_2(M)$ such that $\overline{m} = s$.

THEOREM 9. Let (Ω, M) be an FQP of type I or FQP of type II satisfying conditions of Corollary 8 then \mathcal{M} with σ -homomorphism h from Theorem 4 is a representation of M.

3. Conclusion

We have solved the problem of representation of FQP of type I and some kinds of FQP of type II. We can also point out that there is an FQP of type II which has no representation. Finally, natural questions arise: Is any quantum logic a representation of some FQP? We note that in [7], Th. 2.2.5 it is proved that every logic is a surjective homomorphic image of a concrete logic. But the conditions of a representation in our sense are not satisfied in general.

REFERENCES

[1] DVUREČENSKIJ, A.: Remarks on representation of fuzzy quantum posets, (Submitted).

LE BA LONG

- [2] DVUREČENSKIJ, A.—LONG, L. B.: Onrepresentations of fuzzy quantum posets, Acta Math. Univ. Comenianae 58-59 (1991), 239-245.
- [3] LONG, L. B.: A new approach to representation of observables on fuzzy quantum posets, Aplikace matematiky, (to appear).
- [4] LONG, L. B.: Compatibility and representation of observable on type I, II, III of fuzzy quantum posets, Fuzzy Sets and Systems, (Submitted).
- [5] NAVARA, M.: Boolean representation of fuzzy quantum space, (to appear).

Man and the first of the second of the secon

- [6] RIEČAN, B.: A new approach to some notions of statistical quantum mechanics, BUSE-FAL 35 (1988), 4-6.
- [7] VARADARAJAN, V. S.: Geometry of Quantum Theory, Van Nostrand, New York, 1968.
- [8] PTÁK, P.—PULMANNOVÁ, S.: Orthomodular Structures as Quantum Logics, Kluwer, 1991.

Mathematical institute Slovak Academy of Sciences Štefániková 49 CS-87473 Bratislava ČSFR

Permanent address: Khoa toán DHSP Huế VIETNAM