

ON ESSENTIAL DERIVED NUMBERS OF TYPICAL CONTINUOUS FUNCTIONS

LUDĚK ZAJÍČEK

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. For a typical continuous function f on [0,1], f has a bilateral essential derived number at each point $x \in (0,1)$.

Let $\mathscr C$ denote the set of continuous real valued functions defined on [0,1] furnished with the metric of uniform convergence. When we say a typical $f\in\mathscr C$ has a certain property $\mathcal P$, we shall mean that the set of $f\in\mathscr C$ with this property is residual in $\mathscr C$.

Let $x\in (0,1)$, $y\in \overline{\mathbb{R}}$ and $d\geqq 0$. Following [1], we shall say that y is a derived number of $f\in \mathscr{C}$ at x with a density d (upper density d, right upper density d, symmetrical upper density d,\ldots) if there exists a set $E\subset \mathbb{R}$ such that the density (upper density, right upper density, symmetrical upper density,...) of E at x equals to d and $\lim_{t\to x,t\in E} \left(f(t)-f(x)\right) \ (t-x)^{-1}=y$.

If y is a derived number of f at x with a right (left, symmetrical) upper density 1, we say that y is a right (left, symmetrical) essential derived number of f at x (cf. [2]).

In the following ||f|| stands for the norm in \mathscr{C} , λ for the Lebesgue measure on the real line and B(f,r) for the open ball in \mathscr{C} with center f and radius r.

The following theorem is a slight improvement of a result presented in [4] (Theorem 4 (i)) without a proof. The only difference is that in [4] a weaker notion of a bilateral essential derived number is considered. The author thanks to prof. L. M i š í k , since the article was inspired by one his (unpublished) question.

THEOREM. For a typical $f \in \mathscr{C}$ and each $x \in (0,1)$ there exists $y \in \overline{\mathbb{R}}$ which is a symmetrical essential derived number of f at x.

AMS Subject Classification (1991): Primary 26A24; Secondary 28A99. Key words: typical continuous function, derived number, essential derived number.

LUDĚK ZAJÍČEK

Before the proof of Theorem we shall formulate two simple lemmas. The following lemma has a standard proof (cf. Theorem 14.3 from [3]) which will be omitted.

LEMMA 1. Let $f \in \mathscr{C}$ and $x_0 \in (0,1)$. Then $y \in \overline{\mathbb{R}}$ is a symmetrical derived number of f at x_0 iff

$$\overline{\lim}_{h \to 0+} \lambda \left\{ x \in (x_0 - h, x_0 + h) \colon \left(f(x) - f(x_0) \right) (x - x_0)^{-1} \in U \right\} (2h)^{-1} = 1 \quad (1)$$

for each neighbourhood U of y.

LEMMA 2. Let $f \in \mathcal{C}$, $x_0 \in (0,1)$ and let $(h_n)_1^{\infty}$, $(A_n)_1^{\infty}$, $(z_n)_1^{\infty}$ be sequences of real numbers such that $h_n \searrow 0$, $z_n \searrow 0$ and

$$\lim_{n \to \infty} \lambda \left\{ x \in (x_0 - h_n, x_0 + h_n) : \left| (f(x) - f(x_0))(x - x_0)^{-1} - A_n \right| < z_n \right\} (2h_n)^{-1} = 1.$$
(2)

Then there exists $y \in \overline{\mathbb{R}}$ which is a symmetrical essential derived number of f at x.

Proof. Denote by y a cluster point of the sequence (A_n) and choose an arbitrary neighbourhood U of y. Then we can clearly choose an increasing sequence of natural numbers $(n_k)_1^{\infty}$ such that $(A_{n_k} - z_{n_k}, A_{n_k} + z_{n_k}) \subset U$ for each k. On account of (2) we immediately obtain that

$$\lim_{k \to \infty} \lambda \left\{ x \in (x_0 - h_{n_k}, x_0 + h_{n_k}) \colon \left(f(x) - f(x_0) \right) (x - x_0)^{-1} \in U \right\} \left(2 h_{n_k} \right)^{-1} = 1,$$

which implies
$$(1)$$
.

Proof of Theorem. Let $(P_k)_1^{\infty}$ be a sequence of polynomials which is dense in \mathscr{C} . For each k put $M_k = \|P_k''\|$ (the norm of the second derivative of P_k) and choose $0 < \delta_k < (k M_k)^{-1}$ such that $\delta_k \searrow 0$. Further put

$$G \colon = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} B\left(P_k, \, \delta_k(4k^2)^{-1}\right) \,.$$

It is easy to see that G is a dense G_{δ} subset of $\mathscr C$. Choose an arbitrary $f \in G$. It is sufficient to prove that for each $x \in (0,1)$ there exists a symmetrical essential derived number of f at x. To this end choose an arbitrary $x_0 \in (0,1)$. Since $f \in G$, we can choose an increasing sequence of natural numbers $(k_n)_1^{\infty}$ such that $f \in B\left(P_{k_n}, \delta_{k_n} \cdot \left(4k_n^2\right)^{-1}\right)$ for each n.

ON ESSENTIAL DERIVED NUMBERS OF TYPICAL CONTINUOUS FUNCTIONS

We shall show that the assumptions of Lemma 2 are satisfied for $h_n = \delta_{k_n}$, $A_n = P'_{k_n}(x_0)$ and $z_n = (k_n)^{-1}$. To this end consider n so big that $(x_0 - h_n, x_0 + h_n) \subset (0, 1)$. To prove (2) it is sufficient to show that for such n and for

$$x \in (x_0 - h_n, x_0 - h_n(k_n)^{-1}) \cup (x_0 + h_n(k_n)^{-1}, x_0 + h_n)$$

we have

$$|(f(x) - f(x_0))(x - x_0)^{-1} - A_n| < z_n'.$$
 (3)

Thus suppose that $x \in (x_0 + h_n(k_n)^{-1}, x_0 + h_n)$ is given (the other case is quite analogical). We have

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{P_{k_n}(x) - P_{k_n}(x_0)}{x - x_0} \right| \le$$

$$\le \frac{\left| f(x) - P_{k_n}(x) \right| + \left| f(x_0) - P_{k_n}(x_0) \right|}{\left| x - x_0 \right|} < \frac{2 \cdot \delta_{k_n} \left(4 \, k_n^2 \right)^{-1}}{\delta_{k_n} \left(k_n \right)^{-1}} = (2 \, k_n)^{-1} \, . \quad (4)$$

Further, by the Taylor formula, for some $\xi \in (0,1)$,

$$\left| \frac{P_{k_n}(x) - P_{k_n}(x_0)}{x - x_0} - P'_{k_n}(x_0) \right| = \left| (1/2) P''_{k_n}(\xi)(x - x_0) \right| < (1/2) \cdot M_{k_n} \cdot \delta_{k_n} < (2 k_n)^{-1} . \tag{5}$$

Since (4) and (5) obviously imply (3), the proof is over.

REFERENCES

- [1] JARNÍK, V.: Sur la dérivée approximative unilatérale, Věstník Král. Čes. Spol. Nauk. Tř. II. Roč. (1934), 10 pp.
- [2] JARNÍK, V: Sur les nombres dérivés approximatifs, Fund. Math. 22 (1934), 4-16.
- [3] THOMSON, B. S.: Real functions, Lecture Notes in Math. 1170, Springer-Verlag (1985).
- ZAJÍČEK, L.: The differentiability structure of typical functions in C [0, 1], Real Anal. Exchange 13 (1987–88), pp. 119, 103–106, 93.

Received November 23, 1992

Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Prague 8 CZECHIA