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Abstract: We derive the expressions for computing the ice density contrast stripping
corrections to the topography corrected gravity field quantities by means of the spherical
harmonics. The expressions in the spectral representation utilize two types of the spherical
functions, namely the spherical height functions and the newly introduced lower-bound
ice functions. The spherical height functions describe the global geometry of the upper
topographic bound. The spherical lower-bound ice functions combined with the spherical
height functions describe the global thickness of the continental ice sheet. The newly
derived formulas are utilized in the forward modelling of the gravitational field quantities
generated by the ice density contrast. The 30×30 arc-sec global elevation data from
GTOPO30 are used to generate the global elevation model (GEM) coefficients. The
spatially averaged global elevation data from GTOPO30 and the 2×2 arc-deg ice-thickness
data from the CRUST 2.0 global crustal model are used to generate the global lower-bound
ice model (GIM) coefficients. The mean value of the ice density contrast 1753 kg/m3 (i.e.,
difference of the reference constant density of the continental upper crust 2670 kg/m3and
the density of glacial ice 917 kg/m3) is adopted. The numerical examples are given for
the gravitational potential and attraction generated by the ice density contrast computed
globally with a low-degree spectral resolution complete to degree and order 90 of the GEM
and GIM coefficients.
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1. Introduction

The global geopotential and elevation models are currently available to a
very high accuracy and resolution. On the contrary, the accurate mod-
elling of the topography corrected gravity field quantities is restricted by
the current lack of knowledge about the density distribution within the up-
per continental crust. The constant average topographic density is thus
commonly assumed when modelling the topographic corrections to gravity
field quantities evaluated with a low-degree spectral resolution (e.g., Sünkel,
1968; Novák et al., 2001; Tenzer et al., 2003; Novák and Grafarend, 2005).
Recently, the lateral topographical density distribution models have been
used more often in detailed gravimetric modelling at the vicinity of the
computation point, whereas the constant average topographical density is
adopted for computing the gravitational contribution of the far-zone topog-
raphy (e.g., Martinec et al., 1995; Kühtreiber, 1998; Huang et al., 2001;
Hunegnaw, 2001; Sjöberg, 2004). Nevertheless, the effect of the anomalous
density variations within the far-zone topography due to the large-scale sed-
imentary basins and continental ice sheet is still significant. Similarly, the
large-scale geological formations with variable density structures within the
upper continental crust contribute considerably to the long-wavelength part
of the topography corrected gravity field. It is thus expected that the incor-
poration of the currently available ice, sediment, and crust density contrasts
data from the global crustal model CRUST 2.0 (Bassin et al., 2000) could
improve the accuracy of modelling the topography corrected gravity field
quantities, particularly in polar regions and over areas with the large-scale
sedimentary basins and other geological formations with variable density
structures.
A number of authors utilized the spherical harmonic analysis in deriving

the expressions for computing the atmospheric and topographic corrections
to gravity field quantities. A brief summary of these studies can be found for
instance in Tenzer et al. (2010). Ramillien (2002), Tenzer et al. (2009c),
and others computed globally the atmospheric corrections using methods for
a spherical harmonic analysis of gravity field. The expressions for computing
the bathymetric stripping corrections by means of spherical harmonics were
derived by Novák (2010) and Tenzer et al. (2010). The stripping corrections
to gravity field quantities due to the major known density contrasts within
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the Earth’s crust were systematically investigated and computed globally
with a low-degree spectral resolution in Tenzer et al. (2008a, 2008b, 2009a,
2009b) using the CRUST 2.0 global crustal model.
In this study, we derive the expressions for computing the ice density

contrast stripping corrections to gravity field quantities by means of spher-
ical harmonics. The thickness of the polar ice sheet is described by the
global elevation model (GEM) coefficients and the global lower-bound ice
model (GIM) coefficients. The gravitational potential generated by the ice
density contrast and the respective gravitational attraction are formulated
in terms of the spherical height and lower-bound ice functions in Section 2.
The GEM and GIM coefficients are used to compute globally the long-
wavelength gravitational potential and attraction with a spectral resolution
complete to degree 90 of spherical harmonics. The GTOPO30 global ele-
vation and CRUST 2.0 ice-thickness data are used to generate the GEM
and GIM coefficients. The numerical examples are shown in Section 3. The
summary and conclusions are given in Section 4.

2. Spectral representation of the ice stripping gravity correc-
tions

Adopting the spherical approximation of the Earth’s shape, the gravitational
potential generated by the ice density contrast V ice computed at the position
(r,Ω) is defined by Newton’s volume integral in the following form

V ice(r,Ω) = GΔρice
∫∫
Φ

∫ R+H(Ω′)

R+L(Ω′)
�−1

(
r, ψ, r′

)
r′2 dr′ dΩ′, (1)

where G is Newton’s gravitational constant, H the height above sea level,
L the vertical displacement of the lower ice bound measured from sea level,
� the Euclidean spatial distance between two points (r,Ω) and (r ′,Ω′), ψ
the spherical distance, dΩ = sinφ dφdλ the infinitesimal surface element
on the unit sphere, and Φ = { Ω = (φ, λ) : φ ∈ [−π/2, π/2] ∧ λ ∈ [ 0, 2π) }.
The geocentric radius of the geoid surface is approximated by the Earth’s
mean radius R. The 3-D position is defined by the geocentric spherical coor-
dinates (r, φ, λ), where r is the geocentric radius and Ω = (φ, λ) denotes the
geocentric direction with the geocentric spherical latitude φ and longitude
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λ. The constant value of the ice density contrast Δρice in Eq. (1) is defined
as the difference of the reference density of the continental upper crust ρt

and the density of glacial ice ρice. The density volume of the polar ice sheet
is enclosed between the upper and lower ice bounds. The upper ice bound is
identical with the upper topographic bound over the areas of the polar ice
sheet. The vertical displacement between the upper topographic bound and
the lower ice bound then equals zero everywhere outside the areas covered
by the polar ice sheet.
To derive the expressions for computing the gravitational field quanti-

ties generated by the ice density contrast in the spectral representation, the
gravitational potential V ice in Eq. (1) is first rewritten as

V ice (r,Ω) =GΔρice
∫∫
Φ

∫ R+H(Ω′)

R
�−1

(
r, ψ, r′

)
r′2 dr′ dΩ′ −

−GΔρice
∫∫
Φ

∫ R+L(Ω′)

R
�−1

(
r, ψ, r′

)
r′2 dr′ dΩ′. (2)

The first term on the right-hand side of Eq. (2) represents the gravitational
contribution of the masses enclosed between the upper topographic bound
and the reference sphere of radius R. The second term represents the grav-
itational contribution of the masses enclosed between the lower ice bound
and the reference sphere of radius R. The difference of these two gravita-
tional contributions gives the gravitational contribution of the ice density
contrast enclosed between the upper topographic bound and the lower ice
bound.
With reference to the Legendre addition theorem (e.g., Novotný, 1982),

the reciprocal spatial distance �−1 in Eq. (2) is expanded into an infinite se-
ries of the spherical harmonics. For the external convergence domain r ≥ r ′,
the series reads

�−1
(
r, ψ, r′

)
=
1
r

∞∑
n=0

n∑
m=−n

1
2n+ 1

(
r′

r

)n

Yn,m (Ω)Y
∗
n,m

(
Ω′

)
, (3)

where Yn,m(Ω) and Y ∗n,m(Ω′) are the surface spherical harmonic functions
and their complex conjugates, respectively (cf., Abramowitz and Stegun,
1972). The series in Eq. (3) is uniformly convergent for r ≥ r ′. Substituting
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from Eq. (3) to Eq. (2), we get

V ice(r,Ω) =GΔρice
∞∑

n=0

n∑
m=−n

(
1
r

)n+1 1
2n+ 1

Yn,m(Ω)
∫∫
Φ

Y ∗n,m(Ω
′)×

×
∫ R+H(Ω′)

R
r′n+2dr′dΩ′ −GΔρice

∞∑
n=0

n∑
m=−n

(
1
r

)n+1

×

× 1
2n + 1

Yn,m(Ω)
∫∫
Φ

Y ∗n,m(Ω
′)
∫ R+L(Ω′)

R
+ r′n+2 dr′dΩ′. (4)

Since the expansion of Newton’s integral kernel into a series of the spherical
harmonic functions converges uniformly when computed for a point located
outside the gravitating masses, the interchange of summation and integra-
tion in Eq. (4) is permissible (cf., Moritz, 1980). The radial integral in
the first constituent on the right-hand side of Eq. (4) is evaluated as (cf.,
Tsoulis, 1999, 2001; see also Novák, 2010, Eqs. 11 and 12)

∫ R+H(Ω)

R
rn+2 dr =

Rn+3

n+ 3

n+3∑
k=1

(
n+ 3
k

)(
H

R

)k

= Rn+3F t (Ω) , (5)

with the following substitution

F t (Ω) ≈ H (Ω)
R
+ (n+ 2)

H2 (Ω)
2R2

+ (n+ 2) (n+ 1)
H3 (Ω)
6R3

. (6)

The spectral representation of the function F t in Eq. (5) is defined as (cf.,
Novák, 2010)

F t (Ω) =
∞∑

n=0

n∑
m=−n

F tn,mYn,m (Ω). (7)

The numerical coefficients F tn,m in Eq. (7) read

F tn,m ≈
Hn,m
R
+ (n+ 2)

H
(2)
n,m

2R2
+ (n+ 2) (n+ 1)

H
(3)
n,m

6R3
, (8)

whereHn,m are the GEM coefficients of degree n and order m. The definition

of the coefficients Hn,m, H
(2)
n,m and H

(3)
n,m is given in Eqs. (17–19).

By analogy with Eq. (5), the radial integral in the second constituent on
the right-hand side of Eq. (4) is evaluated as
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∫ R+L(Ω)

R
rn+2 dr =

Rn+3

n+ 3

n+3∑
k=1

(
n+ 3
k

)(
L

R

)k

= Rn+3FL(Ω), (9)

where the function FL reads

FL (Ω) ≈ L (Ω)
R
+ (n+ 2)

L2 (Ω)
2R2

+ (n+ 2) (n+ 1)
L3 (Ω)
6R3

. (10)

The spectral representation of the function F L is introduced in the following
form

FL (Ω) =
∞∑

n=0

n∑
m=−n

FLn,mYn,m (Ω). (11)

The numerical coefficients F Ln,m in Eq. (11) are given by

FLn,m ≈
Ln,m
R
+ (n+ 2)

L
(2)
n,m

2R2
+ (n+ 2) (n+ 1)

L
(3)
n,m

6R3
, (12)

where Ln,m are the GIM coefficients of degree n and order m. The definition

of the coefficients Ln,m, L
(2)
n,m and L

(3)
n,m is given in Eqs. (20–22).

Inserting from Eqs. (5) and (9) to Eq. (4), the gravitational potential
V ice becomes

V ice(r,Ω) =GR2Δρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1 1
2n + 1

Yn,m(Ω)
∫∫
Φ

F t(Ω′)×

× Y ∗n,m(Ω′) dΩ′ −GR2Δρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1

×

× 1
2n + 1

Yn,m(Ω)
∫∫
Φ

FL(Ω′)Y ∗n,m(Ω
′) dΩ′, (13)

where n̄ is the maximum degree of spherical harmonics. The substitution
from Eqs. (7) and (11) to Eq. (13) further yields

V ice(r,Ω) =GR2Δρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1 1
2n + 1

Yn,m(Ω)×

×
n̄′∑

n′=0

n′∑
m′=−n′

F tn′,m′

∫∫
Φ

Yn′,m′(Ω′)Y ∗n,m(Ω
′)dΩ′ −
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−GR2Δ ρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1 1
2n+ 1

Yn,m(Ω)×

×
n̄′∑

n′=0

n′∑
m′=−n′

FLn′,m′

∫∫
Φ

Yn′,m′(Ω′) Y ∗n,m(Ω
′) dΩ′. (14)

Taking into account the orthogonality property of the spherical harmonic
functions, i.e.,∫∫
Φ

Yn′,m′
(
Ω′

)
Y ∗n,m

(
Ω′

)
dΩ′ = 4π δn,n′δm,m′ ,

where

δn,n′ =

{
1 for n = n′

0 for n �= n′ , δm,m′ =

{
1 for m = m′

0 for m �= m′ ,

the gravitational potential V ice in Eq. (14) takes the following form

V ice(r,Ω) = 4πGR2Δρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1 1
2n+ 1

F tn,mYn,m(Ω)−

−4πGR2Δ ρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1 1
2n + 1

FLn,m Yn,m(Ω) =

= 4πGR2Δρice
n̄∑

n=0

n∑
m=−n

(
R
r

)n+1 1
2n+ 1

(F tn,m − FLn,m)Yn,m(Ω). (15)

Inserting from Eqs. (8) and (12) to Eq. (15), we arrive at

V ice(r,Ω) ≈ 4πGRΔ ρice
n̄∑

n=0

(
R
r

)n+1 1
2n+ 1

n∑
m=−n

(Hn,m − Ln,m)×

×Yn,m(Ω) + 2πGΔ ρice
n̄∑

n=0

(
R
r

)n+1 n+ 2
2n+ 1

n∑
m=−n

(
H(2)n,m − L(2)n,m

)
×

×Yn,m(Ω) + 23R πGΔ ρ
ice

n̄∑
n=0

(
R
r

)n+1 (n+ 2)(n + 1)
2n + 1

×

×
n∑

m=−n

(
H(3)n,m − L(3)n,m

)
Yn,m(Ω). (16)
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The series in eqn. (16) is convergent for the maximum degree of spherical
harmonics n̄ = 90 used for a numerical realization in Section 3. When
increasing the maximum degree of spherical harmonics above this limit, the
series in eqn. (16) can become divergent. The analysis of the convergence
domain is thus essential for finding an optimal truncation degree of the
functions F t and FL in Eqs. (6) and (10). The convergence and optimal
truncation of binomial series were studied by Rummel et al. (1988) and Sun
and Sjöberg (2001). The higher-degree terms of the expression for computing
the gravitational potential generated by the ice density contrast in Eq. (16)
can be obtained from the binomial series for k > 3 in Eqs. (5) and (9). The

term
n∑

m=−n
Hn,mYn,m (Ω) in Eq. (16) defines the spherical height function

Hn (Ω) of degree n (see e.g., Novák et al., 2001). It reads

Hn (Ω) =
2n+ 1
4π

∫∫
Φ

H
(
Ω′

)
Pn (cosψ) dΩ

′ =
n∑

m=−n
Hn,mYn,m (Ω), (17)

where Pn is the Legendre polynomial of degree n for the argument of the
spherical distance ψ. Consequently, H(2)n (Ω) and H

(3)
n (Ω) are defined as

follows (ibid.)

H(2)n (Ω) =
2n+ 1
4π

∫∫
Φ

H2
(
Ω′

)
Pn (cosψ) dΩ

′ =
n∑

m=−n
H(2)n,mYn,m (Ω), (18)

H(3)n (Ω) =
2n+ 1
4π

∫∫
Φ

H3
(
Ω′

)
Pn (cosψ) dΩ

′ =
n∑

m=−n
H(3)n,mYn,m (Ω). (19)

Similarly, we introduce the spherical lower-bound ice functions Ln (Ω) in the
following form

Ln(Ω) =
2n+ 1
4π

∫∫
Φ

[
H (Ω′)− I (Ω′)] Pn(cosψ)dΩ

′ =

=
n∑

m=−n
Ln,mYn,m(Ω). (20)
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The corresponding functions L(2)n (Ω) and L
(3)
n (Ω) read

L(2)n (Ω) =
2n+ 1
4π

∫∫
Φ

[
H (Ω′)− I (Ω′)]2 Pn(cosψ) dΩ

′ =

=
n∑

m=−n
L(2)n,mYn,m(Ω), (21)

L(3)n (Ω) =
2n+ 1
4π

∫∫
Φ

[
H (Ω′)− I (Ω′)]3 Pn(cosψ) dΩ

′ =

=
n∑

m=−n
L(3)n,mYn,m(Ω). (22)

The lower ice bound L in Eqs. (20–22) is defined as the difference of the
height H and the ice thickness I. The GIM coefficients Ln,m can then be
computed from available global elevation and ice-thickness data.
The substitutions of the spherical height functions from Eqs. (17–19) and

of the spherical lower-bound ice functions from Eqs. (20–22) to Eq. (16) yield

V ice (r,Ω) = 4πGRΔρice
n̄∑

n=0

(
R
r

)n+1 1
2n + 1

[Hn (Ω)− Ln (Ω) ]+

+2πGΔρice
n̄∑

n=0

(
R
r

)n+1 n+ 2
2n+ 1

[
H(2)n (Ω)− L(2)n (Ω)

]
+

+
2
3R

πGΔρice
n̄∑

n=0

(
R
r

)n+1 (n+ 2) (n+ 1)
2n+ 1

[
H(3)n (Ω)− L(3)n (Ω)

]
. (23)

The gravitational attraction generated by the ice density contrast g ice is
approximately defined as a negative radial derivative of the respective grav-
itational potential V ice (e.g., Martinec, 1998)

gice (r,Ω)∼=−∂ V
ice (r,Ω)
∂ r

=

=−GΔρice
∫∫
Φ

∫ R+H(Ω′)

R+L(Ω′)

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′ dΩ′ =
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=−GΔρice
∫∫
Φ

∫ R+H(Ω′)

R

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′ dΩ′ +

+GΔρice
∫∫
Φ

∫ R+L(Ω′)

R

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′ dΩ′. (24)

From Eqs. (23) and (24), the gravitational attraction g ice is found to be

gice (r,Ω) = 4πGΔρice
n̄∑

n=0

(
R
r

)n+2 n+ 1
2n+ 1

[Hn (Ω)− Ln (Ω) ]+

+
2
R
πGΔρice

n̄∑
n=0

(
R
r

)n+2 (n+ 2) (n+ 1)
2n+ 1

[
H(2)n (Ω)− L(2)n (Ω)

]
+

+
2
3R2

πGΔρice
n̄∑

n=0

(
R
r

)n+2 (n+ 2) (n+ 1)2

2n+ 1

[
H(3)n (Ω)− L(3)n (Ω)

]
. (25)

By analogy with Eq. (16), Eq. (25) is finally rewritten as

gice(r,Ω) = 4πGΔ ρice
n̄∑

n=0

(
R
r

)n+2 n+ 1
2n+ 1

×

×
n∑

m=−n

(Hn,m − Ln,m) Yn,m(Ω) + 2RπGΔ ρ
ice ×

×
n̄∑

n=0

(
R
r

)n+2 (n+ 2) (n + 1)
2n+ 1

n∑
m=−n

(
H(2)n,m − L(2)n,m

)
Yn,m(Ω) +

+
2
3R2

πGΔ ρice
n̄∑

n=0

(
R
r

)n+2 (n+ 2)(n + 1)2

2n+ 1
×

×
n∑

m=−n

(
H(3)n,m − L(3)n,m

)
Yn,m(Ω). (26)

We note here that the expressions for computing the gravitational field
quantities generated by the ice density contrast in Eqs. (16) and (26) can
be reformulated for the ellipsoidal approximation of the Earth’s shape ac-
cording to the approach described in Vańıček et al. (1995). Alternatively,
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these expressions can directly be formulated by means of the ellipsoidal
harmonics.

3. Numerical examples

The 30× 30 arc-sec global elevation data from the GTOPO30 model (pro-
vided by the US Geological Survey’s EROS Data Center) are used to gen-
erate the GEM coefficients. The 2 × 2 arc-deg mean heights computed by
spatial averaging of the 30×30 arc-sec global elevation data from GTOPO30
and the discrete data of the ice thickness with a 2× 2 arc-deg geographical
resolution from the CRUST 2.0 global crustal model are used to generate
the GIM coefficients. The 2 × 2 arc-deg discrete data of the ice thickness
from the CRUST 2.0 model are shown in Fig. 1. The maxima of the ice
thickness reach ∼ 4 km.
The newly derived expressions in Eqs. (16) and (26) are utilized in the

Fig. 1. The 2×2 arc-deg discrete data of the ice thickness from the CRUST 2.0 global
crustal model.
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forward modelling of the gravitational potential and attraction generated
by the ice density contrast. The mean value of the ice density contrast
1753 kg/m3 is adopted. This value of the ice density contrast is obtained
as the difference of the reference density of the continental upper crust
2670 kg/m3 (cf., Hinze, 2003) and the density of glacial ice 917 kg/m3 (cf.
e.g., Cutnell and Kenneth, 1995). The gravitational potential and attrac-
tion are computed with a spectral resolution complete to degree and order
90 of the GEM and GIM coefficients. The computation is realized globally
on a 1× 1 arc-deg geographical grid at the Earth’s surface. The results are
shown in Figs. 2 and 3. The computed gravitational potential generated
by the ice density contrast varies from 320 to 3496 m2s−2 with the mean of
742 m2s−2, and the standard deviation is 734 m2s−2. Its maxima are located
in the central and eastern Antarctica. The computed gravitational attrac-
tion generated by the ice density contrast varies from 3 to 301 mGal with
the mean of 22 mGal, and the standard deviation is 55 mGal. Its maxima

Fig. 2. The gravitational potential generated by the ice density contrast (1753 kg/m3)
computed on a 1× 1 arc-deg grid at the Earth’s surface using the GEM and GIM coeffi-
cients complete to degree and order 90.
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are located throughout regions with the largest continental ice thickness in
the central Greenland and the central and eastern Antarctica. The ice den-
sity contrast stripping correction was applied to the topography corrected
gravity disturbances in Tenzer et al. (2009b). The ice density contrast strip-
ping corrections to the topography corrected gravity anomalies and geoid
undulations were investigated in Tenzer et al. (2009a, 2008b). The results
of these studies revealed that the ice density contrast stripping corrections
significantly changed the topography corrected gravity field quantities over
the regions with a large thickness of the continental ice sheet in Greenland
and Antarctica.
The largest errors in computed gravitational field quantities generated by

the ice density contrast are due to inaccuracies within the currently available
ice-thickness data of the CRUST 2.0 global crustal model and consequently
in computed numerical values of the GIM coefficients which describe the

Fig. 3. The gravitational attraction generated by the ice density contrast (1753 kg/m3)
computed on a 1× 1 arc-deg grid at the Earth’s surface using the GEM and GIM coeffi-
cients complete to degree and order 90.
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global geometry of the lower ice bound. The global geometry of the upper
ice bound is described to a very high accuracy and resolution by the GEM
coefficients generated from the currently available global elevation data.
The relative errors in computed gravity field quantities due to adopting the
constant density of glacial ice (917 kg/m3) mainly depend on the ratio of the
firn ice layer and the consolidated glacial ice over the areas covered by the
continental ice sheet. The contribution of the sea ice density which has large
seasonal variations is not taken into consideration; the reported values of the
sea ice density vary over a wide range from about 720 to 940 kg/m3, with
an average of approximately 910 kg/m3 (see e.g., Timco and Frederking,
1996). The vertical structure of the continental ice sheet consists of three
layers formed by the snow, firn ice and consolidated glacial ice. The firn ice
represents the intermediate stage between fresh snow and glacial ice, and
has a density between that of the surface snow (in Greenland and Antarctica
typically to about 350 kg/m3) and glacial ice (typically 917 kg/m3). In the
absence of significant melting, the ice firn densification rate depends mainly
on snow temperature, burial rate (surface accumulation) and near-surface
wind speed. Below the depth of approximately 15 m, densification occurs
at constant temperature equal to the annual mean surface temperature (cf.,
van den Broeke, 2008). The spatial variability of the depth and density of
the Antarctic and Greenland ice firn layer varies significantly depending on
the numerous climatic and near-surface atmospheric factors. At the South
Pole, for instance, the densification is slow, and the firn-layer thickness ex-
ceeds 100 m. A typical thickness of the ice firn layer is about 70 to 100 m.
In regions with active katabatic winds and low precipitation rates, the firn
layer may have been completely removed by snowdrift erosion and/or subli-
mation, exposing the glacier ice at the surface. The lower density within the
ice firn layer comparing to the density of the glacial ice can be accounted for
by reducing the total thickness of the ice sheet not more than 20 to 25 m.
The errors in computed gravitational field quantities generated by the ice
density contrast due to the density variations within the ice sheet are thus
completely negligible comparing to the errors due to uncertainties of the
CRUST 2.0 ice-thickness data used in this study. The forward modelling
of the ice density contrast stripping corrections with a higher accuracy and
resolution requires the facilitation of the 10×10 arc-min global ice thickness
data from the ICE-5G (VM2) model (see Peltier, 2004).
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4. Summary and conclusions

We have derived the expressions in terms of the spherical height and lower-
bound ice functions for computing the ice density contrast stripping correc-
tions to the topography corrected gravity field quantities. These two types
of the spherical functions describe the global thickness of the polar ice sheet.
The newly derived formulas were utilized in the forward modelling of the

gravitational field quantities generated by the ice density contrast. The nu-
merical examples were given for the gravitational potential and attraction
computed globally with a low-degree spectral resolution complete to degree
and order 90 of the GEM and GIM coefficients. The GEM and GIM coeffi-
cients were generated from the GTOPO30 global elevation and CRUST 2.0
ice-thickness data.
The results revealed that the maxima of the gravitational potential gen-

erated by the ice density contrast reach ∼ 3500 m2 s−2 in the regions with
the largest thickness of the Greenland and Antarctic continental ice sheets.
The maxima of the corresponding gravitational attraction over these regions
reach ∼ 300 mGal.
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