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Abstract: We present an exact analytical solution of the forward magnetometric problem
for the perturbing body having the shape of the rotational prolate ellipsoid with the
longer axis oriented vertically to the surface of the earth. The anomaly of ΔZ and ΔT

is calculated for the network of points in the plane z = const above the ellipsoid, as well
as for the points on the surfaces of the volcanic hill: i) the cut cone, ii) the smooth shape
given by the rotation of the Gaussian curve. Theoretical results can be useful for the
interpretation of land or aeromagnetic survey in the volcanic areas.
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1. Introduction

The forward magnetometric problem for the rotational prolate ellipsoid is
in the interest of applied magnetometry in some volcanic and post volcanic
regions. This body can be used as a model of magmatic intrusions be-
low the main crater. For the solution of this problem we will use classical
method of separation of variables in the curvilinear prolate ellipsoidal coor-
dinate system. Similar potential problems were solved for static electric field
(Smythe, 1968) and also in geoelectric potential field (Cook and Nostrand,
1982; Wait, 1982). We used this treatment in the solution of groundwater
flow anomalies due to a oblate spheroidal body (Hvoždara, 2009). We will
calculate the magnetic induction anomaly considering magnetic permeabil-
ity of the body to be uniform:

μT = μ0(1 + κ), (1)
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where μ0 is the magnetic permeability of the vacuum and κ is the magnetic
susceptibility of the intrusion. It is clear that for the hot magma with
temperature over the Curie point we put κ → 0, but for cooled solidified
magmatic body we put κ valid for basalts or andesites κ ≈ 0.01− 0.1 (in SI
system).

2. Formulation of the problem

Let us consider the perturbing body in the form of uniform prolate spheroid
bounded by rotation of the ellipse with semiaxes a, b (a > b) around the ver-
tical axis of symmetry z, which prolongate the vertical semiaxis a downward
as shown in Fig. 1 (section in the x, z plane). The section of this spheroid
by the horizontal plane (x, y) is the circle x2+y2 ≤ b2. Let the unperturbed
magnetic field far from the spheroid be uniform with induction

B ≡ (X0, Y0, Z0), (2)

Fig. 1. Model of a prolate rotationally symmetric spheroid.
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where X0, Y0, Z0 are its components in the local Cartesian coordinate sys-
tem. We can write its potential in the form:

U0 = −B0(x cosϕ0 cos I + y sinϕ0 cos I + z sin I), (3)

where I is the geomagnetic inclination angle and ϕ0 is the declination an-
gle with respect to the geographic North. Here B0 is the modulus (total
induction) of the magnetic field B0:

B0 = (X
2
0 + Y 20 + Z20 )

1/2, nT. (4)

The magnetic field in our problem is time steady, so it satisfies Maxwell
equations

rotB = 0, divB = 0,

hence we can represent it by using the magnetic potential U(x, y, z):

B = − gradU. (5)

It is clear that potential obeys the Laplace equation:

div gradU = 0. (6)

We denote the potential inside the spheroid by UT and outside it as U1 =
U0 + U∗1 , where U∗1 is the perturbing potential outside the body. On the
surface S of the spheroid the following boundary conditions must be satis-
fied:

μr [U0 + U∗1 ]S = [UT ]S , (7)[
∂

∂n
(U0 + U∗1 )

]
S
=

[
∂

∂n
UT

]
S

. (8)

These follow from the continuity of the tangential component of magnetic
intensity H = μ−1B and of the normal component of B. Here we introduce
relative permeability of the perturbing body:

μr = μT /μ0 = 1 + κ. (9)

As we anticipated, we will solve this boundary value problem by the sepa-
ration of variables in the prolate spheroidal system (α, β, ϕ). The transfor-
mation relations to the Cartesian system are:
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Hvoždara M., Vozár J.: Anomalies of geomagnetic field. . . (185–205)

x = fshα sinβ cosϕ, y = fshα sinβ sinϕ, z = fchα cos β, (10)

(see e.g. Lebedev, 1963; Arfken, 1966; Madelung, 1957). The curvilinear
coordinates α, β, ϕ vary over the intervals:

α ∈ 〈0,+∞), β ∈ 〈0, π〉, ϕ = 〈0, 2π〉,
and f is the prolatness parameter

f =
√

a2 − b2, (11)

where a, b are the lengths of major or minor semiaxes, respectively, for
the generating vertical ellipse. Using transformation relations (10) we can
find that the surfaces α = const are z-prolongated ellipsoids defined by
equations:

x2 + y2

f2sh2α
+

z2

f2ch2α
= 1 or

r2

f2sh2α
+

z2

f2ch2α
= 1, (12)

where r =
√

x2 + y2 is the horizontal distance from z-axis. The contour of
the ellipse in the plane (x, z) which generates the surface of the z-prolate
spheroid S is:

x2/b2 + z2/a2 = 1. (13)

This surface is matched with the surface of the supporting spheroid α = α0
if we put

f2sh2α0 = b2, f2ch2α0 = a2. (14)

Then we obtain the prolatness parameter f :

f2 = a2 − b2, f =
√

a2 − b2, (15)

which means that f is the numerical eccentricity of the ellipse with foci
on the z axis: (0, 0,−f), (0, 0,+f). The polar axis for the angle β is the z
axis (pointing downward), while the halfline z ∈ (0,+∞) which corresponds
to β = 0 and the halfline z ∈ (0,−∞) which corresponds to β = π. The
coordinate surfaces β = const are hyperboloids:

z2

f2 cos2 β
− r2

f2 sin2 β
= 1; (16)
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these are orthogonal and confocal to ellipsoids α = const. Using equations
(14) we obtain important relations for calculation of the parameter α:

eα0 = (a+ b)/f, α0 = ln [(a+ b)/f ] . (17)

In this manner we can link the geometrical parameters of the spheroid to the
curvilinear coordinates. It is clear, that normal derivatives in formula (8)
correspond to ∂/∂β since surfaces β = const are orthogonal to surfaces α =
const. We will also use Lame’s metric parameters given e.g. by (Lebedev,
1963):

hα = f(sh2α+ sin2 β)1/2, hϕ = fshα sinβ, (18)

which we will use in calculations of gradU . The particular solution of
Laplace equation in prolate ellipsoidal system can be found e.g. in Lebe-
dev, 1963; Morse and Feshbach, 1953. This is a combination of spherical
functions:

Unm(α, β, ϕ) =

{
Pm

n (chα)

Qm
n (chα)

}
Pm

n (cos β)

{
cosmϕ

sinmϕ

}
. (19)

Here Pm
n (s), Q

m
n (s) are the associated spherical functions for real argument

s = chα > 1, P m
n (cos β) are associated Legendre functions of degree n, order

m:

Pm
n (η) = (1− η2)m/2 d

m Pn(η)
d ηm

, (20)

where η = cos β ∈< −1,+1 >. From the theory we know that spherical
functions of the second kind Qm

n (s) are singular for s → 1, so in the interior
potential UT (α, β, ϕ) cannot be used. The unperturbed potential field U0
given by (3) can be written in the form:

U0(α, β, ϕ) =−B0r cos I cos(ϕ− ϕ0)− z sin IB0 =

=−B0fshα sinβ sin I cos(ϕ− ϕ0)−B0f sin Ichα cos β =

=−D0fchα cos β − E0fsh sinβ cos(ϕ− ϕ0), (21)

where

E0 = B0 cos I, D0 = B0 sin I, (22)
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are horizontal and vertical components of B0. This primary potential
contains azimuthal dependence cos(ϕ − ϕ0) in the second term and is ϕ-
independent in the first term. This will be true also for UT and U∗1 . Similar
property will occur also for β dependence, since sin β = P 11 (cos β) and
cos β = P1(cos β). Then we construct the interior potential UT (α, β, ϕ) in
the form as a multiplier of the primary potential terms:

UT (α, β, ϕ) = −D0a2fch cos β − E0g2fshα sinβ cos(ϕ− ϕ0). (23)

The potential outside the spheroid we consider as the sum of U0 and per-
turbing part U ∗1 which must decrease for coshα → +∞, so it cannot contain
Pm

n (coshα). Then we have:

U1(α, β, ϕ) =−D0f [chα+ a1Q1(chα)] cos β −
−E0f

[
shα+ g1Q

1
1(chα)

]
sinβ cos(ϕ− ϕ0). (24)

Coefficients a1, g1, a2, g2 we determine from boundary conditions (7), (8)
where the normal derivative we take as ∂/∂α. We use orthogonality of
goniometric functions sinβ, cos β as well as cosϕ, sinϕ. Then we obtain
two pairs of equations for m = 0 and m = 1. After easy modifications we
obtain for α = α0:

μr [chα0 + a1Q1(chα0)] = a2chα0, 1 + a1Q
′
1(chα0) = a2, (25)

μr

[
shα0 + g1Q

1
1(chα0)

]
= g2shα0, chα0 + g1shα0Q

1′
1 (chα0) = g2chα0.(26)

We can easily solve these equations by elimination method and obtain the
following expressions for the pair (a1, a2), using the abbreviation t0 = chα0:

a1 =
(μr − 1)t0

t0Q′1(t0)− μrQ1(t0)
, (27)

a2 =
μr [t0Q′1(t0)−Q1(t0)]
t0Q

′
1(t0)− μrQ1(t0)

. (28)

The second pair (g1, g2) will be:

g1 =
t0(μr − 1)

√
t20 − 1

(t20 − 1)Q1′1 (t0)− μrt0Q
1
1(t0)

, (29)
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g2 = μr
(t20 − 1)Q1

′
1 (t0)− t0Q

1
1(t0)

(t20 − 1)Q1′1 (t0)− μrt0Q11(t0)
, (30)

where we used t20 − 1 = sh2α0. Verification of these coefficients for the case
of non-magnetic spheroid μr → 1 will give zero value for the perturbing
potential U ∗1 given by multiplier coefficients a1 and g1 and in this case the
interior potential UT will be equal to the exciting one U0. Since the spherical
functions of the 2nd kind Q1(t), Q11(t) are not very common in geophysics
we quote expressions for these functions valid for t > 1. According to theory
given by Lebedev (1963) or Arfken (1966), we have the representations:

Q1(t) =
∞∑

k=0

1
2k + 3

1
t2k+2

= (t/2) ln
t+ 1
t− 1 − 1, (31)

Q11(t) = (t
2 − 1)1/2 d

d t
Q1(t) =

= −(t2 − 1)1/2
∞∑

k=0

2k + 2
2k + 3

1
t2k+3

= (t2 − 1)1/2
[
1
2
ln

t+ 1
t− 1 −

t

t2 − 1
]
. (32)

The expressions for their derivatives Q′1(t), Q1
′
1 (t) can be easily obtained by

the derivation of series in (31), (32). It can be easily verified that all these
functions decrease to zero for t→ +∞.

3. Calculation of the anomalous magnetic field

We have obtained coefficients which modify the unperturbed magnetic field
potential inside and outside the prolate spheroidal perturbing body. The
magnetic field potential inside the body (24) can be easily expressed in the
Cartesian coordinates (x, y, z) using transformation relations (10) and (22):

UT (x, y, z) = −xB0a2 sin I cosϕ0 − yB0a2 cos I sinϕ0 − zB0g2 sin I. (33)

This represent potential of the directional uniform magnetic field:

BT ≡ (B0a2 cos I cosϕ0, B0a2 cos I sinϕ0, B0g2 sin I). (34)
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Hvoždara M., Vozár J.: Anomalies of geomagnetic field. . . (185–205)

We can see that the horizontal declination angle ϕ0 will be preserved in the
spheroid (clearly due to axial symmetry), but the inclination angle will be
changed to IT , which can be calculated from the relation:

tg IT = (g2/a2) tg I. (35)

From the practical point of view the most interesting is the anomalous
magnetic field outside the spheroid. Its potential can be obtained from (24)
in the form

U∗1 (α, β, ϕ) = −D0fa1Q1(chα) cos β − E0fg1Q
1
1(chα) sin β cos(ϕ− ϕ0).(36)

We can see that the first part, proportional to D0a1, is independent of ϕ
(it is axially symmetric), while the second one is azimutally dependent via
cos(ϕ − ϕ0), where ϕ0 is the declination angle of the B0. The perturbing
magnetic field outside the spheroid can be calculated from the curvilinear
components of the − gradU ∗1 (α, β, ϕ), i.e.:

B∗α = −
1
hα

∂U∗1
∂α

, B∗β = −
1
hβ

∂U∗1
∂β

, B∗ϕ = −
1
hϕ

∂U∗1
∂ϕ

, (37)

where the Lame’s metrical parameters are given by (18). These curvilinear
components can be easily transformed to the Cartesian components using
formulae:

B∗x = B∗r cosϕ−B∗ϕ sinϕ, B∗y = B∗r sinϕ+B∗ϕ cosϕ,

B∗z =
[
−B∗βchα sinβ +B∗αshα cosβ

] [
sh2α+ sin2 β

]−1/2
,

B∗r =
[
−B∗βshα cos β +B∗αchα sinβ

] [
sh2α+ sin2 β

]−1/2
. (38)

Here we adopted the formulae from Madelung (1957) with substitution
(v, u, ϕ) → (α, β, ϕ), u = π/2 − β and Madelung’s au = −Bβ because
the direction of his unit vector eu is opposite to our eβ. Because the cal-
culation of the anomalous magnetic field outside the spheroid needs to be
performed on some network of (x, y, z) coordinates, we must use transfor-
mation relations to the curvilinear (α, β, ϕ) for the prolate spheroid. The
treatment presented in Hvoždara (2009) gives relations

2fchα =
[
r2 + (z − f)2

]1/2
+

[
r2 + (z + f)2

]1/2
, (39)
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where r2 = x2 + y2. We have also shα =
[
ch2α− 1

]1/2
and hence

eα = chα+ shα. (40)

For the angle coordinate β we have:

cos β = z/(fchα), (41)

for the upper halfspace z < 0 we have clearly β ∈ (π/2, π〉. The azimutal
angle ϕ is given by the relation

tgϕ = y/x, ϕ ∈ 〈0, 0, 2π〉. (42)

Now we have a complete set of theoretical formulae for numerical calcula-
tions.

4. Numerical calculations and discussion

For the numerical calculations we choose prolate spheroid with semiaxes
a = 500m, b = 200m and susceptibility κ = 0.1. For practical needs there
are interesting model calculations of the ΔZ and ΔT anomaly for the case
of aeromagnetic survey in a given plane z = −H0 above the magmatic body
or for land profile measurements on the hill above the magmatic body. In
this case we have z = −H(x, y). We will consider also two types of the
axially symmetric hills, as defined later.

The results for the case of constant level zp = −2a = −1000m
are given in Figs. 2a–c. In Fig. 2a we have plotted isolines of perturbing
potential U ∗(x, y, zp) divided by B0. These can be characterized like the
potential due to some inclined magnetic dipole, with the negative (–) pole
in the halfplane x/a < 0 and close to the surface. The positive (+) pole
is deeper than negative one and lies in the halfplane x/a > 0. For better
clarity the profile curve of U ∗ along the x profile for yc = 0 is also presented.
Figure 2b presents isolines of ΔZ normed by B0 and Fig. 2c isolines of
ΔT (x, y, zp). The relative values of ΔZ/B0 and ΔT/B0 are multiplied by
the factor 1000. We can see that if B0 = 50000 nT, then maximum of
ΔT will be around 60 nT, while minimum is about –15 nT. We note that we
consider the declination angle D0 ≡ ϕ0 = 0◦ and inclination I0 = 55◦, which
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Fig. 2a. Isolines of the anomalous potential above the prolate spheroidal body at the
plane zp = −2a. The bottom curve presents values along the profile y = 0.
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Fig. 2b. The isolines of the relative ΔZ anomaly above the prolate spheroidal body at
the level zp = −2a. The bottom curve shows the profile values at y = 0 for the level
zp/a = −2.
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Fig. 2c. The isolines of the relative ΔT anomaly above the prolate spheroidal body at
the level zp = −2a. The bottom curve shows the profile values at y = 0 for the level
zp/a = −2.
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Fig. 3a. Isolines of the surface of the cut cone H(x, y) = −Z(x, y) defined by equation
(43) which represents hill above the prolate spheroidal magnetic body. The bottom curve
shows hights profile at y = 0.
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Fig. 3b. The isolines of the relative ΔZ anomaly above the prolate spheroidal body on
the surface depicted in Fig. 3a. The bottom curve shows the profile values at y = 0 along
the hill.
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Fig. 3c. The isolines of the relative ΔT anomaly above the prolate spheroidal body on
the surface depicted in Fig. 3a. The bottom curve shows the profile values at y = 0 along
the hill.
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Fig. 4a. Isolines of the surface for the “Gaussian hill” H(x, y) = −Z(x, y) defined by
equation (44) which represents the eccentric hill above the prolate spheroidal body. The
bottom curve shows hights profile at y = 0.
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Fig. 4b. The isolines of the relative ΔZ anomaly above the prolate spheroidal body on
the surface of the hill depicted in Fig. 4a. The bottom curve shows the profile values at
y = 0 along the hill.
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Fig. 4c. The isolines of the relative ΔT anomaly above the prolate spheroidal body on
the surface of the hill depicted in Fig. 4a. The bottom curve shows the profile values at
y = 0 along the hill.
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Fig. 5a,b. Values of ΔT/B0 × 1000 measured on two profiles (a – Zaježová, b – Pol’ana)
in the region of neovolcanites in the central Slovakia.
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occurs in the Mediterrean countries. For the ground magnetic survey on the
volcanic hill we consider at first the broken line Z profile (“hill profile”),
which approximates the cut cone:

Z(x, y) =
��

��

−hb if r ≥ rb

−hb − q(r − ru) if r ∈ (ru, rb)
−hu if r ∈ 〈0, ru)

(43)

while r =
√

x2 + y2 is the horizontal distance from the vertical axis of
symmetry z. In Fig. 3a there are plotted hight isolines (isohypses) H(x, y) =
−Z(x, y) defined by (43) and at the bottom there is plotted a hight profile,
as well as the position of the upper half of the magmatic prolate spheroid.
Numerical values of parameters of the body and the “hill profile” are given
in the Table in Fig. 3a. In Figs. 3b,c there are plotted isolines of ΔZ and
ΔT values for this hill model. We can see that the changes of these fields
are steeper in comparison to Figs. 2b,c. The extreme values are also higher.
The next case of the “hill profile” is given by the Gaussian curve

Z(x, y) = −z0 − p exp
{
−γ

[
(x− x0)

2 + (y − y0)
2
]}

, (44)

where we put: z0 = a/10, p = 2.5a, γ = 1/a2. The top of this hill is
above the point (x0, y0). The profile of this hill can be seen in Fig. 4a.
When comparing with the previous hill case, we see that measuring points
are closer to the anomalous body in flanks slopes. The top points are more
distant. The isolines and profile graphs of the calculated values ΔZ and ΔT
are presented in Figs. 4b,c. We can see that the extreme values are greater
than in the previous hill model (Fig. 3a), clearly because the flank points
of the “Gaussian hill” are closer to the anomalous body. In this manner
we have obtained useful analytical model of sill-like magmatic bodies in
volcanic hills.
We present also two practical profile curves of the ΔT/B0 obtained by the

field measurements performed in the region of neovolcanites in the central
Slovakia. Figure 5a concerns the profile at Zaježová in the Javorie Mts.,
while Fig. 5b shows the region beside the extinct stratovolcano Pol’ana. We
can see that the general source of these profile curves is in good agreement
with theoretical profile curves ΔT/B0, although the relative anomaly values
are about 1000 times less. This can be caused by the two main reasons:
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i) the susceptibility κ in our theoretical calculations was put very high
κ = 0.1 SI units, while in real conditions we can have κ ≈ 10−4 SI,

ii) the measurement profiles for Figs. 5a,b do not run across the top of
the volcanic hill, but about 1–3 km aside.
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