THE COMPOSITIONAL RULE OF
INFEERENCE WITH SEVERAL RELATIONS

ROBERT FULLÉR — BRIGITTE WERNERS

ABSTRACT. The compositional rule of inference with several relations, which is the mainly used inference rule in approximate reasoning, is considered in this paper. Stability results are given and exact computational formulae are provided.

1. Introduction

During the past ten years, expert systems have drawn tremendous attention from researchers and practitioners working in the area of fuzzy information processing. At the same time, approximate reasoning gained importance, especially, after L. A. Zadeh [Zad83] published "The role of fuzzy logic in the management of uncertainty in expert systems". One of the most widely used inference rule in approximate reasoning is the compositional rule of inference, which has the general form

\[
\begin{align*}
\text{Observation:} & \quad X \text{ has property } P \\
\text{Relation 1:} & \quad X \text{ and } Y \text{ are in relation } W_1 \\
\vdots \\
\text{Relation } m: & \quad X \text{ and } Y \text{ are in relation } W_m \\
\text{Conclusion:} & \quad Y \text{ has property } Q
\end{align*}
\]

(1)

where \(X \) and \(Y \) are linguistic variables taking their values from fuzzy sets in classical sets \(U \) and \(V \), respectively, \(P \) and \(Q \) are unary fuzzy predicates in \(U \) and \(V \), respectively, \(W_i \) is a binary fuzzy relation in \(U \times V \), \(i = 1, \ldots, m \).

The conclusion \(Q \) is determined by [Zad73]

\[
Q = \bigcap_{i=1}^{m} P \circ W_i,
\]

Key words: Compositional rule of inference, fuzzy relation, fuzzy set, fuzzy interval, triangular norm, extension principle.
or in detail,
\[\mu_Q(y) = \min_{i=1, \ldots, m} \sup_{x \in U} T(\mu_P(x), \mu_W(x, y)), \]

where \(T \) is a triangular norm [Sch63], the conclusion is obtained by triggering
the antecedents separately, and combining the partial results in the second step
(for other approaches, see [Dub88, Mag89]). The goal of this paper is (i) to pro-
vide exact calculation formulae for the compositional rule with several relations
of inference under Archimedean t-norms, when both the observation and the rela-
tion parts are given by Hellendoorn’s \(\varphi \)-function; (ii) to show some important
properties of the compositional rule of inference under t-norms.

2. Preliminaries

In this Section we set up the notations and present a lemma needed in order to
calculate the exact calculation formulae and to prove the stability and continuity
properties of the compositional rule of inference under t-norms.

\textbf{Definition 2.1.} A fuzzy interval \(A \) is a fuzzy quantity with a continuous,
finitary-supported, fuzzy-convex and normalized membership function \(\mu_A : \mathbb{R} \to [0,1] \).
The family of all fuzzy intervals will be denoted by \(\mathcal{F} \). Fuzzy intervals are often
used to represent linguistic variables [Wer90]. Following [Hel90] we use the \(\varphi \)-
function for the representation of linguistic terms

\[\varphi(x; a, b, c, d) = \begin{cases}
1 & \text{if } b \leq x \leq c, \\
\varphi_1(\frac{x-a}{b-a}) & \text{if } a \leq x \leq b, \ a < b, \\
\varphi_2(\frac{d-x}{d-c}) & \text{if } c \leq x \leq d, \ c < d, \\
0 & \text{otherwise.}
\end{cases} \quad (2) \]

\textbf{Definition 2.2.} Let \(A \) be a fuzzy interval, then for any \(\theta \leq 0 \) we define
\(\omega_A(\theta) \), the modulus of continuity of \(A \), by
\[\omega_A(\theta) = \max_{|u-v| \leq \theta} |\mu_A(u) - \mu_A(v)|. \]

\textbf{Definition 2.3.} We metricize \(\mathcal{F} \) by the metric [Kal87],
\[D(A, B) = \sup_{\alpha \in [0,1]} d([A]^\alpha, [B]^\alpha), \]
THE COMPOSITIONAL RULE OF INFERENCE WITH SEVERAL RELATIONS

where \(d \) denotes the classical Hausdorff metric in the family of compact subsets of \(\mathbb{R}^2 \), i.e.

\[
d([A]^{\alpha}, [B]^{\alpha}) = \max\{|a_1(\alpha) - b_1(\alpha)|, |a_2(\alpha) - b_2(\alpha)|\},
\]

\([A]^{\alpha} = [a_1(\alpha), a_2(\alpha)], [B]^{\alpha} = [b_1(\alpha), b_2(\alpha)]\).

Lemma 2.1. [Fed92]. Let \(\delta \geq 0 \) be a real number and let \(A, B \) be fuzzy intervals. If

\[
D(A, B) \leq \delta,
\]

then

\[
\sup_{t \in \mathbb{R}} |\mu_A(t) - \mu_B(t)| \leq \max\{\omega_A(\delta), \omega_B(\delta)\}.
\]

3. The compositional rule of inference with several relations

In this section we show two very important features of the compositional rule of inference with several relations and under triangular norms. Namely, we prove that, (i) if the t-norm defining the composition and the membership function of the observation are continuous, then the conclusion depends continuously on the observation; (ii) if the t-norm and the membership function of the relation are continuous, then the observation has a continuous membership function. We consider the compositional rule of inference with different observations \(P \) and \(P' \):

Observation:	\(X \) has property \(P \)
Relation 1:	\(X \) and \(Y \) are in relation \(W_1 \)
Relation \(m \):	\(X \) and \(Y \) are in relation \(W_m \)
Conclusion:	\(Y \) has property \(Q \)

Observation:	\(X \) has property \(P' \)
Relation 1:	\(X \) and \(Y \) are in relation \(W_1 \)
Relation \(m \):	\(X \) and \(Y \) are in relation \(W_m \)
Conclusion:	\(Y \) has property \(Q' \)

According to Zadeh's compositional rule of inference, \(Q \) and \(Q' \) are computed as

\[
Q = \bigcap_{i=1}^{m} P \circ W_i, \quad Q' = \bigcap_{i=1}^{m} P' \circ W_i.
\]
Generalizing the results of [Zim91] concerning the case of single relation, we show that when the observations are close to each other in the metric D, then there can be only a small deviation in the membership function of the conclusions.

Theorem 3.1. Let $\delta \geq 0$ and T be a continuous triangular norm, and let P, P' be continuous fuzzy intervals. If

$$D(P, P') \leq \delta,$$

then

$$\sup_{y \in \mathbb{R}} |\mu_Q(y) - \mu_{Q'}(y)| \leq \omega_T(\max\{\omega_P(\delta), \omega_{P'}(\delta)\}).$$

In the following theorem we establish the continuity property of the conclusion under continuous fuzzy relations and continuous t-norms.

Theorem 3.2. Let W_i be a continuous fuzzy relation, $i = 1, \ldots, m$ and let T be a continuous t-norm. Then Q is continuous and

$$\omega_Q(\delta) \leq \omega_T(\omega(\delta)) \quad \text{for each } \delta \geq 0,$$

where $\omega(\delta) = \max_{i=1,\ldots,m} \omega_{W_i}(\delta)$.

Remark 3.1. From $\lim_{\delta \to 0} \omega(\delta) = 0$ and Theorem 3.1, it follows that

$$\sup_{y \in \mathbb{R}} |\mu_Q(y) - \mu_{Q'}(y)| \to 0 \quad \text{as } D(P, P') \to 0,$$

which means the stability of the conclusion under small changes of the observation. The stability property of the conclusion under small changes of the membership function of the observation guarantees that small rounding errors of digital computation and small errors of measurement of the input data can cause only a small deviation in the conclusion, i.e. every successive approximation method can be applied to the computation of the linguistic approximation of the exact conclusion.

4. The compositional rule of inference: Computation formulae

An important problem is the (approximate) computation of the membership function of the conclusion [Dub88, Hel90, McI89, Zim87]. Helleløørn
THE COMPOSITIONAL RULE OF INference WITH SEVERAL RELATIONS

[Hel90] showed the closure property of the compositional rule of inference under sup−min composition and presented exact calculation formulas for the membership function of the conclusion when both the observation and relation parts are given by S_ϕ, π_ϕ, or φ-function. Our results in this section are connected with those presented by [Hel90] and we generalize them. We shall determine the exact membership function of the conclusion, when the observation and the relations are given by concave φ-function, and the t-norm is Archimedean with a strictly convex additive generator function. The efficiency of our method stems from the fact that the distributions, involved in the relation and observation, are represented by a parametrized φ-function. The deduction process then consists of some simple computations performed on the parameters. The following theorem, which generalizes the result of [Ful91] concerning the single relation case, presents an efficient method concerning the exact computation of the compositional rule of inference with several relations and under Archimedean t-norms.

THEOREM 4.1. Let T be an Archimedean t-norm with additive generator function f, and let P and W_i be of the form (2)

$$\mu_P(x) = \varphi(x; a, b, c, d), \quad \mu_{W_i}(x, y) = \varphi(y - x; a_i + u_i, b_i + u_i, c_i + v_i, d_i + v_i),$$

$i = 1, \ldots, m$. If φ_1 and φ_2 are twice differentiable, concave functions, and f is a twice differentiable, strictly convex function, then the conclusion of the inference scheme (1) has the following membership function

$$\mu_Q(y) = \min_{i=1,\ldots,m} \mu_{Q_i}(y),$$

where

$$\mu_{Q_i}(y) = \begin{cases}
1 & \text{if } 2b_i + u_i \leq y \leq 2c_i + v_i, \\
 f^{-1} \left(2f \left(\varphi_1 \left(\frac{y - 2a_i - u_i}{2(b_i - a_i)} \right) \right) \right) & \text{if } 2a_i + u_i \leq y \leq 2b_i + u_i, \\
 f^{-1} \left(2f \left(\varphi_2 \left(\frac{y - 2d_i - v_i}{2(d_i - c_i)} \right) \right) \right) & \text{if } 2c_i + v_i \leq y \leq 2d_i + v_i, \\
0 & \text{otherwise}.
\end{cases}$$

Acknowledgements. This work has been partly supported by the Hungarian Research Foundation under the project OTKA T 4281 and by the German Academic Exchange Service.

REFERENCES

43
ROBERT FULLÉR — BRIGITTE WERNERS

Department of OR
Computer Center
Eötvös Loránd University
P.O.Box 157
H-1502 Budapest 112
HUNGARY

Department of OR
RWTH Aachen
Templergraben 64
W-5100 A a c h e n
GERMANY

44