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UNCERTAINTY MEASURES OF
FUZZY PROPOSITIONS AND THEIR
USE IN FUZZY INFERENCE

JOZEF SAIDA

0. Introduction

The connection of fuzzy sets theory with the possibility theory has been
studied many times, e.g. by L. Zadeh in his famous paper [1] already in 1979.
On the other hand, the book [2] by G. Shafer in 1976 has presented a qualified
insight into a subject’s propositions and his beliefs are true. These papers and
other ones were a particular answer to the unpronounced challenge of modal
logic about the need to inquire the relation of the possible and the necessary.
While the possibility theory belongs to the solution of the uncertainty problem of
logical propositions from the possibility point of view, the belief (or credibility)
theory is related rather to the necessity problem in epistemic logic.

However, according to the modal duality of the operators for possibility and
necessity, there does not suffice only one measure to define completely the uncer-
tainty problem for propositions of a logical system; there are necessary and suf-
ficient two uncertainty measures, which are in a complementary relation. There-
fore, a necessity measure was added to the possibility measure for propositions in
classical logic, and a measure of plausibility (playing the role of possibility) was
added to the measure of credibility (playing the role of necessity) in epistemic
logic. . .

In the paper, we are trying to solve the uncertainty problem by defining
dual measures of possibility and necessity in a non-standard environment — for
propositions of fuzzy logic.

1. The possibility and necessity
measures of fuzzy propositions

Let U # 0 be a universe of discourse of object u, and B # § a system
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of subset covering the universe U. We represent subsets B; € B by a unique
function pp; = p;, which is either the characteristic function of the set B; (if
B; is a non-fuzzy set), or the membership function of the set B; (if B; is a
fuzzy set), i.e.

€ {0,1}, if B is a crisp set,

4 U: pi
vE 'u(u){E[O,l], if B is a fuzzy set.

Let X be a variable in the universe U represented by a fuzzy subset A C U
with the membership function p4. It is known [3] that if the variable X is
represented by a possibility distribution 7x , the fuzzy proposition “X is A"
is equivalent to the relation

mx(u) = pa(u), weU. (1)

Assume that the possibility distribution 7x , as well as all the possibility
distributions which will appear in the following text in an implicit or explicit
form, are supposed to be normalized, i.e.

3u€U:7rx(u)=1.‘
It is our intention to define a pair of set functions,
I: B—10,1], resp. N:B-—]0,1],

expressing a possibility or necessity measute, respectively, such that the propo-
sition “X is B;” is true at a given proposition “X is ‘A” represented by the
relation (1). ) =

The product B;()A characterizes a degree of agreement of the set B; and
A in a natural way. Therefore, it is suitable to use it for the definition of the
possibility measure II, for the propositions “X is B;” at a given proposition
“X is AV [4]: 3

Ix(B;; A) = ilelgmin{u,-(u),pA(u)},VB,- €B. (2)

Hence, for the complementary proposition “X is EZ’ =“X isnot B;”,

Ix(Bi; A) = supmin{l — pi(u), pa(u)} - ®)

The uncertainty measures, II a N, are special cases of the operators <> of
possibility and O of necessity from modal logic, which satisfy the formal dual
relation ‘ ;

<>=10h4,
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meaning that for every particular pair of uncertainty measures, e.g. Il a N, the
following dual modal condition must be fulfilled,

I(p) =1-N(1p), (4)

where p’s are proper propositions of the given logical system. In our case this
equality has the form

Hx(Bi;A):l——Nx(Ei;A), VB;eB. (5)

To fulfil the equality (5) it requires for the possibility measure, II, defined
by (2), to define the necessity measure, N, by

Nx(Bi; 4) = inf max{u(u),1 - pa(w)}, (6)
which follows from the duality (5) inserting (3),
Nx(Bi; A) =1-Tx(Bi;A) =1 — supmin{l — p;(u), pa(u)} =
uelU

= Inf max{pi(u),1 - pa(u)}

So far we have dealt with the uncertainty of propositions of the form “X
is B;” related to the variable X in the universe U. To define the uncertainty
measures, II and N, we have used a set representation. From the construction
used it is obvious that if we denote Bx the system B of the subsets  B;, by
which we have described appropriate properties of the variable X at a given
A, and if we denote Px the set of appropriate elementary propositions of the
form “X is B;” ‘at a given fundamental fuzzy proposition “X is A”, then the
Boolean algebra Bx = (Bx,™,N,U) of sets is isomorphic to the Boolean algebra
Px = (Px,1,A,V) of propositions.

It is obvious that if the fuzzy set 4 in the proposition “X is A” is reduced
to the (non-fuzzy) singleton {ug}, then p4 is reduced to the corresponding
characteristic function with the only nonzero value u a(ug) =1, otherwise 0. If
it is the case, the uncertainties, IT a N according to (2) and (6), are

1, if wu€ B,

0, otherwise,

Tx(Bi; A) = Ix (B {uo}) = {

1, if wup€ By,
Nx(Bi; A) = Nx(Bi; {uo}) = { =,

0, otherwise.
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The expressions (2) and (6) define possibility and necessity measures for ele-
mentary propositions. To extend those definitions to a general case of sets from
the system Bx or propositions from the Boolean algebra Px, some elemen-
tary definitions for composition of membership functions or truth evaluating for
compound fuzzy sets or compound propositions are to be used, e.g.

pr(z) =1-pr(z),
prnG(z) = min{pr(z), pa(z)},
ﬂFUG(z) = max{,up(x), HG(I)} 3

v(]F)=1—v(F),

o(F A G) = min{v(F),v(G)},
v(FV G) = max{v(F),v(G)}.

Then, for the sets B;, B; € Bx we definé the possibility measure, Ilx , and
the necessity measure, Nx , as follows,

IIx(B;UB;j; A) = max{Ilx(B;; A),IIx(B;; A)}, (7) »

and '
Nx(Bin Bj; A) = min{Nx(B;; A), Nx(B;; A)}. (8)

respectively.
More generally,

Tx (| Bi; A) = sup{Tix(Bis A)}, VB € Bx, )
and y
' Nx (ﬂ B;; A) = inf{Nx(Bi; A)}, VB;eBx. (10)

respectively.

If, for simplicity, we express elementary propositions more brieﬁy,
po="*X1s A", pi=“Xis B;”", 1=12,...,

then we can speak about the set Px = {p;; po} of elementary propositions, or
about the Boolean algebra Px of propositions p-gq,..., as well as about the
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uncertainty measures IIx(p;; po),and Nx(pi; po) defined by (2) and (6) in the
set Px or in the set Px of compound propositions. :

According to the simplification above the expressions (7), (8), (9), (10) can
be expressed in the form

Tx(pi V pj; po) = max{Ix(pi; po), x (ps; Po)},
and .
Nx(pi Ap;; po) = min{Nx(pi; po), Nx(p;j; Po)} ,

or more generally for propositions p,q € Px,

Mx(pV q) = max{Ilx(p),Ix(q)}, Vp,q€ Px,

and
Nx(p A q) = min{Nx(p), Nx(¢)}, Vp,q€Px,
or for an infinite number of propositions p,gq,--- € Px,
Ox(pVgV...)=sup{Ilx(p),Ox(q),-.-},
and
Nx(p/\q/\ ...)=inf{Nx(p),Nx(q),‘.. },
respectively.

It can be proved that if X,Y are independent variables in the universe U,
with elementary propositions “Y is D;” for a given variable Y at a given
proposition “Y is C”, then the following expressions [3] hold,

Hx)y(B,' X DJ'; A x C) = min{IIX(B,'; A),Hy(Dj 3 C)},
Ix,v(Bi + Dj; A x C) = max{llx(Bi; A),Ily(D;; C)},
Nx,y(Bi x Dj; A x C) =min{Nx(Bi; A), Ny(D;; C)},
Nx,y(B; + Dj; AxC)= ma,x{Nz(B,- 2 A),Ny(Dj : O)} H

where the values of possibility and necessity can be determined from proper
possibility distributions according to (1).

2. Implication functions for fuzzy propositions

Generally, a natural requirement is accepted that the truth value of compound
logical formulas or propositions in any logical system is a function of the truth
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values of their components. Thus, for fuzzy logic too, if v(p), v(q), v(p — ¢q)
are the truth values of the fuzzy propositions p, ¢, p — ¢ from the set Px,
then it is possible to define various functions f which determine the truth value
v(p — q) of implication depending on the values v(p), v(q), ;

v(p = ¢) = f(v(p), (), VP, g € Px .

Because in definitions of those functions there appear the so-called triangular
functions, we introduce briefly definitions of those auxiliary functions which play
the role of general logical operators for conjunction, disjunction and negation.

Let f:[0,1] x[0,1] — [0,1] be a function the arguments and values of which
are in the interval [0,1]. Then f is called a

(i) triangular norm denoted *, if for Vz,y € [0,1] the following expressions
hold,

“(0,0) =0,
(2,1 =*(Lz) =2,
(=) ="(y,72),
*z,y) <*(r,s), if 2<r and y<s,
(", 7)) = *(*(z, y), r);
(i1) triangular conorm denoted L ,if for Vz,y € [0,1] the following properties
hold, : .
1(1,1)=1,
1(0,z) = L(z,0) =z,
L(z,9) = L(y,2), ,
1(z,y) < L(rys), if z<r and y<s,
Lz, Ly, 7)) = L(L(z,y),7).
Notice that it is practical to write triangular norms and conorms in the form
*(z,y) = 2*y,
L(z,y)=zLly.

It can be shown that the maximum norm * is the function min, and the
minimum norm is the function , ,
z if y=1,
TW(‘”??/) = y if z= 1,
0 otherwise. -
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Thus, Tw(z,y) < z*y < min(z,y) holds. .
Further interesting norms are: the product z -y, and the function max,
z*y = max(0,z + y — 1), where the ordering

Tw(z,y) <max(0,z +y—1) < 2z -y < min(z, y)

holds.
The following dual relation holds between the norm * and conorm L

gly=1-(1-2)"(1-y).

From the properties above it follows that the norm * plays the role of a
conjunction operator, and the conorm the role of a disjunction operator.

For the sake of completeness, we introduce also the operator n of negation
which for all z € [0, 1] fulfills the conditions [6]:

n(0)=1,
n(n(z)) =z,

n is a continuously decreasing function in [0, 1].

For various fields of application different types of implication functions are
available. Most of them can be derived from two basic schemes representing a
general algorithm for calculating values v(p — g) depending on v(p) a v(q) by
means of triangular functions. '

The basic schemes for definition of implication functions are as follows,

v(p = q) = nlu(p)] Lo(g), (11)

where n is an operator for negation and L is a triangular conorm for disjunction,
and )

v(p—q) = sup {z|v(p)*z < v(q)}, (12)
; z€[0,1) : .

*

where * is a triangular norm for conjunction.

The schema (11) is often used mainly in classical logic, where the formulas
p— ¢ and 1pV ¢ are equivalent, and therefore

v(p— ¢) = v(1g — 1p) | (13)

holds. However, the condition (13) is not fulfilled in many logical systems. Hence,
the proper implication functions are defined according to the schema (12).

147



JOZEF SAIJDA

Among such implication functions are involved, e.g.
(1) Gddel’s implication function,

1 if w(p) <v(g),
v(g) if v(p) >v(g).

As a drawback of this function is its inconditi‘nuity for v(p) > v(q) on the
boundary v(p) = v(q).

o) oa) = {

(2) Goguen’s implication function,
| 1 if v(p)=0,
min(1,v(g)/v(p)) if v(p)#0-
(3) Lukasiewicz’s implication function,

f(v(p), () = min(1,1 - v(p) + v(q)),
which can be derived from both schemes, (11) and (12).

ﬂwmw@»={

3. The use of possibility distributions in fuzzy inference

As stated in section 1, if p,g, p — ¢ are fuzzy propositions, their mem-
bership functions can be represented according to (1) by adequate possibility
distributions.

Let X be a variable in the universe U, and Y a variable in the universe V.
Let '

IF X is ATHEN Y is B (14)

be a particular rule of the type IF-THEN expressing the implication p — ¢,
when p=“X is A”, ¢ =“Y is B” are fuzzy propositions with membership
function pa,pp, where p € Px, and q € Py .

If 7x, my are the corresponding possibility distributions of the variables
X,Y &nd my|x is the possibility distribution corresponding accordingly (1) to
the proposition (14), then it can be proved [3] that the possibility distribution
Tx,y Tepresenting the pair (X,Y) of variables X,Y, is

mx,y(4,v) = 1y x(v,u) 7x(u), YueU, VveV,

where * is a triangular norm. From this distribution the possibility distribution

my of the variable Y can be obtained by the operation of projection,

ry (9) = sup 7w,y (,9) = sup(y (v, 4) (W) (15)
uelU welU i
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Since, according to (1),

mx(u) = pa(w), 7Y(0) = un(v),

from (15) there follows
pB(v) = Ty x(v,u) pa(y).

From this it is possible, according to [7], to express the unknown distribution
Ty|x in the form

”Y]X(va u) = pa(u) ® 1B(v), (16)

where ® is a triangular norm defined by

r®s= sup {t|t'r <s},
tefo,1]

or in our case

pa(u) ® pp(v) = t:;;pl]{t | t*pa() < pa(v)}.

*

If the norm * is min, then using this expression in (16) we obtain the answer,

1 if pa(v) < psv),

el T Gl g, 1)

7l'y| x('u,u) = {
which corresponds with Godel’s implication function.
When the norm * is realized by product (Goguen), then we obtain for (16)

min(L, up(o)/ua()) i pa(u) £0. ol

Ty x(v,u) = {
And if the norm is, * = max(0,v(p) + v(q) — 1) (Lukasiewicz), then (16)

implies,
Ty(x(v,u) = min{1,1 — pa(u) + pp(v)}. (19)

It may be seen from the expressions (17), (18), (19) that the possibility dis-
ribution appropriate to the rule (11) is identical with the correspondmg impli-
cation function in the sense of the used norm.
This result can be used for computing values of the membership function of
a logical consequence gained by the modus ponens inference rule generalized for
fuzzy premises,
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IF X is A THEN Y is B

X is A

Y is B
where p4r = mx is given. Since my = ups, we can compute

pp(v) = Telglwm(u) @ us(v)) pa(uw)], YveV,

from (15) using (16), which is a solution of the task to determine fuzzy conse-
quence from fuzzy premises.
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