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PRESSURE-TEMPERATURE CONDITIONS OF METAMORPHISM IN
THE NORTHERN PART OF THE BRANISKO CRYSTALLINE COMPLEX
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Abstract: Relics of the HT/HP events have been identified in the gneiss-amphibolite complex of northern part of the
Branisko Mts. The assemblage Grt + Bt + Kfs + Pl + Sil + Ky is characteristic of the gneisses and migmatites. The
methods of Grt + Bt thermometry and Grt + Bt + Pl + Sil barometry were used for the determination of temperature
and pressure. P-T condmons at the boundary of granulne facies were calculated from almandine cores with high pyrope
component contents (X Mg = 0.19 - 0.27) and biotite (X Mg= 0.4 - 0.6) in the temperature range 675 - 770 °C and pres-
sure range 400 - 630 MPa. A regressive P-T trend was detected in garnet rims. The calculated regression temperatures and
pressures are in the range of 590 - 648 °C and 300 - 400 MPa, respectively.

The regression trend represents probably a compression and depression phase of the same metamorphic event. The pre-
Permian age of the event is evidenced by the occurrence of pebbles of the gneiss-migmatite complex in Permian con-
glomerates. A more precise age determination (Variscan or pre-Variscan stage) is not possible owing to lacking
geochronological data. Another retrograde alterations are related to hydrothermal-metasomatic processes and cataclastic

deformations both in late-Variscan (blastomylonite and cataclasite pebbles in Permian) and Alpine stage.

Key words: granulite facies relics, geothermometry, geobarometry, Branisko Mts., Western Carpathians.

Introduction

The crystalline complex of northern part of the Branisko Mts.
consists of high grade metamorphic rocks, gneisses and mig-
matites. Chemical compositions of critical mineral phases in
gneisses and migmatites were determined by means of electron
microprobe in order to derive P-T conditions of metamorphism.
Several calibrations of garnet-biotite thermometer (Ferry
& Spear 1978; Hodges & Spear 1982; Perchuk et al. 1983; Gan-
guly & Saxena 1984; Indares & Martignole 1985) were used for
the calculations. The methods were discussed with respect to
their suitability for individual samples and selection was made
for mean statistical data.

A basis for the pressure calculations were phase relations in
the assemblage garnet - biotite - plagioclas - sillimanite and/or
kyanite. Mean statistical pressure values were calculated using
calibrations of Newton & Haselton (1981), Koziol & Newton
(1988) and Powell & Holland (1988). A program written by M.
Jandk (Department of Mineralogy and Petrology, Comenius
University) and P. Pitofidk (Geological Institute, Slovak
Academy of Sciences) was used for thermo- and barometry cal-
culations.

All mineral analyses were performed using the electron
microanalyser "Superprobe"” (JCXA-733) in the Geological In-
stitute of Dionyz Stuir in Bratislava.

Geological structure

The northern part of the Branisko Mts. is built up by the
crystalline massif of Patria, Upper Paleozoic and Mesozoic cover
rocks and of upper nappes (Fig. 1). Mesozoic sequences of

central and northern Branisko Mts. comprise the Krfzna Nappe
(Fusdn et al. 1963; Mahel in Mahef et al. 1967) and in the
Lagnovd dolina Valley also the Triassic of the Cho¢ Nappe
(Rosing 1947; Poldk 1987). To the north of the Branisko saddle
Upper Paleozoic rocks were distinguished and correlated with
the NiZnd Boca and MaluZind Forms. of Hronic Nappes (The
geologic and paleogeographic map of Carboniferous and Per-
mian of Czechoslovakia - Holub & Vozér et al. 1981; Vozédrov4
& Vozar 1986, 1988).

The crystalline massif of Patria (the northern Branisko) con-
sists of biotite, and garnet-biotite, gneisses intimately connected
with the complex of anatectic migmatites and magmatites which
form a substantial part of the massif. Amphibolite bodies and
amphibole gneisses form a part of the complex. The metamor-
phic and magmatic rocks of the massif of Patria along with their
Permian and Mesozoic cover form a tectonic unit in the Branis-
ko Mts. which was always correlated with Tatric units (Rosing
1947; Kamenicky in Fusdn et al. 1963; Andrusov 1958; Mahel
et al. 1967; Maher 1986).

However, on the basis of lithology, metamorphic degree and
character of magmatic members, the crystalline complex,
together with Permian - Mesozoic cover, resembles rather the
northern Veporic units. Recently, Vozdrovd & Vozar (1986)
correlated the complex with this unit. The authors compare the
complex with analogical sequences in the Starohorské vrchy
Hills. Besides the crystalline rocks, a strong similarity exists be-
tween the lithology of Upper Paleozoic (Korytné vs. Spania
dolina Valley Forms. - Vozdrovd & Vozar 1986, 1988) and
Mesozoic. The Lower Ttiassic sequences, largely reduced in the
Branisko Mts., are lithologically identical with the LuZnd Beds
described by Fejdiovd (1980). Similarly as in the northern
Veporicum (Horehron Valley, Ciertaz, Starohorské vrchy Hills)
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Fig. 1. Geological map of the northern Branisko Mts.: the massif of Patria (Vozir in Polédk et al. 1985).
Legend: 1- garnet-biotite gneisses; 2 - migmatites; 3 - medium-grained granitoids (granodiorites and tonalites); 4 - fine-grained leucogranite;
5 - Permian: Korytné Formation (conglomerates, rarely sandstones and shales); 6 - Lower Triassic: sandy shales, carbonates, dolomites; 8 -

Hronicum: the Sturec Nappe as the whole; 9 - Paleogene sediments; 10 -

also in the Branisko exists the same superposition relation of the
Krfzna Nappe. The nappe occurs in this rear part in the position
of multiple folded cover directly underlying the upper tectonic
unit, the Sturec Nappe (Poldk 1987; Vozdrovd & Vozér 1986,
1988).

Characterization of crystalline rocks

The northern Branisko complex of high grade metamorphic
rocks is formed by garnet-biotite gneisses, migmatites, and less
frequent amphibole gneisses and amphibolites.

The gneisses are greyish, of massive or banded fabric, mostly
strongly foliated and fine-grained. The equigranular texture is
formed by the mosaic of xenoblastic grains of quartz and
feldspars the intergranular space being filled up by short laths of
biotite and rarely amphibole. Modal compositions of analysed
samples is given in Tab. 1. Prevailing phases of gneisses are
plagioclases (30 - 40 vol. %) and quartz (30 vol. %). Primary
muscovite is not a member of the association. The plagioclase,
being rarely antiperthitic, has composition of oligoclase. Often
perthitic alkali feldspar is orthoclase (max. 10 vol. %). The
coexisting critical mineral association is represented by biotite
and garnet rarely accompanied by sillimanite (AFM diagram,
Fig. 2) or relict kyanite. The relics of platy quartz are common
in the rock structure.

Based on the structural relations, kyanite, very rarely occur-
ring with sillimanite, is an unstable relict being replaced by long,

sample localization.

prismatic sillimanite structurally markedly oriented together
with biotite. The garnet content in gneisses ranges between 3 -
6 vol. %, the biotite content around 25 vol. %. Aluminosilicates
occur in gneisses generally in low quantities which is probably
aresult of primary source lithology and partially a result of later,
regressive, alterations, mainly by replacing of aluminosilicates by
muscovite.

The critical mineral association Grt + Alm + Sil + Ky is cha-
racteristic also of migmatites. Migmatites have massive banded,
or schlieren fabric with macroscopically markedly distinguished
bands or irregular pools of neosom. The neosom is mainty of
leucocratic (Qz + P1 + Kifs) composition with low biotite con-
tent. In melanocratic parts of the neosom the biotite content
increases being associated with sillimanite, garnet or amphibole.
Rarely, the diablastic structures have formed, composed of Grt
+ Bt + Qz + Kfs. The texture of migmatites is typically
heterogeneous exhibiting the alternation of relatively more
coarse-grained bands with non-oriented, or weakly oriented,
minerals and finer grained bands with distinctly oriented grains
of biotite, quartz and plagioclase. Feldspars form irregular elon-
gated porfyroblasts or grains tending to prisms. Rarely, such
grains are enclosed in fine-grained quartz aggregate.
Plagioclases tend to be zoned (more basic cores are entirely al-
tered). The subhedral plagioclases commonly occur in finer-
grained, relatively equigranular parts of rock. Compared with
the gneisses described above the contents of quartz and
plagioclase increase moderately and contents of mafic minerals,
biotite and garnet, decrease.
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Table 1: Modal mineral composition of analysed samples.

7/B-85 12/B-85 2/B-85 6/B-85 13/B-85
Quartz 30.5 27- 32 \ 32 29
Plagioclase 27.5 28 31 33 38
Orthoclase 7.0 16 10 , 9 17
Biotite 29.0 23 22 23 15
Muscovite - - 2 - -
Garnet 6.0 6 3 3 1

Localization: 7/B -85 - Benova dolina Valley; 12/B-85 - to the north of
Kanné dolina Valley; 2/B-85 - VeTkd Kamenn4 dolina Valley; 6/B-85 -
DIh4 dolina Valley, altitude 700 m; 13/B-85 Kanné dolina Valley.

Amidst the gneiss-amphibolite complex migmatite bodies
occur of granitic and tonalitic composition. They have blas-
togranitic or hipidiomorphic texture. Among felsic minerals,
feldspars and quartz are most common (30 - 40 and 30 vol. %,
respectively), perthitic K-feldpar is less common (10 - 15 vol.%).
Femic minerals are represented by biotite (10 - 15 vol.%) and
garnet (to 1vol. %). In melanocratic, tonalitic varieties the con-
tents of garnet and biotite, accompanied by amphibole, in-
creases and that of orthoclase decreases. The magmatic mineral
association of the first generation is partly replaced by a lower
temperature mineral association represented by muscovite and
microcline. In this stage, plagioclase (I) and orthoclase (I) are
replaced by microcline, microcline-perthite or muscovite, and
biotite and alumosilicates by muscovite.

Hydrothermal-metasomatic alterations of various degree
occur in gneisses and migmatites, represented by the association
of muscovite + chlorite + epidote-zoizite.

The latest retrograde alterations are related to the formation
of mylonite zones cataclastic deformation and weak recrystal-
lization of quartz, sericitization and argilitization of feldspars,
breakdown of femic minerals to chlorite, epidote, calcite and
Fe-Ti oxides.
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Fig, 2. Interpretation of phase relations based on the garnet and biotite
compositions, A’FM projection after Reinhardt (1968). The arrow
shows the change in chemical compositions of garnet from core (solid
circles) to rim (open circles).

Characterization of minerals

Garnet: Garnet porphyroblasts are damaged to a various
degree by cataclastic deformations. They contain random in-
clusions of quartz, opaques and apatite. Chloritization occurs
sporadically. Garnets are optically homogeneous without ap-
parent zoning. They have composition of almandine with
relatively hlgh content of the pyrope component (Tab. 2). The
amount of Al ranges about 2 indicating probably a low con-
tent of ferric iron in their structure. Therefore, the garnet-
composition may be considered solid solution with Alm-Prp-
Grs-Sps end members (Fig. 3). The content of almandine end
member ranges about 66 - 75 wt. %.
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Fig 3. Chemical composition of garnets in terms of Ca-Fe-Mg and Mn-Fe-Mg. The arrow shows changes in garnet compositions from core (solid

circles) to rim (open circles).
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The high contents of pyrope end member (18 - 27 wt. %)
indicate high grade metamorphic conditions. Such a high mag-
nesium content in garnets is generally reported for garnets of
granulite facies metapelites. In the Western Carpathians were
reported similar relictic garnets with increased contents of
pyrope end member in gneisses of the Suchy, Mald Magura,
Mal4 Fatra (Korikovsky et al. 1987; Hovorka et al. 1987; Méres
& Hovorka 1989) and Branisko (Vozdrov4 & Kristin 1986) crys-
talline complexes. In all the mentioned cases the garnets show
relatively significant regressive zoning. .

In the garnets of the northern Branisko Mits. only slight chan-
ges inFe, Mg, Mn concentrations are seen from core to rim. The
cores are almost homogenised, only at rims Mg decreases and
Fe, Mn increase. The diffusion profile of garnet is flat (Fig. 4)
reflecting exchange reactions only at grain rims. No, or only in-
significant, changes were observed in Ca distribution. In the
direction from core to rim, the grossular content either does not
change or slightly increases close to the edge of grain due to the
lower Ca diffusivity. The zoning of Fe, Mg, Mn at grain rims is
significant which probably reflect resorption of garnet and ex-
change reactions during cooling.

Biorite: Chemical composition of biotite (Tab. 3) does not
show any significant changes. In the basic classification diagram
(Fig. 5) plot two slightly differing biotite groups.

Biotites from the sample 12/B-85 have relatively hi%)er Mg
contents (N™yg = 0.57 - 0.59) and somewhat lower Al"! value.
Biotites from other samples have NB‘Mg = 0.49 - 0.52 with cor-
respondingly higher AlY'(0.80 - 0.87). After the data of Guidotti
(in Bailey et al. 1984) in the biotites from high -grade Al-
saturated metamorphites (Sil + Kfs without Mus) the AI"! con-
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Fig. 4. Garnet zoning expressed in the relationship of Mg, Fe, Mn, Ca
molar fractions, and Fe/(Fe+Mg) ratio vs. grain radius. Solid line -
sample 13/B-85; dashed line - sample 12/B-8S.

tent ranges between 0.7 - 1.0. By contrast, a slight decrease of
A occurs in biotites from the Sil + Kfs association under fur-
ther increasing P and T.

The Ti"'contents are higher than those reported for the lower
temperature ar{,llphibolite facies (< 0.25) in all biotite samples.
The highest Ti"" contents are again in 12/B-85 biotite (TiV'=
0.35 - 0.43). Ti vs Mg contents relations are vague, only in 12/B-
85 biotite with the increasing Ti"' also N B‘Mg slightly increases
(Tab. 3). To the contrary, with increasing Mg the tetrahedral
Al/Si ratio decreases.

Plagioclases: The An contents range between 25 - 31 mol%
(corresponding to Ca-oligoclase and Na-andesine, Tab. 4)in all
analysed rock types. The Or content ranges about 1 %, in one
case attains 3 %. The Ti, Mg and Mn contents are negligible, the
FeO varies about 0.1 %. Majority of plagioclase grains do not
show a zoning. The present grains with sericitised cores possibly
reflect composition differences due to oscillatory growth of
grains. Twins according to albite, pericline and Karlsbad laws are
common. Rarely, the plagioclases are antiperthitic.

Orthoclase: It forms xenomorphic, slightly elongated, oval and
often perthitic grains. The perthitic K-feldspar is represented by
mesoperthite.

Sillimanite/kyanite: From these ALSiOs polymorphs sil-
limanite is more frequent. It forms well developed long prismatic
crystals, in texture significantly preferentially oriented and as-
sociated with biotite, quartz, K-feldspar and plagioclase. The
crystals of kyanite, if present, occur in texture individually, being
partly replaced by sillimanite. In few cases desintegrated kyanite
grains were found in a sillimanite aggregate. Based on this ob-
servations, we suppose that sillimanite has formed by metamor-
phic reactions instead of garnet and K-feldspar, and also instead
of original kyanite. ,

Accessory minerals: Magnetite and ilmenite are present
among opaque minerals. They form either inclusions in garnet
or occur as individual grains outside of garnet. Minute rutile
grains are associated with ilmenite. The association of acces-
sories is poor, besides rutile only zircons were found.

P-T conditions of metamorphism

The calibrations of garnet-biotite geothermometer after Ferry
& Spear (1978), Perchuk et al. (1983), Ganguly & Saxena (1984)
and Indares & Martignole (1985) were used for temperature
determinations. The garnet - plagioclase - sillimanite - quartz
geobarometer was used for metamorphic pressure estimates in
the calibrations of Newton & Haselton (1981), Koziol & Newton
(1988) and Powell & Holland (1988). The results of calculations
vary both in temperature and pressure values (Tb. 5).

The results of geothermometry based on Ferry & Spear’s
(1978) and Hodges & Spear’s (1982) calibrations on the one
hand, and those of Indares & Martignole ( 1985) and Ganguly
& Saxena (1984) on the other hand, differ significantly almost
in all samples. The differences in calculations range within 70
- 150 °C. The results after Perchuk et al. (1983) vary also being
generally lower than those after Ferry & Spear (1978) and ap-
proaching rather the second group of authors.

The results of thermodynamic parameters calculations in
natural associations of coexisting Mg-Fe silicates are influenced
by relation of distribution coefficient (Kp) to fractionation of
Oxygen isotopes betwen quartz and magnetite (Goldman
& Albee 1977), to Ca, Mn contents in garnet and to Fe“, Ti,
AP’* contents in biotite (Indares & Martignole 1985). The Xc,
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and Xmpavalues in garnets of the northern part of Branisko Mts.
are low and they should not, therefore, influence the calculated
temperature in majority of samples. Ganguly & Saxena (1984)
suggested a calculation of the non-ideality of garnets in
temperature interval 500-700° C. However, these parameters
are not applicable for garnets with the Alm/Prp ratio <3. All
analysed garnets have this ratio lower than 3, except 13/B and
7/B with slightly higher values. Indares & Martignole (1985)
studied the non-ideality of garnet in low Ca-Mn solid solutions
and found that in granulite facies garnets the Ferry and Spear’s
calibration gives higher values in the range +40 °C.

In biotites the substitution of Fe**, Ti and AV for Fe** and
Mg isimportant. A simple petrological check of the Fe** amount
in metapelites is the coexistence of biotite with magnetite and/or
hematite indicating oxidation conditions (Guidotti et al. 1977).
In biotites from Al-, Si- and Ti-saturated metapelites and
coexisting with magnetite the authors determined up to 10 - 13
% of V'Fe** (of total Fe) contrasting with only 4 % of Y'Fe’* in
biotites coexisting with graphite. Moreover, they found that the
amount of Fe’* is independent of metamorphic degree and as-
sociation of silicate minerals.

In the analysed rocks magnetite is absent or scarce (7/B-85)
and, therefore, we do not supglose any significant Fe’* involve-
ment in the substitution of Al''and Ti for R**.

The distribution of Al and Ti relative to Mg/Fe values is
variable in analysed biotites (Fig. 6). A relatively more distinct,
positive relation seems to exist only in sample 12/B-85. Other
samples of the analysed file do not show any significant depend-
ence of AlV'and Tion the increasing Mg/Fe™*. Based on this, we
suzppose no significant influence of the exchange AlV'and Ti for
R** on the Mg/Fe2+ values in biotites and, therefore, on the
calculated temperatures. A computer model of cooling of
granulite facies rocks with the mineral association Grt + Bt
+ Sil + Kfs + Pl + Qtz was presented by Spear & Florence
(1992). The results of this modelling showed that any petrologi-
cal interpretation of P-T trends of this rock group has to take
into account (1) types of retrograde reactions occurring during
cooling of sample, (2) the modal abundance of biotite and
plagioclase in equilibrium with garnet in given time interval, (3)
the size of analysed garnet and (4) the cooling rate.

The basic problem of interpretation of thermoharometric cal-
culations is that there are no priority criteria for determining of
equilibrium compositions of mineral phases during peak of
metamorphism. Spear & Florence (1992) showed by their
modelling how important is to determine whether, upon cooling,
only exchange reactions plus diffusion (Fe - Mg and Mn - Fe in
garnet and biotite), or net transfer reactions (Grt + Kfs + H,O
= Sil + Bt + Qtz; An = Grs + Sil + Qtz) occur in sample. It
should be stressed that in allanalysed samples from the northern
Branisko gneiss-amphibolite complex the evidence is found of
the common occurrence of both exchange and net transfer reac-
tions. The structural evidence is seen in the low modal content
of garnet compared with biotite (V/Vy = 0.26 - 0.07) and in the
irregular shape of garnets often with lobate forms (Pl. 1: 1, 2,3)

‘indicating their resorption. Another significant evidence of the
garnet resorption is the existence of a relatively homogeneous
core with a more distinct zoning occurring only at grain rims.

Since the volume proportion of garnet compared to biotite is low
in the analysed samples, we suppose a more significant decrease of
garnet due to the reactions through which garnet and K-feldspar
gave rise to bictite, sillimanite and quartz. This change reflects the
retrograde processes during cooling and decompression which are
controlled by the access of H,O into the whole system.

Sid= KyfFe, Al ALSi,0,I0H), East =K,(Mg, ALNALSi, O{0H),
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Fig. 5. Biotite compositions in terms of A ys. Mg/(Mg+Fe).

Phase relations in the mineral assemblage Grt + Bt + Kfs
+ PI + Sil + Qtz + H0 are controlled, besides the above men-
tioned exchange and metamorphic reactions, also by the reac-
tions supporting equilibrium relations Ca in garnet and in
plagioclase. Therefore, if garnet resorption and decrease occurs
in sample the increase of plagioclase has also to occur. The find-
ing of zoning in garnet and distribution of An-component in
plagioclase is a presumption of the realistic P-T estimate.

‘The zoning profile of Fe/Fe + Mg, Fe and Mn in garnets of the
Branisko gneiss-amphibolite complex is flat in grain centres and
rises at rims. The Mg profile is also flat in centres but at rims drops
down. Adifferent zoning was observedin the case of Ca. The zoning
profile is flat almost across the whole grain or shows a very slight
rise at rims ('Tab. 2, Fig. 4). From the comparison with model deter-
minations of P-T trends of granulites in the system CaO + Na,O
+ Mn FMKASH (Spear & Florence 1992) it can be supposed that
only a relatively small amount of plagioclase reacted with garnet
rims in these garnets and, hence, a major part of plagioclase should
be in equilibrium with garnet cores.

The thermobarometric parameters for the Branisko gneiss
-amphibolite complex were calculated from cores of garnet and
biotite which is in analysed samples considerably homogenised.
It is confirmed by microprobe analyses of biotite (Tab. 3) which
show that there are no significant differences within one sample
(i-e. at biotite-garnet contacts or within matrix of the rock). This
follows from the nature of exchange reactions between garnet
and biotite in high-grade metamorphites when the diffusion ex-
change of Fe-Mg in biotite continues even when the net transfer
reactions had ceased and garnet cores had been stabilised.
Biotite in the whole sample got into equilibrium with garnet rims
(matrix biotite after Spear & Florence 1992).

The temperatures calculated from garnet cores and matrix
biotites in the Branisko gneiss-amphibolite complex range be-
tween 769 - 673 °C with the exception of sample 6/B-85 which
gives a considerably higher temperature of 857 °C, calculated
from garnet core. With respect to the identified retrograde reac-
tion types, the homogenisation of matrix biotite and its sig-
nificant modal content compared to that of garnet as well as the
relatively small size of garnet grains (< 0.5 mm) such a scatter
of values is to be expected. Model temperatures calculated from
the cores of garnet range between 700 - 750° C(Spear
& Florence 1992). '
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Fig. 6. Biotite Mg/Fe ratio vs. A1 and Ti. The dashed line field cor-
responds to the biotites of 12/B-85 sample.

Closest to these model values are the temperatures calculated
from garnet cores from the samples 7/B-85, 12/B-85 and 2/B-85
(Tab. 5). Relatively lower core-based temperatures were ob-
tained from the sample 13/B-85 which was caused by retrograde
reactions producing sillimanite and being accompanied by
a marked resorption of garnet (PL. 1: 6; PL. 2: 6, 8). In minute
garnet grains the composition changes occurred not only at rims
but also in centres of garnet and the calculated temperatures,
therefore, do not reflect peak metamorphism conditions be-
cause garnet cores reequilibrated with matrix biotite.

An opposite case was found in sample 6/B-85 which yielded
a high core temperature (857 °C). In this sample garnets have
the size of 1 - 2 mm with a significant increase of Mn at rims
(5.50 - 11.60). It would suggest that a considerable part of gar-
net rims was consumed in exchange reactions. The exchange
reactions in garnet core ended much earlier than the matrix
biotite became stabilized. Thus, the garnet core composition
remained unchanged, meanwhile the matrix biotite having sig-
nificantly higher Fe/Mg than at the culmination of metamor-
phism. This is a probable cause of the high temperatures calcu-
lated from the garnet core in this sample.

In spite of all the mentioned facts the regression trend ap-
peared in the temperatures calculated form garnet rim and
matrix biotite. Garnet rim-matrix biotite temperatures range be-
tween 590 - 682 °C being in individual grains by 60 to 100 °C (in
average) lower than in cores. The pressures calculated by Grt-
Bt-PI1-Sil barometer from garnet cores range between 390 - 630
MPa, in sample 6/B-85 up to 870 MPa. The values calculated
from garnet rims are lower, 260 - 420 MPa, however, having the
same scatter as those from garnet cores (Tab. 5). This scatter of
values suggests that not all plagioclases reacted with garnet
during the change of metamorphic conditions. It is not simple
to distinguish the both plagioclase groups in microscope, this
being a reason for the variability of the calculated values.

Based on the calculated thermobarometric data it can be sup-
posed that the maximum temperatures during peak metamor-
phic conditions in the northern Branisko metamorphic complex
were in the range 700 - 750 °C even though the garnet cores and
matrix biotite do not atways show the Fe/Mg ratio values cor-
responding to that temperature. The specific conditions, includ-
ing the small garnet size and the high modal proportion of biotite
compared to garnet, caused that exchange reactions in garnet
cores were compensated by matrix biotite changes with the
result that the calculated temperatures have approached the
values corresponding the culmination of metamorphism. This
reasoning is supported by the mineral composition of the rocks,
mainly by the coexistence of sillimanite and K-feldspar (P1. 1: 3,
7, 8; P1. 2: 1, 6) in the presence of quartz and almandine with
a high content of pyrope component. Based on the relics of
kyanite (Pl 1: 5, 6, 7, 8; P1. 2: 1, 2, 4, 5) intermediate to high
pressures can be supposed during the peak of metamorphism.
The calculated core pressures about 400 - 600 MPa correspond
to the regression stage of a metamorphic event when a stabilisa-
tion of the whole mineral assemblage occured. This proces
might have reflected an isothermal uplift followed by an isobaric
cooling of the whole complex. It is evidenced by the beginning
of proces of sillimanite and K-feldspar replacing by the associa-
tion muscovite + quartz. This would suggest that the final stage
of the whole complex stabilisation was completed at tempera-
tures above 550 °C and pressures about 300 - 400 MPa.

Evolution of the metamorphism

Temperatures and pressures calculated by the Grt-Bt ther-
mometer and Grt-Bt-P1-Sill barometer yield a regressive trend in
accord with the change of chemical compositions in garnet cores
and rims. The high temperatures combined with medium to high
pressures, evidenced by the garnet core compositions and kyanite
relics, correspond probably to a relict metamorphic event (MO0)
having attained the P-T conditions at the boundary of granulite
facies. The following uplift of the whole complex to upper parts of
the Earth’ crust and decompression have caused a retrograde
metamorphism in P-T conditions of the higher temperature am-
phibolite facies (M1) which are recorded in the change of chemical
composition at the contacts of garnet and biotite. The calculated
regressive P-T trend is evidenced by the reducing of garnet content
accompanied by sillimanite, biotite and quartz growth and the
kyanite replacement by sillimanite. Related to this stage was the
partial anatexis and migmatitization of the whole complex con-
nectedwith H>O influx and the anatectic melt formation, separation
and migration. The final stabilisation of the whole complex was
determined by the reaction Sil + Kfs = Mus + Qtz corresponding
to temperatures above 550 °C.

The whole complex underwent the cataclastic deformation
(M2)in P-T conditions of the low-temperature greenschist facies
still in pre-Permian times (evidenced in Permian con-
glomerates). It is characterized by the mineral assemblage mus-
covite-chlorite-quartz. The youngest regressive phase (M3) has
a character of Alpidic dislocation metamorphism and is related
to the mylonite zones formation and accompanied by clay
minerals, or sericite and quartz.

The critical association Bt + Alm + Sill, with the biotite of
intermediate Fe-Mg composition (XB‘M,; =05 - 0.6) and the gar-
net the of pyrope-almandine join (X®'r about 0.7; X'y, = 0.2
- 0.27) with only low contents of grossular and spessartine com-
ponents, is stable in high temperature and pressure conditions.
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Fig. 7. P-T path showing the main metamorphic events MO and M1
estimated on the basis of thermobarometric calculations and the Grt
+ Bt + Kfs + Pl + Sil/Ky assmeblage. The Al;SiOs triple point after
Holdaway (1971, HO) and Greenwood (1976, GR).

Le Breton & Thompson (1989) demonstrated experimental-
ly that in fluid-absent systems the melting begins, through the
reaction Bt + Pl + Als + Qtz, at 760 - 800 °C and pressure 1000
MPa, and at 850 °C the melting is extensive. Natural biotites are
stable at higher temperatures of the dehydration melting by the
increased Ti content. At high pressure dehydration melting of
biotite from metapelites the system is closed and the segregation
of melt does not occur. The amount of melt depends on the
proportion of biotite and muscovite in source metapelites, on
the temperature reached and on the amount of H,O entering
the melt (Le Breton & Thompson 1989).

The gneisses and amphibolites of the northern part of the Branis-
ko Mits. contain relics of granoblastites (in the sense of Winkler
1979) having formed by the dehydration anatexis of metapelites at
high temperature and pressure conditions. The in situ melting is
indicated by granoblastic structures with the coarse or fine
plagioclase crystals resembling those crystallizing from melt,
euhedral shape and rarely indications of oscillatory zoning.
A restricted possibility of the melt migration in such extreme P-T
conditionsis documented by the occurrence of numerous restites”
of Grt - Bt - Sil granoblastites in the migmatite complex.

After the main metamorphic events the crystalline complex
got to upper parts of the Earth’ crust. The decrease of Pyowand
a possible water influx in the upper crustal parts caused that the
anatexis and the following migration of melt occurred at rela-
tively lower temperatures and pressures, as demonstrated by
earlier experimental works (Tuttle & Bowen 1958; Winkler

- & Breitbart 1978). It is indicated by the P-T conditions of higher
amphibolite facies recorded at the contacts of garnet rims and
biotite. The sequence of individual metamorphic events is hardly
possible to date because of lacking radiometric data form this
area. It is very probable that the metamorphic events MO and
M1 are related to a single orogen, to its compression and
decompression stages. The M2 event may have been connected

with the pre-Permian post-orogenic uplift and possible horizon-
tal displacements. It is evidenced by abundant ocurrence of blas-
tomylonite pebbles and cataclastic quartz of banded texture in
Permian conglomerates. The possibility of Variscan or pre-Varis-
can age of the events has to be proved by a further
geochronological research. Geologically, the pre-Permian age of
the northern Branisko gneiss-amphibolite complex can be une-
quivocally evidenced (the occurrence of rock fragments in con-
glomerates of the Korytné Formation - Vozdrovd & Vozir
1988).

The last cataclatic deformation (M3) is related to the Al-
pine orogen.

Conclusions

The petrological analysis of rocks of the northern Branisko
gneiss-amphibolite complex has brought the evidence of HT/HP
metamorphism relics indicating boundary conditions of the
granulite facies.

A relatively broad range of temperatures and pressures 675
- 770 °C, 390 - 630 MPa) was determined in garnet cores by
thermobarometric methods. The regressive P-T trend is docu-
mented by temperatures and pressures calculated from garnet
rims (590 - 680 °C, 260 - 420 MPa, respectively) and by
retrograde net transfer reactions represented by Sil + Bt + Qtz
and by kyanite to sillimanite transformation. The final stage of
the gneiss-amphibolite complex stabilization occurred at
temperatures above 550 °C which is documented by the associa-
tion of Mus + Qtz after Sil + Kfs.

The character of garnet zoning and the almost flat Ca diffusion
profile from core to rim suggest a P-T path with an almost isother-
mal initial uplift followed by isobaric cooling. The presence of
kyanite relicsindicates initial presures about 1000 MPa at tempera-
tures about 750 °C. The relatively broad range of calculated
temperatures and pressures has been caused by complicated ex-
change reactions in the assemblage Grt + Bt + Sil + Kfs + Qtz
+ H;O along the P-T path and by specific conditions when biotite
strongly prevails over garnet, the garnet having relatively small
size. Progressive and retrogressive P-T path may probably be re-
lated to compressional and decompressional stages of the same
orogen during which the lower part of crust was uplifted and
stabilised at amphibolite facies conditions. The age of these
events is constrained by geological data as pre-Permian (rock
fragments occurrences in Permian conglomerates). A more
precise dating should be proved by radiometric dating.
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Plate 1: Fig. 1 - gneiss texture with irregularly resorbed garnets. Plane
polarized light, magn. 12x. Fig. 2 - a gneiss texture with intensively
resorbed garnets (left upper corner). Plane polarized light, magn. 12x.
Fig. 3 - intensively resorbed garnet grains. Plane polarized light, magn.
37x. Fig. 4 - assemblage of perthitic orthoclase + sillimanite + biotite
+ intensively resorbed garnet + quartz. Crossed nicols, magn. 37x.
Fig. 5 - kyanite relics in association with biotite, plagioclase and relics
of resorbed garnet (left side) and the assemblage of sillimanite
+ biotite and garnet relics (right side). Plane polarized light, magn.
37x. Fig. 6 - kyanite relics partially replaced by sillimanite. Crossed
nicols, magn. 37x. Fig. 7 - kyanite in association with K-feldspar,
replaced by sillimanite. Crossed nicols, magn. 74x. Fig, 8 - kyanite in
association with K-feldspar and biotite, replaced by sillimanite. The
sillimanite partially replaced by muscovite. Crossed nicols, magn. 37x.
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