

TOPOLOGIES GENERATED BY THE FAMILY OF ALL \mathcal{I} -SPARSE SETS

E. ŁAZAROW

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. In [1] Filipczak introduced the definition of the \mathcal{I} -proximally continuous function. In this note we define the coarsest topology making the family of \mathcal{I} -proximally continuous functions continuous.

Let \mathbb{R} denote the real line and let \mathbb{N} denote the family of all positive integers. All topological notations are given with respect to the natural topology except for the case where a topology T is specifically mentioned.

We introduce the following notations:

- \mathcal{I} the σ -ideal of subsets of \mathbb{R} of the first category,
- ${\mathcal S}$ the σ -field of subsets of ${\mathbb R}$ having the Baire property.

We start with the definition of the \mathcal{I} -density point which was introduced by W. Wilczyński in [4].

DEFINITION 1 [4]. We shall say that 0 is a point of \mathcal{I} -density of a set $A \in \mathcal{S}$ if and only if for each unbounded sequence of positive integers $\{n_m\}_{m \in \mathcal{N}}$, there exists a subsequence $\{n_m\}_{p \in \mathcal{N}}$ such that

$$\{x\colon \chi_{n_{m_p}\cdot A_\cap[-1,1]}(x)\nrightarrow 1\}\in\mathcal{I}.$$

A point x_0 is a point of \mathcal{I} -density of a set $A \in \mathcal{S}$ if and only if 0 is a point of \mathcal{I} -density of the set $A - x_0$. A point x_0 is a point of \mathcal{I} -dispersion of a set $A \in \mathcal{S}$ if and only if x_0 is a point of \mathcal{I} -density of the set $\mathbb{R} \setminus A$.

AMS Subject Classification (1991): 26A21. Key words: \mathcal{I} -density topology, \mathcal{I} -sparse topology, \mathcal{I} -proximally continuous functions.

E. ŁAZAROW

LEMMA 2 [4]. A point 0 is a point of \mathcal{I} -density of a set $A \in \mathcal{S}$ if and only if, for each sequence of positive real numbers $\{t_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} t_n = \infty$, there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that

$$\{x \colon \chi_{t_{n_m} \cdot A \cap [-1,1]}(x) \nrightarrow 1\} \in \mathcal{I}.$$

Let $\{E_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence of sets and let $x\in\mathbb{R}$. We observe that $\chi_{E_n}(x) \nrightarrow 1$ if and only if $\liminf_{n\to\infty} \chi_{E_n}(x) = 0$, which is equivalent to $x\in \limsup_{n\to\infty} (\mathbb{R}\backslash E_n)$.

DEFINITION 3 [1]. A point $x \in \mathbb{R}$ is an upper \mathcal{I} -density point of a set $E \in \mathcal{S}$ if and only if there exists a sequence $\{t_n\}_{n \in \mathcal{N}}$ of real numbers, such that $\lim_{n \to \infty} t_n = \infty$ and $\mathbb{R} \setminus \liminf_{n \to \infty} t_n \cdot (E - x) \cap [-1, 1] \in \mathcal{I}$. Then we denote $d_{\mathcal{I}}^*(E, x) = 1$.

A point x is a lower \mathcal{I} -dispersion point of a set $E \in \mathcal{S}$ if and only if x is the upper \mathcal{I} -density point of $\mathbb{R} \setminus E$. Then we write $d_{\mathcal{I}^*}(E, x) = 0$.

We observe that, for each $E\in\mathcal{S}$, $d_{\mathcal{I}^*}(E,x)=0$ if and only if there exists a sequence $\{t_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty}t_n=\infty$ and

$$\limsup_{n\to\infty} t_n \cdot (E-x) \cap [-1,1] \in \mathcal{I}.$$

DEFINITION 4 [1]. A set $E \in \mathcal{S}$ is said to be \mathcal{I} -sparse at a point $x \in \mathbb{R}$ if and only if, for each $F \in \mathcal{S}$, if $d_{\mathcal{I}^*}(F,x) = 0$, then $d_{\mathcal{I}^*}(E \cup F,x) = 0$. Let, for $A \in \mathcal{S}$,

$$\Phi_{\mathcal{I}}(A) = \left\{ x \in \mathbb{R} \colon \mathbb{R} \backslash A \text{ is } \mathcal{I}\text{-sparse at } x \right\}.$$

THEOREM 5 [1]. The family $T = \{\Phi_{\mathcal{I}}(A) \setminus P : A \in \mathcal{S}, P \in \mathcal{I}\}$ is a topology on \mathbb{R} and (\mathbb{R}, T) is Hausdorff but is not a regular space.

DEFINITION 6 [1], [2]. We shall say that a function f is \mathcal{I} -proximally continuous if and only if f is a continuous function with respect to the T topology. The family of all \mathcal{I} -proximally continuous functions will be denoted by \mathcal{C}_T .

Since the T topology is not regular, we see that it is not the coarsest topology for the family \mathcal{C}_T . To find the coarsest topology for the family \mathcal{C}_T , we need the following lemmas and theorems.

TOPOLOGIES GENERATED BY THE FAMILY OF ALL $\mathcal{I} ext{-SPARSE}$ SETS

LEMMA 7. Let $\{t_n\}_{n\in\mathbb{N}}$ be an arbitrary increasing sequence of real numbers such that $\lim_{n\to\infty} t_n = \infty$ and let $A,B\in\mathcal{S}$ be such that $A\triangle B\in\mathcal{I}$. If $\limsup_{n\to\infty} t_n\cdot A\in\mathcal{I}$, then $\limsup_{n\to\infty} t_n\cdot B\in\mathcal{I}$.

Proof. We assume that $\limsup_{n\to\infty}t_n\cdot A\in\mathcal{I}$. Then

$$\limsup_{n \to \infty} t_n \cdot B = \limsup_{n \to \infty} t_n \cdot (B \backslash A) \cup \limsup_{n \to \infty} t_n \cdot (A \cap B)$$

$$\subset \limsup_{n \to \infty} t_n \cdot (B \backslash A) \cup \limsup_{n \to \infty} t_n \cdot A.$$

Thus, by $A \triangle B \in \mathcal{I}$, we have $\limsup_{n \to \infty} t_n \cdot B \in \mathcal{I}$.

LEMMA 8. Let $A = G \triangle P$, where G is an open set and $P \in \mathcal{I}$. Then the set A is \mathcal{I} -sparse at a point $x \in \mathbb{R}$ if and only if, for each open set H, if $d_{\mathcal{I}}^*(H,x) = 0$, then $d_{\mathcal{I}^*}(Y \cup G,x) = 0$.

Proof. Let A be an \mathcal{I} -sparse set at a point $x \in \mathbb{R}$ and H an open set such that $d_{\mathcal{I}^*}(H,x)=0$. Then, by Definition 4, $d_{\mathcal{I}^*}(H\cup A,x)=0$. Since $(H\cup A)\triangle(H\cup G)\in \mathcal{I}$, by Lemma 7, we have that $d_{\mathcal{I}^*}(H\cup G,x)=0$. Now, we assume that, for each open set H, if $d_{\mathcal{I}^*}(H,x)=0$, then $d_{\mathcal{I}^*}(H\cup G,x)=0$. Let $F\in \mathcal{S}$ be an arbitrary set such that $d_{\mathcal{I}^*}(F,x)=0$. Then there exists an open H such that $F\triangle H\in \mathcal{I}$. Therefore, by Lemma 7, we have that $d_{\mathcal{I}^*}(H,x)=0$ and, by our assumption, $d_{\mathcal{I}^*}(H\cup G,x)=0$. Since $(F\cup A)\triangle(H\cup G)\in \mathcal{I}$, we have $d_{\mathcal{I}^*}(A\cup F,x)=0$. Therefore the set A is \mathcal{I} -sparse at x.

T. Filipczak [1] showed that the operator $\Phi_{\mathcal{I}}$ is a lower density [3] in \mathcal{S} , thus we have the following lemma.

Lemma 9. $T = \{A \in \mathcal{S} : A \subset \Phi_{\mathcal{I}}(A)\}$.

Let $\tau = \{A \in T : \text{ for each } x \in A, \text{ there exists an open set } U \text{ such that } \mathbb{R} \setminus A \subset U \text{ and } x \in \Phi_{\mathcal{I}}(\mathbb{R} \setminus U) \}$.

THEOREM 10. (Luzin–Menchoff). Let A be an arbitrary set and F a closed set such that $F \subset A$. If, for each $x \in F$, there exists an open set H such that $\mathbb{R} \setminus A \subset \operatorname{cl}(H)$ and $x \in \Phi_{\mathcal{I}}(\mathbb{R} \setminus H)$, then there exists a perfect set P such that $F \subset P \subset A$ and $F \subset \Phi_{\mathcal{I}}(P)$.

Proof. For each $x \in \mathbb{R} \backslash A$, let

$$\delta_x = \begin{cases} \varrho^2(x, F) & \text{if } \varrho(x, F) < \frac{1}{2} \\ \frac{1}{4} & \text{if } \varrho(x, F) \ge \frac{1}{2} \end{cases}$$

and let $G = \bigcup_{x \in \mathbb{R} \setminus A} (x - \delta_x, x + \delta_x)$. Then $\mathbb{R} \setminus A \subset G$. For each $x \in \mathbb{R} \setminus A$, $\varrho(x, F) > \delta_x$ and, therefore, $F \cap G = \emptyset$.

We shall show that $F \subset \Phi_{\mathcal{I}}(\mathbb{R} \setminus G)$. Let $x_0 \in F$. We assume that $x_0 = 0$. Then there exists an open set H such that $\mathbb{R} \setminus A \subset \operatorname{cl}(H)$ and H is \mathcal{I} -sparse at 0. Let B be an open set such that $d_{\mathcal{I}^*}(B,0) = 0$. Then $d_{\mathcal{I}^*}(B \cup H,0) = 0$, which means that there exists a sequence of positive real numbers $\{t_n\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} t_n = \infty$ and $\limsup_{n \to \infty} t_n \cdot (H \cup B) \cap [-1,1] \in \mathcal{I}$. Since H and B are open sets, we have that $\limsup_{n \to \infty} t_n \cdot (H \cup B) \cap [0,1]$ is a nowhere dense set. We suppose that there exists an open interval $(a,b) \subset [-1,1]$ such that $\limsup_{n \to \infty} t_n \cdot (B \cup G) \cap (a,b)$ is a dense subset of the interval (a,b). We may assume that $(a,b) \subset (0,1)$. Since $\lim_{n \to \infty} \sup_{n \to \infty} t_n \cdot (B \cup H) \cap (a,b)$ is a nowhere dense subset of (a,b), there exist a number $t_n \in \mathbb{N}$

 $k_0\in\mathbb{N}$ and an interval $(c,d)\subset(a,b)$ such that $\bigcup_{n=k_0}^\infty t_n\cdot(B\cup H)\cap(c,d)=\emptyset$.

We know that there exists $y \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} t_n \cdot (B \cup G) \cap (c, d)$. Thus, for each $k \in \mathbb{N}$, there exists $n_k > k$ such that $y \in t_{n_k} \cdot (B \cup G) \cap (c, d)$. Since, for each $k > k_0$, $t_{n_k} \cdot B \cap (c, d) = \emptyset$, we have that, for each $k > k_0$, $y \in t_{n_k} \cdot G \cap (c, d)$.

Let $k>k_0$. Since $y\in t_{n_k}\cdot G=\bigcup_{x\in\mathbb{R}\backslash A}t_{n_k}\cdot (x-\delta_x,\,x+\delta_x)$ we have that there exists $x_k\in\mathbb{R}\backslash A$ such that $y\in t_{n_k}\cdot (x_k-\delta_{x_k},\,x_k+\delta_{x_k})$. By $\delta_{x_k}\leq \varrho^2(x_k,F)\leq x_k^2$, we have

$$0 < t_{n_k} \cdot x_k \cdot (1 - x_k) \le t_{n_k} \cdot (x_k - \delta_{x_k}) < y.$$

We observe that, for each $k \in \mathbb{N}$, if $x_k \geq \frac{1}{2}$, then, by $\delta_{x_k} \leq \frac{1}{4}$, we have $x_k - \delta_{x_k} \geq \frac{1}{4}$, and if $x_k < \frac{1}{2}$, then $x_k - \delta_{x_k} \geq x_k (1 - x_k) \geq \frac{1}{2} \cdot x_k$. Therefore, by

$$0 \le \lim_{k \to \infty} (x_k - \delta_{x_k}) \le \lim_{k \to \infty} \frac{1}{t_{n_k}} \cdot y,$$

we have that $\lim_{k\to\infty} x_k = 0$ and $\{t_{n_k} \cdot x_k\}_{k\in\mathbb{N}}$ is a bounded sequence.

Thus, by

$$\lim_{k\to\infty}\frac{t_{n_k}\cdot\delta_{x_k}}{t_{n_k}\cdot x_k}\leq \lim_{k\to\infty}x_k=0\,,$$

we have that $\lim_{k\to\infty} t_{n_k} \cdot \delta_{x_k} = 0$.

Therefore, $\limsup_{k\to\infty} t_{n_k} \cdot (x_k - \delta_{x_k}) \le y \le \liminf_{k\to\infty} t_{n_k} \cdot (x_k + \delta_{x_k})$ and $\lim_{k\to\infty} t_{n_k} \cdot x_k = y$.

TOPOLOGIES GENERATED BY THE FAMILY OF ALL I-SPARSE SETS

Since $y \in (c, d)$, there exists $k > k_0$ such that

$$t_{n_k} \cdot x_k \in (c,d) \cap t_{n_k} \cdot (\mathbb{R} \backslash A) \subset (c,d) \cap t_{n_k} \cdot \operatorname{cl}(H)$$
.

This is impossible since $(c,d) \cap t_{n_k} \cdot H = \emptyset$ and, therefore,

$$\limsup_{n\to\infty} t_n \cdot (B\cup G) \cap [0,1] \in \mathcal{I}.$$

So, by Lemma 8, the set G is an \mathcal{I} -sparse set at 0.

Let P be the set of all limit points of the set $\mathbb{R}\backslash G$. Since each point of the set F is a \mathcal{I} -sparse point of the set G, therefore $F\subset P$. By $P\triangle(\mathbb{R}\backslash G)\in \mathcal{I}$, we have that $F\subset \Phi_{\mathcal{I}}(P)$. Thus the set P is perfect and the proof of the theorem is completed.

LEMMA 11. Let $A \in \tau$. Then, for each $x \in A$, there exists an F_{σ} set B such that $x \in B \subset A$ and $B \in \tau$.

Proof. Let $A \in \tau$ and $x \in A$. Then there exists an open set G such that $\mathbb{R} \backslash A \subset G$ and $x \in \Phi_{\mathcal{I}}(\mathbb{R} \backslash G)$. We put $B = (\mathbb{R} \backslash \operatorname{cl}(G)) \cup \{x\}$. Then B is an F_{σ} set and $B \subset A$. We have that $\mathbb{R} \backslash B = \operatorname{cl}(G) \cap (\mathbb{R} \backslash \{x\}) \subset \operatorname{cl}(G)$, $x \in \Phi_{\mathcal{I}}(\mathbb{R} \backslash G)$ and $\{x\}$ is a closed set. Therefore, by Theorem 10, there exists a perfect set P such that $\{x\} \subset P \subset B$ and $x \in \Phi_{\mathcal{I}}(P)$. Let $H = \mathbb{R} \backslash P$. Then H is an open set, $\mathbb{R} \backslash B \subset H$ and $x \in \Phi_{\mathcal{I}}(\mathbb{R} \backslash H)$. Therefore $B \in \tau$ and proof of the lemma is complete.

THEOREM 12 [2]. If a function f is \mathcal{I} -proximally continuous then f is of the first class of Baire.

LEMMA 13. Let f be an \mathcal{I} -proximally continuous function. Then, for each $a \in \mathbb{R}$, $\{x \in \mathbb{R}: f(x) > a\} \in \tau$.

Proof. Let $a \in \mathbb{R}$. We assume that a = 0. We put $A = \{x \colon f(x) > 0\}$. Let $x_0 \in A$. Then there exists b > 0 such that $f(x_0) > b$. Let $B = \{x \colon f(x) < b\}$. Then $A, B \in T$. If the set B is empty, then it is obvious that there exists and open set G such that $\mathbb{R} \setminus A \subset G$ and $x_0 \in \Phi_{\mathcal{I}}(\mathbb{R} \setminus G)$. We assume that $B \neq \emptyset$. Then, by Theorem 12, $\inf(B) \neq \emptyset$ and

$$\{x \colon f(x) < b\} \subset \operatorname{cl}(\operatorname{int}(\{x \colon f(x) < b\})).$$

We put $G = \operatorname{int}(B)$. Then $\mathbb{R} \setminus A \subset \operatorname{cl}(G)$ and, by $\{x \colon f(x) > b\} \in T$, we have that $x_0 \in \Phi_{\mathcal{I}}(\mathbb{R} \setminus G)$. Now, in a similar way as in Lemma 11 we can show that $A \in \tau$.

E. ŁAZAROW

THEOREM 14. Let E be an F_{σ} set such that $E \in \tau$. There exists an \mathcal{I} -proximally continuous function f such that $0 < f(x) \le 1$ for all $x \in E$ and f(x) = 0 for all $x \in \mathbb{R} \setminus E$.

By using Theorem 10 the proof of this theorem can be carried out exactly as the proof of the theorem of Z. Z a h o r s k i [5].

THEOREM 15. The family τ is a completely regular topology on the real line and

 $C_T = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is a continuous function with respect to the } \tau \text{ topology} \}.$

Proof. It is obvious that $\emptyset, \mathbb{R} \in \tau$. We assume that $A, B \in \tau$. Let $x \in A \cap B$. Then there exist open sets H and G such that $\mathbb{R} \setminus A \subset H$, $\mathbb{R} \setminus B \subset G$ and $x \in \Phi_{\mathcal{I}}(\mathbb{R} \setminus H) \cap \Phi_{\mathcal{I}}(\mathbb{R} \setminus G)$. Then $\mathbb{R} \setminus (A \cap B) \subset H \cup G$, $H \cup G$ is an open set and $x \in \Phi_{\mathcal{I}}(\mathbb{R} \setminus (H \cup G)) = \Phi_{\mathcal{I}}(\mathbb{R} \setminus H) \cap \Phi_{\mathcal{I}}(\mathbb{R} \setminus G)$. Thus $A \cap B \in \tau$.

Let $\{A_I\}_{I\in L}\subset \tau$ and let $x\in\bigcup_{I\in L}A_I$. Then there exist an $I\in L$ and an open set G such that $\mathbb{R}\backslash A_I\subset G$ and $x\in\Phi_{\mathcal{I}}(\mathbb{R}\backslash G)$. Thus $\mathbb{R}\backslash\bigcup_{I\in L}A_I\subset G$ and $\bigcup_{I\in L}A_I\in \tau$. Therefore τ is a topology on the real line.

Let

$$\mathcal{B}_0 = \{ A \in \tau \colon A \text{ is an } F_\sigma \text{ set} \}$$

and let

 $\mathcal{B}_1 = \left\{ A \subset \mathbb{R} \colon \text{ there exists a function } f \in C_T \text{ such that } \left\{ x \colon f(x) > 0 \right\} = A
ight\}.$

Then, by Lemma 13 and Theorem 12, $\mathcal{B}_1 \subset \mathcal{B}_0$ and, by Theorem 13, $\mathcal{B}_0 \subset \mathcal{B}_1$. Since, by Lemma 11, the family \mathcal{B}_0 is a base of the τ topology, the proof of the theorem is complete.

REFERENCES

- FILIPCZAK, T.: On some abstract density topologies, Real Anal. Exchange 14 (1988-89), 140-160.
- [2] FILIPCZAK, T.: Intersection conditions for some density and I-density local systems, Real Anal. Exchange 15 (1989–1990), 170–191.
- [3] OXTOBY, J. C.: Measure and Category, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
- [3] POREDA, W.—WAGNER-BOJAKOWSKA—E., WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.

TOPOLOGIES GENERATED BY THE FAMILY OF ALL $\mathcal{I} ext{-SPARSE}$ SETS

[5] ZAHORSKI, Z.: Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.

Received November 30, 1992

Institute of Mathematics Lodz University Stefana Banacha 22 90-238 Lodz POLAND