

JANINA EWERT

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. The almost quasicontinuity is a property of functions which is weaker than quasicontinuity and almost continuity in the sense of Husain. We characterize the almost quasicontinuity by functions of the oscillation type, describe the set B_f of all points at which any function f is almost quasicontinuous and we show the invariance of this property under almost uniform convergence.

Let X,Y be topological spaces and let $f\colon X\to Y$ be a function. If in the definition of continuity at a point $x\in X$ the condition

$$x \in \operatorname{Int} f^{-1}(V)$$
 for each neighbourhood V of $f(x)$

we replace by one of the following: $x \in \operatorname{Cl}\left(\operatorname{Int} f^{-1}(V)\right)$, $x \in \operatorname{Int}\left(\operatorname{Cl} f^{-1}(V)\right)$ or $x \in \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl} f^{-1}(V)\right)\right)$, then this gives the definition of quasicontinuity [8, 9], almost continuity [7] or almost quasicontinuity [1, 10] of f at x, respectively. A function is called quasicontinuous (almost continuous, almost quasicontinuous) if it has this property at each point. Then we have:

and none of these implications is invertable [10].

The properties mentioned above are natural since for functions with values in metric spaces almost continuity (almost quasicontinuity) together with cliquishness is equivalent to continuity [6], (resp. quasicontinuity [1]); for the definition of cliquishness see [11].

AMS Subject Classification (1991): 54C08.

Key words: quasicontinuity, almost quasicontinuity, almost uniform convergence. Supported by KBN research grant (1992–1994) No. 2 1144 91 01.

In this note we consider functions with values in uniform spaces. We give a characterization of almost quasicontinuity by functions of the oscillation type. Then it is used to description of the set B_f of all almost quasicontinuity points and for the investigation of the invariance of almost quasicontinuity under almost uniform convergence.

A subset A of a topological space X is called:

- regular closed if A = Cl(Int A); [2]
- semi-open if $A \subset Cl(Int A)$; [9].

As it was shown in [9], the union of any family of semi-open sets is semi-open; the intersection of an open set and a semi-open one is semi-open. Using also these notions we can give the following simple characterization of almost quasi-continuity.

THEOREM 1. Let X, Y be topological spaces. For a function $f: X \to Y$ the following conditions are equivalent:

- (a) f is almost quasicontinuous;
- (b) $f^{-1}(V) \subset \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl} f^{-1}(V)\right)\right)$ for each open set $V \subset Y$;
- (c) Int $\left(\operatorname{Cl}\left(\operatorname{Int} f^{-1}(A)\right)\right) \subset f^{-1}(A)$ for each closed set $A \subset Y$;
- (d) Cl $f^{-1}(V)$ is semi-open for each open set $V \subset Y$;
- (e) $\operatorname{Cl} f^{-1}(V)$ is regular closed for each open set $V \subset Y$.

We omit the standard proof of this theorem.

In the sequel we will consider functions with values in uniform spaces. For a uniform space (Y, \mathcal{V}) by $P_{\mathcal{V}}$ we denote a saturated family of pseudometrics on Y inducing the uniformity \mathcal{V} . If $y \in Y$, $\varrho \in P_{\mathcal{V}}$ and r > 0, then we denote $B(y, \varrho, r) = \{z \in Y \colon \varrho(y, z) < r\}$.

Now let f be a function from a topological space X into a uniform space (Y, \mathcal{V}) , $x \in X$ and let $\varrho \in P_{\mathcal{V}}$. We define

$$w_{\varrho,f}(x) = \inf_{A} \inf_{M} \sup_{x',x'' \in M} \varrho \big(f(x'),f(x'')\big)\,,$$

where infima are taken under all semi-open sets A containing x and all sets M satisfying $x \in M \subset A \subset \operatorname{Cl} M$ respectively, and

$$w_f(x) = \sup_{\varrho \in P_{\mathscr{V}}} w_{\varrho,f}(x)$$
.

A real function $f: X \to \mathbb{R} \cup \{\infty\}$ is said to be upper almost quasicontinuous at a point $x \in X$ if for each $\varepsilon > 0$ it holds: $x \in \text{Cl}\left(\text{Int}\left(\text{Cl}\,f^{-1}(-\infty, f(x) + \varepsilon]\right)\right)$.

Thus f is upper almost quasicontinuous at each point $x \in X$ for which $f(x) = \infty$. It is easy to verify that f is upper almost quasicontinuous at $x \in X$ with $f(x) < \infty$ if and only if for each $\varepsilon > 0$ we have $x \in \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl} f^{-1}(-\infty, f(x) + \varepsilon)\right)\right)$. A function is called *upper almost quasicontinuous* if it has this property at each point.

THEOREM 2. Let f be a function from a topological space X into a uniform space (Y, \mathcal{V}) . Then:

- (a) f is almost quasicontinuous at a point $x \in X$ if and only if $w_f(x) = 0$.
- (b) For each $\varrho \in P_{\mathscr{V}}$ the function $w_{\varrho,f} \colon X \to \mathbb{R} \cup \{\infty\}$ is upper almost quasicontinuous.
- (c) The set B_f of all points at which f is almost quasicontinuous is of the form

$$B_f = \bigcap_{\varrho \in P_{\mathscr{V}}} \bigcap_{n=1}^{\infty} D_{\varrho,n} ,$$

where $D_{\varrho,n+1} \subset D_{\varrho,n} \subset \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}D_{\varrho,n}\right)\right)$ for each $\varrho \in P_{\mathscr{V}}$ and n > 1.

Proof. (a) Assume that f is almost quasicontinuous at a point $x_0 \in X$ and let us take $\varrho \in P_{\mathscr{V}}$, $\varepsilon > 0$ and $V = B(f(x_0), \varrho, \frac{1}{4}\varepsilon)$; then $x_0 \in \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl} f^{-1}(V)\right)\right)$. Let us put

$$A = \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl} f^{-1}(V)\right)\right),$$

$$M = \{x_0\} \cup \left[f^{-1}(V) \cap \operatorname{Int}\left(\operatorname{Cl} f^{-1}(V)\right)\right]$$

The set A is semi-open, $x_0 \in M \subset A = \operatorname{Cl} M$ and for any $x', x'' \in M$ we have $\varrho(f(x'), f(x'')) < \frac{1}{2}\varepsilon$. Thus $\sup_{x', x'' \in M} \varrho(f(x'), f(x'')) < \varepsilon$, which gives $w_{\varrho, f}(x_0) < \varepsilon$ for any $\varrho \in P_{\mathscr{V}}$, $\varepsilon > 0$. So we have shown $w_f(x_0) = 0$.

Conversely, we suppose $w_f(x_0)=0$. If W is a neighbourhood of $f(x_0)$, then $V=B\big(f(x_0),\varrho,\varepsilon\big)\subset W$ for some $\varrho\in P_{\mathscr{V}}$, $\varepsilon>0$. Since $w_{\varrho,f}(x_0)<\varepsilon$ there exist a semi-open set A and a set M with $x_0\in M\subset A\subset\operatorname{Cl} M$ and $\varrho\big(f(x'),f(x'')\big)<\varepsilon$ for $x',x''\in M$. This leads to the condition $\varrho\big(f(x),f(x_0)\big)<\varepsilon$ for $x\in M$, i.e. $M\subset f^{-1}(V)$. Hence we obtain $A\subset\operatorname{Cl} M\subset\operatorname{Cl} f^{-1}(V)\subset\operatorname{Cl} f^{-1}(W)$. But A is semi-open, so we have $x_0\in A\subset\operatorname{Cl}(\operatorname{Int} A)\subset\operatorname{Cl}\left(\operatorname{Int} A\right)$, which finishes the proof of (a).

(b) Let $x_0 \in X$, $\varrho \in P_{\mathscr{V}}$ and $\varepsilon > 0$ be given and let $w_{\varrho,f}(x_0) < \infty$. We can choose a semi-open set A_0 and a set M_0 with $x_0 \in M_0 \subset A_0 \subset \operatorname{Cl}\ M_0$ and $\varrho(f(x'), f(x'')) < w_{\varrho,f}(x_0) + \frac{1}{2}\varepsilon$ for $x', x'' \in M_0$. Hence for each $x \in M_0$ we have

$$\inf_{M} \sup_{x',x'' \in M} \varrho \big(f(x'), f(x'') \big) < w_{\varrho,f}(x_0) + \varepsilon \,,$$

where the infimum is taken under all sets M with $x \in M \subset A_0 \subset \operatorname{Cl} M$. Thus $w_{\varrho,f}(x) < w_{\varrho,f}(x_0) + \varepsilon$ for each $x \in M_0$. Let us put $V = \left(-\infty, w_{\varrho,f}(x_0) + \varepsilon\right)$; then we have $M_0 \subset w_{\varrho,f}^{-1}(V)$. This gives $A_0 \subset \operatorname{Cl} M_0 \subset \operatorname{Cl} \left(w_{\varrho,f}^{-1}(V)\right)$. Since A_0 is a semi-open set the last inclusions imply $x_0 \in A_0 \subset \operatorname{Cl}\left(\operatorname{Int} A_0\right) \subset \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl} w_{\varrho,f}^{-1}(V)\right)\right)$, which means the upper almost quasicontinuity of $w_{\varrho,f}$ at x_0 .

(c) According to the part (a) we have

$$\begin{split} B_f &= \{x \in X \colon w_f(x) = 0\} = \bigcap_{\varrho \in P_{\mathscr{V}}} \{x \in X \colon w_{\varrho,f}(x) = 0\} = \\ &= \bigcap_{\varrho \in P_{\mathscr{V}}} \bigcap_{n=1}^{\infty} \{x \in X \colon w_{\varrho,f}(x) < \frac{1}{n}\} \,. \end{split}$$

Now, applying the part (b) it suffices to take $D_{\varrho,n} = \{x \in X : w_{\varrho,f}(x) < \frac{1}{n}\}$. \square

Let us observe that analogous results can be formulated for quasicontinuity. A function $f: X \to \mathbb{R} \cup \{\infty\}$ is called *upper quasicontinuous at a point* $x \in X$ if for each $\varepsilon > 0$ it holds: $x \in \operatorname{Cl}\left(\operatorname{Int} f^{-1}(-\infty, f(x) + \varepsilon]\right)$. Then f is upper quasicontinuous at each point $x \in X$ for which $f(x) = \infty$. Furthermore, f is upper quasicontinuous at $x \in X$ with $f(x) < \infty$ if and only if for each $\varepsilon > 0$ we have $x \in \operatorname{Cl}\left(\operatorname{Int} f^{-1}(-\infty, f(x) + \varepsilon)\right)$. A function is called *upper quasicontinuous* if it has this property at each point [5].

For any function $f: X \to Y$ we denote

$$q_{\varrho,f}(x) = \inf_{A} \sup_{x',x'' \in A} \varrho(f(x'), f(x'')),$$

where the infimum is taken under all semi-open sets A containing x, and

$$q_f(x) = \sup_{q \in P_{\mathscr{V}}} q_{\varrho,f}(x)$$
.

PROPOSITION 1. Let f be a function from a topological space X into a uniform space (Y, \mathcal{V}) . Then:

- (a) f is quasicontinuous at a point $x \in X$ if and only if $q_f(x) = 0$.
- (b) For each $\varrho \in P_{\mathscr{V}}$ the function $q_{\varrho,f} \colon X \to \mathbb{R} \cup \{\infty\}$ is upper quasicontinuous.

The proof is similar to that in Theorem 2, so it is omitted.

A function f from a topological space X into a uniform space (Y, \mathscr{V}) is said to be cliquish if for each $x \in X$, $\varrho \in P_{\mathscr{V}}$, $\varepsilon > 0$ and each neighbourhood U of x there exists an open nonempty set $V \subset U$ such that $\varrho(f(x'), f(x'')) < \varepsilon$ for $x', x'' \in V$, [3].

THEOREM 3. If f is a cliquish function from a topological space X into a uniform space (Y, \mathcal{V}) , then $w_{\varrho,f} \leq q_{\varrho,f} \leq 2w_{\varrho,f}$ for each $\varrho \in P_{\mathcal{V}}$.

Proof. The inequality $w_{\varrho,f} \leq q_{\varrho,f}$ is an immediate consequence of definitions. Now let $x_0 \in X$, $\varrho \in P_{\mathscr{V}}$ and $w_{\varrho,f}(x_0) < \infty$. For $\varepsilon > 0$ we choose a semi-open set A_0 and a set M such that $x_0 \in M \subset A_0 \subset \operatorname{Cl} M$ and

$$\sup_{x',x'' \in M} \varrho \big(f(x'), f(x'') \big) < w_{\varrho,f}(x_0) + \tfrac{1}{4} \varepsilon \,.$$

Since f is cliquish for each nonempty open set $U \subset A_0$ there exists a nonempty open set $V_U \subset U$ with

$$\sup_{x',x''\in V_U}\varrho\big(f(x'),f(x'')\big)<\tfrac{1}{4}\varepsilon\,.$$

Thus for any $x \in V_U$ and $x_1 \in V_U \cap M$ we have

$$\varrho(f(x), f(x_0)) \le \varrho(f(x), f(x_1)) + \varrho(f(x_1), f(x_0)) < \frac{1}{2}\varepsilon + w_{\rho, f}(x_0).$$

Let us put

$$V = \bigcup \{V_U \colon U \subset A_0, \ U \text{ is open}\}$$

and

$$A_1 = V \cup \{x_0\}.$$

Then the set V is dense in A_0 and A_1 is semi-open. Furthermore $\varrho(f(x), f(x_0)) < w_{\varrho,f}(x_0) + \frac{1}{2}\varepsilon$ for each $x \in V$, which implies

$$\sup_{x',x''\in A_1}\varrho\big(f(x'),f(x'')\big)<2w_{\varrho,f}(x_0)+\varepsilon.$$

Hence we have $q_{\varrho,f}(x) \leq 2w_{\varrho,f}(x_0)$ and this completes the proof.

The above theorem together with Theorem 2 and Proposition 1 gives the following corollaries:

COROLLARY 1. If f is a cliquish function from a topological space X into a uniform space (Y, \mathcal{V}) then the set B_f coincides with the set of all points at which f is quasicontinuous.

COROLLARY 2. A function f with values in a uniform space is quasicontinuous if and only if it is cliquish and almost quasicontinuous.

Let us remark that in the case of a metric space Y the last corollary makes the result presented in [1].

For a function $f \colon X \to Y$, a point $x \in X$, any neighbourhood U of x and for $\varrho \in P_{\mathscr{V}}$ let us put:

$$\omega_{\varrho,f}(x,U) = \inf_{G} \inf_{M} \sup_{Z \in M} \varrho(f(x),f(z)),$$

where infimums are taken under all nonempty open sets $G \subset U$ and all sets M satisfying $M \subset G \subset \operatorname{Cl} M$ respectively, and

$$\omega_{\varrho,f}(x) = \sup\{\omega_{\varrho,f}(x,U) \colon U \quad \text{is a neighbourhood of } x\}\,,$$

$$\omega_f(x) = \sup_{\varrho \in P_{\mathscr{V}}} \omega_{\varrho,f}(x).$$

The function ω_f is introduced in [10] for functions f with values in a metric space Y. It is also shown that $B_f = \{x \in X : \omega_f(x) = 0\}$, [10, Th. 3.1].

THEOREM 4. Let X be a topological space and let (Y, \mathcal{V}) be a uniform space. Then for any function $f: X \to Y$ we have $\omega_{\varrho,f} \leq w_{\varrho,f} \leq 2\omega_{\varrho,f}$ for each $\varrho \in P_{\mathcal{V}}$.

Proof. Let $x_0 \in X$, $\varrho \in P_{\mathscr{V}}$ and $w_{\varrho,f}(x_0) < \infty$. Then for each $\varepsilon > 0$ we can choose a semi-open set A and a set M_1 such that $x_0 \in M_1 \subset A \subset \operatorname{Cl} M_1$ and

$$\sup_{x',x''\in M_1}\varrho\big(f(x'),f(x'')\big)< w_{\varrho,f}(x_0)+\varepsilon.$$

For any neighbourhood U of x_0 we put $G = U \cap \operatorname{Int} A$ and $M_2 = G \cap M_1$. Then G is a nonempty open set, $M_2 \subset G \subset \operatorname{Cl} M_2$ and

$$\sup_{x \in M_2} \varrho(f(x_0), f(x)) < w_{\varrho, f}(x_0) + \varepsilon.$$

From this we obtain $\omega_{\varrho,f}(x_0,U) < w_{\varrho,f}(x_0) + \varepsilon$ for any neighbourhood U of x_0 and in the consequence

if
$$w_{\varrho,f}(x_0) < \infty$$
, then $\omega_{\varrho,f}(x_0) \le w_{\varrho,f}(x_0)$. (1)

Now, let $\omega_{\varrho,f}(x_0) < \infty$ and let U be an established neighbourhood of x_0 . It follows from the definition of $\omega_{\varrho,f}$ that for each neighbourhood V of x_0 there exists a nonempty open set $G_V \subset V$ and a set M_V with $M_V \subset G_V \subset \operatorname{Cl} M_V$ and

$$\sup_{z \in M_V} \varrho(f(x_0), f(z)) < \omega_{\varrho, f}(x_0) + \frac{1}{2}\varepsilon.$$

We put

$$A = \{x_0\} \cup \bigcup \{G_V : V \text{ is a neighbourhood of } x_0 \text{ and } V \subset U\};$$

$$M = \{x_0\} \cup \bigcup \{M_V \colon V \text{ is a neighbourhood of } x_0 \text{ and } V \subset U\}.$$

Then the set A is a semi-open, $x_0 \in M \subset A \subset Cl$ M and

$$\varrho(f(x'), f(x'')) < 2 \omega_{\varrho,f}(x_0) + \varepsilon \quad \text{for} \quad x', x'' \in M.$$

The last inequality leads to

if
$$\omega_{\varrho,f}(x_0) < \infty$$
, then $w_{\varrho,f}(x_0) \le 2\omega_{\varrho,f}(x_0)$. (2)

Futhermore, it follows from (1) and (2) that $w_{\varrho,f}(x_0) = \infty$ if and only if $\omega_{\varrho,f}(x_0) = \infty$, so the proof is completed.

In the above theorem none of the inequalities can be replaced by the equality as the following shows.

EXAMPLE 1. Let \mathbb{R} be the space of real numbers with the natural topology and $\{r_{0,n}: n \geq 1\}$ a sequence of irrational numbers which is dense in \mathbb{R} and $r_{0,n}-r_{0,m}$ is not rational for $n,m\geq 1$, $n\neq m$. Then we assume

$$r_{j,n} = r_{0,n} + \frac{1}{j}$$
 for $n, j \ge 1$;
 $X = \{r_{j,n} : j \ge 0, n \ge 1\} \cup \{0\}$;
 $A_j = \{r_{j,n} : n \ge 1\}$ for $j \ge 0$.

We will consider X as a subspace of \mathbb{R} , thus each of the sets A_j is dense in X. Now let us take the space l^2 with the usual norm and the standard base $\{e_n \colon n \geq 1\}$; and $\Theta = \{0, 0, \dots\} \in l^2$. We define the function $f \colon X \to l^2$ by

$$f(x) = \begin{cases} \Theta, & \text{if } x = 0, \\ e_k, & \text{if } x = r_{j,n}, \end{cases}$$
 for $j \ge 0, n \ge 1, n + j = k.$

For any point $x \in X$, $x \neq 0$ it holds ||f(x) - f(0)|| = 1, so $\omega_f(0) = 1$. On the other hand, if A is a semi-open set in X and M satisfies $0 \in M \subset A \subset Cl$ M, then f(M) is an infinite set. Hence we have $\sup_{x',x'' \in M} ||f(x') - f(x'')|| = \sqrt{2}$ which gives $w_f(0) = \sqrt{2}$.

Let X be a topological space and (Y, \mathcal{V}) a uniform one. A net $\{f_s : s \in S\}$ of functions $f_s : X \to Y$ is called almost uniformly convergent to a function $f : X \to Y$ if for each $x \in X$, $\varepsilon > 0$, $\varrho \in P_{\mathcal{V}}$ there exists a neighbourhood U of x and $s_0 \in S$ such that $\varrho(f_s(z), f(z)) < \varepsilon$ for any $z \in U$, $s \in S$, $s \geq s_0$, [4].

In the sequel we will consider $\mathbb{R} \cup \{\infty\}$ with the generalized metric d given by d(x,y) = |x-y|, however we assume

$$-\infty + \infty = \infty - \infty = 0$$
 and $|\pm \infty| = \infty$.

THEOREM 5. Let X be a topological space and let (Y, \mathcal{V}) be a uniform space. If a net $\{f_s : s \in S\}$ of functions $f_s : X \to Y$ almost uniformly converges to a function $f : X \to Y$, then for each $\varrho \in P_{\mathcal{V}}$ the net $\{w_{\varrho,f_s} : s \in S\}$ is almost uniformly convergent to $w_{\varrho,f}$.

Proof. Let $x_0 \in X$, $\varepsilon > 0$ and $\varrho \in P_{\mathscr{V}}$ be established. The almost uniform convergence implies the existence of a neighbourhood U of x_0 and $s_0 \in S$ such that

$$\varrho(f_s(x), f(x)) < \frac{1}{4}\varepsilon \quad \text{for} \quad s \ge s_0, \ x \in U.$$
 (3)

We establish a point $x \in U$, then if $w_{\varrho,f}(x) < \infty$ we have

$$\inf_{A}\inf_{M}\sup_{x',x''\in M}\varrho\big(f(x'),f(x'')\big)< w_{\varrho,f}(x)+\tfrac{1}{4}\,\varepsilon\,.$$

So we can choose a semi-open set $A_1 \subset U$ and a set M_1 with $x \in M_1 \subset A_1 \subset Cl\ M_1$ and

$$\varrho(f(x'), f(x'')) < w_{\varrho,f}(x) + \frac{1}{4}\varepsilon \quad \text{for} \quad x', x'' \in M_1.$$
 (4)

Thus from (3) and (4), for any $x', x'' \in M_1$ and $s \geq s_0$ we obtain

$$\varrho(f_s(x'), f_s(x'')) \le \varrho(f_s(x'), f(x')) + \varrho(f(x'), f(x'')) + \varrho(f(x''), f_s(x'')) < w_{\varrho,f}(x) + \frac{3}{4}\varepsilon,$$

hence

$$\inf_{M} \sup_{x',x''\in M} \varrho \big(f_s(x'),f_s(x'')\big) \leq w_{\varrho,f}(x) + \frac{3}{4} \varepsilon \quad \text{for} \quad s \leq s_0 \,,$$

where the infimum is taken under all sets M satisfying $x \in M \subset A_1 \subset \operatorname{Cl} M$. The last implies $w_{\varrho,f_s}(x) \leq w_{\varrho,f}(x) + \frac{3}{4}\varepsilon$ for $s \geq s_0$, so we have shown

$$w_{\varrho,f_s}(x) - w_{\varrho,f}(x) < \varepsilon$$
 for any $x \in U, s \ge s_0$. (5)

Similarly, for any $x \in U$ and $s \ge s_0$ there exist a semi-open set $A_s \subset U$ and a set M_s such that $x \in M_s \subset A_s \subset Cl$ M_s and

$$\varrho(f_s(x'), f_s(x'')) < w_{\varrho, f_s}(x) + \frac{1}{4}\varepsilon$$
 for $x', x'' \in M_s$.

This inequality and (3) give

$$\varrho ig(f(x'),f(x'')ig) < w_{arrho,f_s}(x) + frac34 \, arepsilon \qquad ext{for} \quad x',x'' \in M_s, \, s \geq s_0 \, .$$

From this it follows $w_{\varrho,f}(x) < w_{\varrho,f_s}(x) + \varepsilon$ for $x \in U$ and $s \geq s_0$. Thus, in virtue of (5) we have $|w_{\varrho,f}(x) - w_{\varrho,f_s}(x)| < \varepsilon$ for any $x \in U$, $s \geq s_0$. Now, if $w_{\varrho,f}(x) = \infty$, we have

$$\sup_{x',x''\in M}\varrho\big(f(x'),f(x'')\big)>n+\varepsilon$$

for each integer n, any semi-open set A containing x and each M satisfying $x \in M \subset A \subset \operatorname{Cl} M$. Then for $s \geq s_0$ we have

$$\sup_{x',x''\in M} \varrho(f_s(x'),f_s(x'')) > n$$

for any n, A, m as above. From this we obtain $w_{\varrho,f_s}(x)=\infty$ for every $s\geq s_0$, which completes the proof.

THEOREM 6. Let X be a topological space and let (Y, \mathcal{V}) be a uniform space. If a net $\{f_s \colon s \in S\}$ of functions $f_s \colon X \to Y$ uniformly converges to a function $f \colon X \to Y$, then for each $\varrho \in P_{\mathscr{V}}$ the net $\{w_{\varrho,f_s} \colon s \in S\}$ is uniformly convergent to $w_{\varrho,f}$.

The proof is exactly as in Theorem 5 because in this case we have (3) satisfied for each $x \in X$.

COROLLARY 3. Let X be a locally compact space and let (Y, \mathcal{V}) be a uniform space. If a net $\{f_s \colon s \in S\}$ of functions $f_s \colon X \to Y$ converges uniformly on compact sets to a function $f \colon X \to Y$, then for each $\varrho \in P_{\mathcal{V}}$ the net $\{w_{\varrho,f_s} \colon s \in S\}$ converges uniformly on compact sets to the functions $w_{\varrho,f}$.

Proof. If X is a locally compact space, then according to [4, Th. 2.5] the almost uniform convergence coincides with the uniform on compact sets convergence. Thus the conclusion is an immediate consequence of Theorem 5. \square

Theorems 5, 6 and 2(a) imply

COROLLARY 4. Let X be a topological space, (Y, \mathcal{V}) a uniform one and let $\{f_s : s \in S\}$ be a net of almost quasicontinuous functions $f_s : X \to Y$.

- (a) If the net $\{f_s : s \in S\}$ almost uniformly (uniformly) converges to a function $f : X \to Y$, then f is almost quasicontinuous.
- (b) If X is a locally compact space and the net $\{f_s : s \in S\}$ converges to f uniformly on compact sets, then f is almost quasicontinuous.

Finally, we will use the symbol F(X,Y) to denote the space of all functions from X into Y equipped with the topology of the uniform convergence on compact sets and $AQ^+(X,\mathbb{R})$ the space of all upper almost quasicontinuous real functions with the same topology.

COROLLARY 5. Let X be a locally compact space and (Y,d) a metric one. Then the function $\Psi \colon F(X,Y) \to AQ^+(X,\mathbb{R})$ given by $\Psi(f) = w_f$ is continuous.

In virtue of Theorem 6 the result analogous to Corollary 5 can be formulated for F(X,Y) and $AQ^+(X,\mathbb{R})$ equipped with the topology of the uniform convergence (without the assumption of the local compactness of X).

REFERENCES

- BORSÍK, J.—DOBOŠ, J.: On decomposition of quasicontinuity, Real Anal. Exchange 16 (1990-91), 292-305.
- [2] ENGELKING, R.: General Topology, Warszawa, 1977.
- [3] EWERT, J.: On quasi-continuous and cliquish maps with values in uniform spaces, Bull. Polish Acad. Sci. Math. 32 (1984), 81–88.
- [4] EWERT, J.: Almost uniform convergence, (to appear).
- [5] EWERT, J.—LIPSKI, T.: Lower and upper quasi-continuous functions, Demonstratio Math. 16 (1983), 85–93.
- [6] FUDALI, L. A.: On cliquish functions on product spaces, Math. Slovaca 33 (1983), 53-58.
- [7] HUSAIN, T.: Almost continuous mappings, Prace Mat. 10 (1966), 1-7.
- [8] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
- [9] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [10] NEUBRUNNOVÁ, A.—ŠALÁT, T.: On almost quasicontinuity, Math. Bohem. 117 (1992), 197–205.

[11] THIELMAN, H. P.: Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Received November 4, 1992

Wyższa Szkoła Pedagogiczna Wydział Matematyczno-Przyrodniczy 76-200 Słupsk Arciszewskiego 22a POLAND