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ABSTRACT. An operator valued measure is considered assigning to every Borel
set (in a compact space T') a linear, positive, order continuous operator from a
Riesz space X to another Riesz space Y . A Kurzweil type construction is used
for integrating functions from T to X .

Introduction

If X, Y are linear spaces and L(X,Y) is a set of linear operators and
(T,S) is a measurable space, then an operator valued measure is a mapping
p:S — L(X,Y) satisfying some conditions. If f:T — X is a simple function

f = E XEim’i 3
=1
then .
[fan=3 uE ),
=1

where u(E;) € L(X,Y), hence p(E;)(z;) is the value of u(E;) in the element
z; € X . Therefore [ fdu € Y. The problem is how to extend this integral to a
larger family of functions f: T — X .

The problem of operator valued measure has been studied in a series of papers
by I. Dobrakov (see [1]) and for locally convex spaces by J. Halugka
([3])- In [4] J. Haluska considered the case of Banach lattices. The basic property
is the weak o -distributivity, which is a necessary and sufficient condition for
extendability of Y -valued measures and integrals ([15]).

AMS Subject Classification (1991): 28B15.
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To solve the problem stated above we shall use the Henson-Kurzweil con-
struction of an integral. Of course, since we work with a Borel regular measure
on the o-algebra S of subsets of a compact space T, the obtained integral is
of the Lebesgue type. Another solution of the problem is contained in [11].

Special cases of the studied theory are the case of vector measure P with
scalar functions f:T — R (where X = R, u(F)(z) =zP(E) € Y) and scalar
measure P with vector functions f: 7T — X (where X =Y, u(F)= P(E)z).
As a special case some results of [9] and [13] can be received.

Assumptions

A. Let T be a (Hausdorff) compact topological space and let S be the
o -algebra generated by the family of all compact (all open) subsets of 7T'.

Let U(T) be the set of all functions & : T — 2T such that §(¢) is a neigh-
bourhood of t for every ¢ € T' and let A(§) be the set of all partitions D
of T such that D = {(E1,t1), (Ea,t2),..., (En,tn)}, where E; € S, t; € B,

E,cé(t;) (i=1,2,...,n),and J E;=T.
i=1

LEMMA 1. The set A(6) is non-empty for every 6 € U(T).

Proof. Let § € U(T). Then for every ¢t € T' there exists an open set U (%)
(U(t) € S) such that t € U(t) C §(¢). Theset {U(t);t € T'} is an open covering
of T, hence there is a finite open covering U(t1),U(t2),...,U(t,) chosen from
{U(t),teT}.

Now, choose pairwise disjoint neighbourhoods F(t;) € § (i = 1,2,...,n)
and put

Ey=U()\ F)UF(t1),

Ez=<U(tl)\zL:JlEJ\F)UF(t1) for z'=2,3,...,n.

n
Then E;NE; =0 (7475]), U E;=T,FE, €S, F; C U(tl) C(S(ti) and t; € E;
=1

for 4 =1; 25555 N O
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Remark 2. If ECT, E €S, then E is compact. Let U'(t1),...,U’(tn)
be a finite covering of E chosen from {U’(t); U'(t) C 6(t),t € E} and let
F'(t;) €S (i=1,2,...,n) be pairwise disjoint neighbourhoods of ¢;.

Put U(t;) =U'(t;) NE, F(t;) = F'(t;)NE (i = 1,2, ... ,n). The partition
D e A(6/E) (6 € U(T) or 6 € U(E)) can be constructed by the same way as
in the proof of the preceding lemma (now, t; € E; (i=1,2,...,n)).

B. We shall assume that X and Y are linear lattices, the linear lattice
X is boundedly o-complete, i.e., every bounded sequence (a;); C X has the
supremum \/, a;, the linear lattice Y is weakly o -distributive, i.e., Y is bound-
edly o-complete and for every bounded double sequence (a;;); ; C Y such that
aij O (j — o0, t=1,2,...) thereis

AV aipi =0.

€ NN

LEMMA 3. Let Y be a boundedly o-complete linear lattice, (Gnij)n,,j be a
triple bounded sequence of elements of Y such that an;; \, 0 (j — o0, n,i =
1,2,...). Then to every a € X, a > 0 there is a bounded double sequence
(aij)ij CY such that a;; \,O, (j — 00, i=1,2,...) and for every ¢ € NN

%}
(Z \/ a’nztp(z—i—n)) < \/ Qip(d) -
n=1 d=1 i=1

Proof. See [2] and [12]. O

If z,,z € X then z, — = (z, converges to = with respect to the ordering)
iff there exists (an)n C X, an \, 0 and |z, — 2| < a, for all n.

It is possible to prove that a sequence (z,), C X converges to z € X iff
(zn)n is bounded and

<A V=V A

We say that f, — f uniformly (fn,f: T — X ) iff there exists (an)n C X,
an \, 0 such that

u<8
||>g

Ifn(t) — F(B)] £ an

for every t € T and all n.
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C. By L(X,Y) we shall denote the set of all ¢-homomorphisms from X
to Y i.e. such mappings h: X — Y that
(1) h(z1+z2) = h(z1) + h(z2) for every zq1,20 € X ;
(ii) h(cz) =ch(z) for every z € X and c € R;
(iil) If (zn)n C X, 2, \, O then h(z,) \, 0.
The properties (i) and (iii) imply h(0) = 0 and h(z;) < h(zs) for 1,z €
X, 1 S xy (that is h is a positive operator).

D.Let p: S — L(X,Y) be an operator valued measure having the following
properties:
(i) f E€eS,z€X, 220 then u(E)z =0;
(i) f E,eS (n=1,2,...,k), E;NE; =0 (i#7), then

k k
,u( U En>x = > w(B,)z for every z € X .
n=1 n=1

(iii) p is regular in the following sense:
For every set £ € S and every £ € X, z = 0 there exists a bounded
sequence (ank)nk CY, ark 20, anr, \\O (k— 00, n=1,2,...)

and for every ¢ € NN there exist a compact set F' and open set U,
F Cc E CU such that

p(U\ F)z < \/ aiy).

EXAMPLE. Let p; : § — R be a regular Borel measure. Let X = Y. Put

u(E)z = pi(E)-x for E€S and z € X. Then pu: S — L(X, X) is the regular
operator valued measure. For E € § and z € X, z 2 0 it is sufficient to put
gy = —:1: (¢, =1,2...). Then for ¢ € NN there exists a compact set F' and
an open set U, FFC E CU such that

WU\ F)z=m(U\F)-z < mw(l \/%()

The proof of the following lemma is evident.

LEMMA 4. Let p:T — L(X,Y) be a regular operator valued measure. Then
(i) p is monotone ie. if E,F €S, EC F, then
w(E)x £ u(F)z forevery x€ X, 220;
(ii) u is subtractive, i.e., if E,F €S, E C F, then
w(F\ E)z = p(F)z — u(E)x for every z € X .
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INTEGRATION WITH RESPECT TO OPERATOR VALUED MEASURES IN RIESZ SPACES

Integral

If §c U(T) and D € A(6), D = {(E1,t1),...,(En,t,)} then for the func-
tion f:T — X we define

f,D) ZM(E)f(t)

where p(E;) f(t;) is the value of the operator u(E;) in f(t;).

DEFINITION 5. The function f: T — X is integrable if there exists y € Y
and a bounded double sequence (ant)nk C Y, @nk 20, anr \, 0 (kK — oo,
n=1,2,...) such that for every ¢ : N — N there exists § € U(T) so that

1S(f,D) =yl < \/ aipy  for any D € A(5).

i=1

LEMMA 6. The integral of f is defined uniquely.

Proof. Let y;,y2 € Y be two elements satisfying the conditions of the
preceding definition. Then there exist (ank)nk, (bnk)nk CY, @nk 20, bpg 2
0, ank 0, bpr \\ 0 (kK — 00, n=1,2,...) and for ¢ € NN there exist
61,62 € U(T) such that

|S(f, D1) —y1| < \/ainp(i+l)7 |S(f, D2) — 42| < vbw(i+2)

for D; € A((Sl), D, € A(62) Put 6§ =6;Né, (6(t) = 61(t) ﬂ52(t) for t € T)
and take D € A(6) (then D € A(61) N A(82), too). Then

ly1 — ye| = [y1 — S(f, D)| + |S(f, D) — 52| <
< \/az’<p(i+1) + Vbiga(i+2) = vcigo(i)a
i i

where (Cnk)n,x CY is bounded, ¢,k 20, cpp \\O (k— 00, n=1,2,...). The
sequence (Cpk)nk €xists by Lemma 3. From the weak o -distributivity of ¥ we

have
ly1 — ya| = /\vci¢(¢) ={]
[7- 2 )
and hence y1 =yz (= [ fdu). O
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THEOREM 7. If f,g: T — X are integrable and o, € R, then af + g is
integrable and

[@r+poydu=a [rau+p [gdn.

Proof. We shall prove that if f, g are integrable and ¢ € R, then f+g,
cf are integrable too and

/(f+g)d#=/fdu+/gd#, /cfduzc/fdu.

If f is integrable, then there exist y1 € Y and bounded double sequence
(@nk)ngke CY, ank 2 0, ank \\ 0 (k — o0, n = 1,2,...) such that for
¢ € NV there exists 6; € U(T) such that

ly1 — S(f, D1)| < \/a'icp('i-‘rl)
for any Dy € A(61). Similarly there are y3 € Y, (bnk)nk CY and 62 € U(T)
such that

ly2 — S(g, D2)| < \/ bip(i+2)

for any Dy € A(62).
Put 6§ = 6; Né, and take D € A(8). Then D € A(61) N A(62) and

|S(f +9,D) =y —y2| = [S(f, D) + 5(g, D) —y1 — 92| =
S 18(f,D) — w1l +15(g, D) — va| <
< vai¢(i+1) + V bip(it2) = \/Ci¢(i),
where (cpk)n,k exists by Lemma 3. Hence f + g is integrable and

JG+odu= [ s+ [gan

For ¢ € R we have |c|ant 20, |clane WO (K — 00, n=1,2,...) and
|S(cf, D) — cya| = le- S(f, D) — eya| < [e]|S(f, D) — 1] <

< e \/aitp(i) = \/ le| @i (i)

for D € A(61). This implies that cf is integrable and [cfdu=c [ fdu. O
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THEOREM 8. If f:T — X is integrable and f(t) 2 0 for every t € T, then
Jfdpzo0.

Proof. By the positivity of operators u(E;) we have

n

Z u(E:) f(ti) =S(f,D) 20

i=1
for any D € A(6), any 6§ € U(T) and every positive function f.
Let o € N and 6 € U(T) such that

[ #au=56,0)1 <V sy
for any D € A((S) Hence
. —\/ai¢(i) =88]~ \/ain(i) < /fdﬂ
and z 1
\/flw(z‘) > —/fdli
for all ¢ € NN. From the weak o -distributivity of ¥ we have

_/fd.u‘§/\\/a’it,a(i)=0
w 1

/fduEO-

DEFINITION 9. A function f:T — X is integrable on a set E € S, if there
exist y € Y and a bounded double sequence (ank)ni CY, ank 20, ank \, 0
(k—o00, n=1,2,...) and for every ¢ € NV there exists § € U(E) such that

1S5(f, D) —yl < \/ aip)

and then

O

for any D € A(6/F), where Sg(f,D) =Y u(E;)f(t;) and | E; = E, E; N
i=1 i=1

E;i=0(i#j), Bi€S, t;,€E;, B;Cét:) (i=1,2,...,n).
The element y will be denoted by [ fdpu.
E

Remark 10. The definition 9 is correct. By Remark 2 A(§/E) # 0 for 6 €
U(E) and [ fdu is defined uniquely (see Lemma 6).
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LEMMA 11. Let Y be boundedly complete (i.e. every bounded subset of Y
has a supremum). Then a function f : T — X is integrable on E € S if and
only if the following condition is satisfied:

There exists a bounded sequence (ank)nk CY, Gnk 20, ank \\0 (kK — o0,
n=1,2,...) and for every ¢ € NN there is § € U(E) such that

1Se(f, D1) — Su(f, D2)| < \/ aq)

for all D1,D, € A(6/E).

Proof. The necessity of the condition is evident. We shall prove that this
condition is sufficient. Let (ank)nk C Y be such a sequence that for every

© € NN there is 6(¢) € U(E) such that

|Se(f, D1) — Se(f, D2)| < \/aicp(i)

for all Dy, D, € A(6(p)/E). Denote
I={6€U(E); 3peNY, 6§ =6(p)}.
Then for 6 € I the set
{Se(f,D); D € A(6/E)}

is bounded. Since Y is boundedly complete, there exists

as= N Se(f,D); b= \/ Sk D).

DEA(5/E) DEA(S/E)

For 61,62 € I put § =61 Nb62. Then A(6/E) C A(61/E) N A(62/E) and hence
{Se(f,D);D € A(6/E)} is bounded, too, and

s, = N Se(,D)S /N Se(f,D)<Sk(f,D)<

DEA(6,/E) DEA(6/E)
<V Sse(rD) /) Se(f,D)=bs,.
DEA(5/E) DEA(6,/E)

Therefore \/ as £ )\ bs, hence there exists y € Y such that
6erl 6el

as Sy S bs
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for all § € I. Now let ¢ : N — N. Then there is () € U(E) such that
55(f, D) < Su(f, Da) + \/ i
for all Dy, Dy € A(6(p)/E). Fix Dg. Then
bs(p) < Se(f, D2) + \/ o) »
Since the inequality holds for every Dy € A(6(p)/E), we have
bs(e) < ase) + \/ @io) -

By the weak o -distributivity of ¥ we obtain A\ a;,;) =0 and so
(724

N sy = V aee) = /\ (o) — as(4)) =0
© @ ®

hence

y=\bs) =\ as()
¢ ¢
Then for every D € A(6(p)/E)

Sg(f, D) —y = bs(py — asp) = \/aw(i)

and similarly

y — Sg(f, D) < bsp) — as(p) < \ G »
i

so that
1SE(f, D) —yl £\ aip)

and the proof is complete. O
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THEOREM 12. If E,F,G € S, E=FUG, FNG=0 and f: T — X is
integrable on F, then f is integrable on F' and G, too and

/fdﬂz/fdu+/fdu-
E F G

Proof. By Lemma 11 there is (ank)nr C Y such that for every
¢ :N— N thereis § € U(E) such that

1Se(f, D1) — Su(f, D,)| < \/aw(i)

for every D1, D, € A(6/E). Take D,D’' € A(6/F) and Dy € A(6/E\ F). Put
Dy =DUDy, Dy = D,UD(). Then D;,Dy € A((S/E) and so

|Se(f, D1) — Se(f, D2)| < \/aicp(i) 3
But
|SF(f, D) — Sp(f, D') = |Sr(f,D) + Sg\r(f, Do) — Se\r(f, Do)—

— Sr(f,D")| = |Su(f, D1) = Su(f, D2)| < \/ Gip)
for all D,D’ € A(6/F). Hence f is integrable on F' by Lemma 11. Similarly,
f is integrable on G, too.

Then for ¢ € NV there exist 6 € U(E), 6, € U(F), 6 C 61/F and
b3 € U(@), 63 C 51/@ such that

ISE(fv Dl) - /fdﬂl < \/a’ilp(i+1)

E

for all Dy € A(6,/E),
|SF(f, D2) — /fdul < \/bw(i+2)
% g
for all Dy € A(62/F),

|Sc(f, D3) — /fdﬂ| < \/citp(i+3)
-4 i
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for all D3 € A(63/G). We have Dy U D3 € A(61/F) and so

|SE(f, D2 U Ds) — /fd#| < \/aiga(i-{—l)-
B i

Since SE(f, Dy U Dg) = Sr(f, Dz) + Sg(f, D3) , We obtain

[rau= [rau- [ rau < [ = se(s, D20 D)+
E F G E

+|Sr(f, D2) — [ fdu|+ |Sa(f,D3) — [ fdpu| <
/ /

<V aigiirn) + V bigira) + \ ciotirs) < V dipe -
i 1 i [

The sequence (d;;);,; exists by Lemma 3. Using the weak o -distributivity of ¥’

we get
Zf@=!f@+!f@-

THEOREM 13. If f: T — X is a simple measurable function, f = ) z; Xg, ,
i=1

O

n

where z; € X, E; €8 (1=1,2,...,n), E;NE; =0 (i#j), U E; =T, and
s =1

p:8S — L(X,Y) is a regular operator valued measure, then f is integrable and

Jfdp= é#(Ei)xi-

Proof. By Theorem 7 it is sufficient to prove that zXg (E € S,z € X)
is integrable and

/mXE du = u(E)z.

First we suppose that z = 0. The regularity of the measure p implies that
for E€ S and ¢ € X, = 2 0 there exists a bounded sequence (a@nk)nk C Y,
Ak 20, ang \\0 (kK — 00, n=1,2,...) such that for every ¢ € NN there
exist an open set U € S and a compact set C € S, C C E C U so that

U\ C)z < \/ Qi (s) -
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Since C' is compact and U is open there exists § € U(T') such that

(t)ycU forteC,
6t) cU\C forteU\C,
s)NC =0 fortgU.

Take D € A(6), D= {(E;,t:), i=1,2,...,n}. By Lemma 4 we have
w(C)z = p(E)z = p(U)z

and
pw(U\ C)z = p(U)z — u(C)z.

Now

p(E)z = \/ aip@) £ w0z - \/ @iy < u(C)z <

<u( Be =Y wEe =" Xe(t)u(B)e <

t;€C t;eC =1

n n

< Xp(t)u(Ei)z = ZM(Ei) (zXE(t:)) =

i=1

— S(aX5, D) £ 3 w(E) (eXu(t:) = 3 w(Bo)a =

i=1 t;eU

= u(|J Bz £ p(U)z £ u(C)z + \/ tips) <
t;eU i

S p(E)z + \/ Qi(i)-

Then
= \/ aipi) S S(xX g, D) — p(E)z < \/ Qi (i)

and hence
1S(zX g, D) — w(B)x| £ \/ aipqs)
i
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for any D € A(6). In the general case for z € X we get

/mXEdu:/(a:"'—m_)XEdu=/m+XEdu——/a:_XEd,u=

= u(E)zt — p(B)z”™ = w(E)z.

Limit Theorem

LEMMA 14. If f,: T — X is integrable for n =1,2,..., f, — f uniformly
and f is bounded, then lim f fndu exists.

Proof. It is sufficient to show that the sequence ([ f,du), is bounded
and
[oe] [o.e] oo [o.°]
AV [ras\ A [ an
n=1 i=n n=1 j=n

Since the function f is bounded, there exists h € X, h = 0, such that
|f@)| S h forall teT.

From the uniform convergence of f, there exists a sequence (a,), C X,
anp 0 (n —o00) and for any t € T

|fn(t) = F(B)] S an

for all n. Hence
—h—a1 S f(t)—a1 S f(t) —an S fu(t) S f(t)+an Sh+a;

and
1£:@) = £ (DI S | £fi(®) = F@OI+1£3(8) = F@)] £ ai + a; £ 2an

forany t € T and 4,5 2 n. It is evident that if for f: T — X, f(t) = a for all
t €T, then

D u(By) f(t) =" w(Ea = w(T)a

=1 J=t

for any D € A(6) and any 6. By Theorems 7 and 8 for any n we have

W(T)(~h - a) / Fadp £ p(T) (h + a1)
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and
W(T) (20 S (=5 du= [ fidu= [ fydn S @) () for iizn

Then the sequence ( [ fn du), is bounded and

W) (2an)+ [ fdus [ s [ fdu () 20n)

for ;7 2 n, which implies
o0 o0
\V /fid#§ A /fjd#+M(T) (2a5)
i=n j=n
for all n, and hence from continuity of u(T") we get
o0 o0 o0 o0
AV [fans A [faw
n=1 i=n n=1 j=n
O

THEOREM 15. Let f, : T — X be integrable for n = 1,2..., f, — f uni-
formly and f is bounded. Then f is integrable and [ fdu = lim [ fn.dpy.

Proof. By Lemma 14 lim [ f,du = c exists and hence there exists a
n—00

sequence (c,)n CY, ¢, \\0 (n — 00) and

l/fndu—c

for any n. The function f, is integrable and then there exists a bounded double
sequence (@n;j)i,; C Y such that ap;; \, 0 (j — o0, 4, =1,2...) and for
every ¢ : N — N there exists 6, € U(T') such that for every D € A(6,)

Sen

‘/fn d.u‘—‘s’(fnuD)l < vanicp(i+n+1) .

Since f, — f uniformly, there exists a sequence (b,), C X, b, \, 0 and
|fr(t) — f(t)] £ b, for any t €T and all n.
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Let o € NV. Put k =ming(j+1) and take D € A(b)
J

D = {(Ey,t1), (Ba,ta),..., (Er,tr)}.

Then
|S(£,D) - ¢| < |S(£, D) — S(fi, D) + [S(fk,D) - [ 5 du’ ; ‘/fk du— | <
<Y (B (£ () = filts)]) + V thip@irrrn) +cx <
i=1 )
™
<Y w(EDbe + \/ arip(itrrn) +cx <
=1 i
S w(T)bg + e + \/ Qlip(itk+1) = di + \/ Qligp(ith+1) »
where
dj:/L(T)bj—f-C]’ for j=1,2,..., (dj)jCY,
dj 0 (j—o0), since pu(T)b; \,O, (j— o0),
die = dimin p(j+1) = V dip(irt1) -
Put by;5 = d; for 4,5 =1,2,... and bpmt1i = anij for n,i,5,m=1,2... . Now

1S(f, D) — c| < \/ dyi1y + V Ghigsnsn) =
i 1

= \/ biip(i+1) + v bkt tip(ithtl) =

é Z v bnicp(i—i—n) 2
n=1 1

There exists h € X, h 2 0 such that |f(t)] £ h for any ¢t € T, since f is
bounded. Then

S(£,D) = ¢l S|S(f, D) +lel = | Y n(Ba) £(t:)| + || £

i=1

< Y WE)F ()| + el £ p(T)h+ el L a,

i=1
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where a € X,a > 0 and

oo
|S(f7 D) - CI é aA Z \/bniga(i—f—n)
n=1 1

By Lemma 3 there exists a bounded double sequence (a;;);; C Y, a; \, 0
(j—o00,i=1,2,...) and

0o oo oo
a Z bnicp('i+1) £ \/ Qip(i) -
n=1 i=1 i=1

Therefore there exists ¢ € Y, ¢ = lim [ f,dp and the bounded double se-
n—oo

quence (a;;)ij; CY, a;; \\0 (j — 0o, i =1,2,...) and for every ¢ € NN
there exists § € U(T') (§ = 6mjnp(j+1)) Such that

IS(f7D) —C[ § \/ Qip(1)
i=1

for any D € A(6). Hence f is integrable and

[tau=tim [ faan.
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