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ON ESSENTIAL DERIVED NUMBERS OF
TYPICAL CONTINUOUS FUNCTIONS

LUDEK ZAJICEK

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. For a typical continuous function f on [0,1], f has a bilateral
essential derived number at each point z € (0,1).

Let € denote the set of continuous real valued functions defined on [0, 1]
furnished with the metric of uniform convergence. When we say a typical f € ¥
has a certain property P, we shall mean that the set of f € ¥ with this property
is residual in % .

Let z € (0,1), y € R and d 2 0. Following [1], we shall say that y is
a derived number of f € ¥ at = with a density d (upper density d, right
upper density d, symmetrical upper denéity d,...) if there exists a set £ C R
such that the density (upper density, right upper density, symmetrical upper
density,... ) of E at z equals to d and hm (f(t) f(z) t—=z)1=y.

If y is a derived number of f at = Wlth a right (left, symmetrical) upper
density 1, we say that y 1s a right (left, symmetrical) essentzal derived number
of f at = (cf. [2]).

In the following || f || stands for the norm in %, A for the Lebesgue measure
on the real line and B(f,r) for the open ball in ¥ with center f and radius r.

The following theorem is a slight improvement of a result presented in [4]
(Theorem 4 (i)) without a proof. The only difference is that in [4] a weaker
notion of a bilateral essential derived number is considered. The author thanks
to prof. L. Mi8ik, since the article was inspired by one his (unpublished)
question.

THEOREM. For a typical f € € and each z € (0,1) there exists y € R which
is a symmetrical essential derived number of f at z.
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Before the proof of Theorem we shall formulate two simple lemmas. The
following lemma has a standard proof (cf. Theorem 14.3 from [3]) which will be
omitted.

LEMMA 1. Let f € ¥ and zo € (0,1). Then y € R is a symmetrical derived
number of f at zq iff

Jm Mo € (20— b, 30 +h): (£(2) = f(z0)) (@ — 20) ™ € U}ER) I =1 (1)

for each neighbourhood U of y.

LEMMA 2. Let f € €, zo € (0,1) and let (h,)3°, (4,)5°, (2,)3° be se-
quences of real numbers such that h, \,0, z, \,0 and

Jlim Az € (z0—hn, To+hn): |(£(2)—f(20)) (x—20) '~ An| < 2n}(2ha) ' = 1.

_ (2)
Then there exists y € R which is a symmetrical essential derived number of f
at x.

Proof. Denote by y a cluster point of the sequence (A,) and choose an
arbitrary neighbourhood U of y. Then we can clearly choose an increasing
sequence of natural numbers (ny)$° such that (An, — zn,, An, + 2n,) C U for
each k. On account of (2) we immediately obtain that

Jim Mz € (20— hny, To+hn,): (F(@) = f(0)) (@ —20) " € U}(2hn,) ™ =1,

which implies (1). |

Proof of Theorem. Let (P)° be a sequence of polynomials which
is dense in ¥ . For each k put My = || P{|| (the norm of the second derivative
of P ) and choose 0 < & < (k M)~ such that & \, 0. Further put

[o <N o]

G: = () U B (P 6(4k?)7?) .

It is easy to see that G is a dense G5 subset of ¥ . Choose an arbitrary f € G. It
is sufficient to prove that for each z € (0,1) there exists a symmetrical essential
derived number of f at z. To this end choose an arbitrary zo € (0,1). Since
f € G, we can choose an increasing sequence of natural numbers (k,)$° such

that f € B <Pkn, Ok, - (4]6,21)_1) for each n.
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We shall show that the assumptions of Lemma 2 are satisfied for h,, = 6, 4, =
P{ (zo) and z, = (kn)~'. To this end consider n so big that (zo — hn, zo +
hyn) C (0,1). To prove (2) it is sufficient to show that for such n and for

T E (370 = hn; To — hn(kn)_l) U (370 + hn(kn)_17 To + hn)

we have

I (f(l’) - f(Io)) (z — -'1’0)—1 — Ay I < zn. (3)

Thus suppose that = € (mo +hn(kn)™, o —i—hn) is given (the other case is quite
analogical). We have

f(z) = f(zo)  Pr,(z) — P, (o)

 |f(@) = Py () | + | £(20) = P (w0) | _ 26k, (4 '“’21)1_1 k). @
|z — o] 6k, (k)

Further, by the Taylor formula, for some £ € (0,1),

‘ Py, (2) = P, (o)

r — g

~ P (x0) l — [ (1/2) P (€)(z —20) | <
< (1/2)- M, -6, < (2k2)". (5)

Since (4) and (5) obviously imply (3), the proof is over. ]
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