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Abstract: We compile the global maps of atmospheric effects on the gravity field quan-
tities using the spherical harmonic representation of the gravitational field. A simple
atmospheric density distribution is assumed within a lower atmosphere (< 6 km). Dis-
regarding temporal and lateral atmospheric density variations, the radial atmospheric
density model is defined as a function of the nominal atmospheric density at the sea level
and the height. For elevations above 6 km, the atmospheric density distribution from the
United States Standard Atmosphere 1976 is adopted. The 5× 5 arc-min global elevation
data from the ETOPO5 are used to generate the global elevation model coefficients. These
coefficients (which represent the geometry of the lower bound of atmospheric masses) are
utilized to compute the atmospheric effects with a spectral resolution complete to degree
and order 180. The atmospheric effects on gravity disturbances, gravity anomalies and
geoid undulations are evaluated globally on a 1× 1 arc-deg grid.
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1. Introduction

Ecker and Mittermayer (1969) developed a method for computing the at-
mospheric gravity correction later adopted in the definition of the Geodetic
Reference System 1980 (GRS 80). This method, known as the IAG (Inter-
national Association of Geodesy) approach, is described in Moritz (1980,
1992). According to this method, the normal gravity is generated by the
geocentric reference ellipsoid GRS 80 including the earth’s atmosphere. The
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atmospheric gravity correction is then defined as the gravitational attrac-
tion of atmospheric masses distributed at elevations above the computation
point as if they were uniformly distributed inside the geocentric reference el-
lipsoid. At the calculation point, atmospheric correction is then subtracted
from the normal gravity. This approach allows for a simple evaluation of the
atmospheric gravity correction as a function of the height of the computation
point. The obtained atmospheric gravity correction varies from 0.869 mGal
at the sea level to 0.000 mGal at the elevation of 46 km. Anderson et al.
(1975) and Anderson (1976) were the first to compute globally the atmo-
spheric corrections on gravity and geoid considering the actual topography
as the lower atmospheric bound. They modeled the radially distributed
atmospheric density by the piecewise linear function with the upper limit
at a height of 40 km and assessed that the first- and second-order atmo-
spheric gravity correction is about 0.87 mGal and 0.1 mGal, respectively.
They were obviously the first to arrive to conclusion that the attraction of
the model atmosphere above the oceans has opposite sign to that above the
continents. Wenzel (1985) defined a simple formula for computing the at-
mospheric gravity correction as a function of the height of the computation
point, but without considering the Earth topography (see also Hinze et al.,
2005 and Li et al., 2006). However, in complex terrain, errors caused by
disregarding the actual topography can be even larger than the magnitude
of the atmospheric effect on gravity itself. Moreover, the secondary indirect
atmospheric effect on the gravity anomaly is completely disregarded in the
IAG approach (cf. Moritz, 1980). These deficiencies as well as the bias
due to the implementation of this approach to the truncated Stokes integral
were already emphasized in Sjöberg (1993). In the alternative method for-
mulated in Sjöberg (1998) and Sjöberg and Nahavandchi (1999) the spectral
representation of Newton’s integral was used to define the atmospheric ef-
fects on gravity and geoid taking into account the actual topography. This
concept was further investigated in Sjöberg (1999, 2001) and Sjöberg and
Nahavandchi (2000). Ramillien (2002), using a different approach, arrived
at similar results as Anderson et al. (1975), including the signs of the cal-
culated effects. Nahavandchi (2004) used a novel approach to compute the
direct atmospheric effect for Iran. Tenzer et al. (2006) used the spatial
representation of Newton’s integral for computing the atmospheric effects
over the Canadian Rocky Mountains. In the above mentioned studies, the
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atmospheric effect on gravity is non-negative when evaluated at the earth’s
surface. Mikuška et al. (2008) arrived independently at the conclusion that
the atmospheric effect on gravity becomes negative when evaluated offshore
and confirmed the findings of Anderson et al. (1975), Anderson (1976) and
Ramillien (2002). This is confirmed again also by results of this study using
quite a different way of calculation. Sjöberg (2006) derived expressions for
the atmospheric potential and attraction considering the ellipsoidal layering
of the earth’s atmosphere. Novák and Grafarend (2006) proposed a method
for computing the gravitational effect of atmospheric masses on spaceborne
data based on spherical harmonic approach with a numerical study in North
America. Eshagh and Sjöberg (2009) computed the atmospheric effect on
satellite gravity gradiometry data over Fennoscandia. In this study, we com-
pute globally the atmospheric effects on the gravity field quantities based
on the spectral representation of Newton’s integral. The expressions for the
atmosphere-generated gravitational potential and attraction are derived in
the form of spherical height functions which represent the lower bound of the
earth’s atmosphere (section 2). A radially distributed atmospheric density
model is adopted. The coefficients of the Global Elevation Model (GEM)
are used to compute globally the atmospheric effects with a spectral reso-
lution complete to degree and order 180. The results are shown in section
3, and the conclusions are given in section 4.

2. Long-wavelength gravitational field generated by the at-
mosphere

To model the long-wavelength gravitational field components generated by
the atmospheric masses, we consider the spherical approximation of the
geoid surface and adopt a radially distributed atmospheric density model.
After applying the analytical upward continuation, the atmosphere-genera-
ted gravitational potential V a reads

V a(r,Ω) = V a(R,Ω) +
∞∑

k=1

(r −R)k
k!

∂kV a(r,Ω)
∂rk

∣∣∣∣∣
r=R

. (1)

Similarly, the atmosphere-generated gravitational attraction ga is given by
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ga(r,Ω) = ga(R,Ω) +
∞∑

k=1

(r −R)k
k!

∂k+1V a(r,Ω)
∂rk+1

∣∣∣∣∣
r=R

. (2)

The potential V a(R,Ω) and the attraction ga(R,Ω) in Eqs. (1) and (2) are
evaluated on the geoid surface which is approximated by the mean earth’s
radius R. The 3-D position is defined in a frame of the geocentric spherical
coordinates r, φ, λ; r is the geocentric radius, φ and λ are the spherical
latitude and longitude, Ω = (φ, λ).
Based on the results of Ecker and Mittermayer (1969) which were de-

rived from the US standard atmospheric density model presented in 1961
(USSA61, Reference Atmosphere Committee, 1961), Sjöberg (1998) pro-
posed the radially distributed atmospheric density model ρa(r) in the fol-
lowing form

ρa(r) = ρa
0

(
R

r

)μ

, (3)

where ρa
0 is the atmospheric density at the sea level, and where the positive

integer constant μ > 2 describes the radial atmospheric density distribution
model as a function of the height above the sea level. Novák (2000) used
a second-order polynomial function to approximate the density distribution
within a lower atmosphere (< 10 km). This approximation fits the USSA76
(United States Standard Atmosphere 1976) model with the accuracy of
about 10−3 up to 10 km above the sea level. For elevations above 10 km, he
adopted the atmospheric density distribution from the USSA76 model. The
second-order polynomial approximation of the atmospheric density up to
10 km described in Novák (2000) was later adopted by Eshagh and Sjöberg
(2009). For modeling the atmospheric density above 10 km, they used the
mathematical model from Eq. (3) with the parameters ρa

0 and μ modified
for the nominal height of 10 km. All these three atmospheric density models
assume a spherical stratification. Sjöberg (2006) acquired that the errors
of about 2 cm in geoid determination can be expected when disregarding
the earth’s flattening. Therefore, he assumed the ellipsoidally symmetric
atmospheric density model, and also introduced physically a more realistic
approximation of the atmospheric density taking into account atmospheric
density variations due to latitudinal temperature variations.
Adopting the atmospheric density model from Eq. (3), the atmosphere-
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generated gravitational potential can be expressed by Newton’s volume in-
tegral

V a(r,Ω) =Gρa
0

∫∫
Ω′∈Ω0

∫ rlim

R+Hmax

(
R

r

′)μ

�−1
(
r, ψ, r′

)
r′2 dr′dΩ′ +

+Gρa
0

∫∫
Ω′∈Ω0

∫ R+Hmax

R+H(Ω′)

(
R

r′

)μ

�−1(r, ψ, r′)r′2dr′dΩ′, (4)

where G is Newton’s gravitational constant, � is the Euclidean spatial dis-
tance of two points (r,Ω) and (r′,Ω′), dΩ′ = cosφ′ dφ′ dλ′ is the infinitesimal
surface element on the unit sphere, and Ω0 denotes the full solid angle. The
volumetric domain of the earth’s atmosphere in Eq. (4) is subdivided into
the atmospheric spherical shell and the atmospheric spherical roughness
term. The atmospheric spherical shell is bounded by the upper limit of
topography Hmax and the upper limit of atmosphere (rlim−R) above which
the gravitational contribution of atmospheric masses becomes negligible;
approximately 50 km. It is known that more than 99.9% of all atmospheric
masses are located within 50 km above the sea level (cf. Ecker and Mit-
termayer, 1969). The atmospheric spherical roughness term is enclosed
between the earth’s surface and the upper limit of topography. The upper
limit of topography is defined as the maximum height above the sea level.
For r < R+Hmax, Eq. (4) becomes

V a(r,Ω) = 4πGρa
0 R

μ r
2−μ
lim − (R+Hmax)2−μ

2− μ +

+Gρa
0

∫∫
Ω′∈Ω0

∫ R+Hmax

R+H(Ω′)

(
R

r′

)μ

�−1(r, ψ, r′)r′2 dr′dΩ′, (5)

where the first constituent on the right-hand side of Eq. (5) represents the
constant gravitational potential of the atmospheric spherical shell in the
interior domain r < R+Hmax (cf. Tenzer, 2005).
The first and higher radial derivatives of the gravitational potential of the

atmospheric spherical shell (of radially distributed density) in the interior
domain r < R+Hmax equal zero (cf. MacMillan, 1930). The radial deriva-

tives of the gravitational potential
{
∂k V a/∂ rk k = 1, 2, ...

}
in Eqs. (1) and
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(2) are then defined as

∂kV a (r,Ω)
∂rk

∣∣∣∣∣
r=R

=Gρa
0

∫∫
Ω′∈Ω0

∫ R+Hmax

R+H(Ω′)

(
R

r′

)μ ∂k�−1 (r, ψ, r′)
∂rk

∣∣∣∣∣
r=R

×

× r′2 dr′dΩ′. (6)

The radial derivatives of �−1 for r < r′ are found to be

∂k �−1(r, ψ, r′)
rk

=
k!

r′k+1
∞∑

n=k

(
r

r′

)n−k
(
n
k

)
Pn(cosψ), (7)

where Pn is the Legendre polynomial of degree n for the argument of cosine
of the spherical distance ψ. The substitution from Eq. (7) to Eq. (6) yields

∂k V a(r,Ω)
∂rk

∣∣∣∣∣
r=R

=Gρa
0R

n−k+μ
∞∑

n=k

n!
(n− k)!

∫∫
Ω′∈Ω0

Pn(cosψ)×

×
∫ R+Hmax

R+H(Ω′)

1
r′n+μ−1dr

′dΩ′. (8)

Since the expansion of Newton’s integral kernel into a series of the Legendre
polynomials converges uniformly and absolutely, the interchange of summa-
tion and integration in Eq. (8) is permissible (cf. Moritz, 1980). The radial
integral term on the right-hand side of Eq. (8) is found to be∫ R+Hmax

R+H(Ω′)

1
r′n+μ−1dr

′ =
(R+Hmax)

2−n−μ − [R+H(Ω′)]2−n−μ

2− n− μ . (9)

Inserting from Eq. (9) to Eq. (8), we arrive at

∂kV a(r,Ω)
∂rk

∣∣∣∣∣
r=R

=
Gρa
0

Rk−2
∞∑

n=k

(
R

R+Hmax

)n+μ−2 n!
(n− k)!

1
2− n− μ ×

×
∫∫
Ω′∈Ω0

Pn(cosψ) dΩ
′ − Gρa

0

Rk−2
∞∑

n=k

[
R

R+H(Ω′)

]n+μ−2
×

× n!
(n− k)!

1
2− n− μ

∫∫
Ω′∈Ω0

Pn(cosψ) dΩ
′. (10)

The application of the binomial theorem to [1 +H(Ω′)/R]2−n−μ results in
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[
1 +

H (Ω′)
R

]2−n−μ
∼=

∞∑
i=0

(
2− n− μ

i

) (
H (Ω′)
R

)i

. (11)

Disregarding terms higher than the second degree in Eq. (11), we get[
1 +

H (Ω′)
R

]2−n−μ

≈ 1 + H (Ω′)
R

(2− n− μ) + 1
2

[
H (Ω′)
R

]2
×

× (2− n− μ) (1 − n− μ). (12)

Substituting from Eq. (12) to the second constituent on the right-hand side
of Eq. (10), we arrive at

∂k V a (r,Ω)
∂ rk

∣∣∣∣∣
r=R

=
Gρa

0

Rk−2
∞∑

n=k

n!
(n− k) !

1
2− n− μ

[(
R

R+Hmax

)n+μ−2
− 1

]
×

×
∫∫
Ω′∈Ω0

Pn(cosψ) dΩ
′ − Gρa

0

Rk−1
∞∑

n=k

n!
(n− k) ! ×

×
∫∫
Ω′∈Ω0

H
(
Ω′
)
Pn (cosψ) dΩ

′ − Gρa
0

2Rk

∞∑
n=k

n!
(n− k) ! ×

× (1− n− μ)
∫∫
Ω′∈Ω0

H2
(
Ω′
)
Pn (cosψ) dΩ

′. (13)

Since
∫∫
Ω′∈Ω0

Pn (cosψ) dΩ′ = 0 for n > 0, Eq. (13) becomes

∂k V a (r,Ω)
∂ rk

∣∣∣∣∣
r=R

=− Gρa
0

Rk−1
∞∑

n=k

n!
(n− k) !

∫∫
Ω′∈Ω0

H
(
Ω′
)
Pn (cosψ) dΩ

′ −

− Gρa
0

2Rk

∞∑
n=k

n!
(n− k) ! (1− n− μ)×

×
∫∫
Ω′∈Ω0

H2
(
Ω′
)
Pn (cosψ) dΩ

′. (14)

From Eq. (14), the generic expression for radial derivatives of the atmo-
sphere-generated gravitational potential in terms of the surface spherical
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height functions Hn (Ω) and the surface spherical squared height functions
Hn
2 (Ω) is found to be

∂k V a(r,Ω)
∂rk

∣∣∣∣∣
r=R

=−4π Gρ
a
0

Rk−1
∞∑

n=k

1
2n+ 1

n!
(n− k)!

n∑
m=−n

Hn,m Yn,m(Ω)−

− 2π Gρ
a
0

Rk

∞∑
n=k

1
2n+ 1

n!
(n− k)! (1− n− μ)×

×
n∑

m=−n

H2n,m Yn,m(Ω) = −2π Gρ
a
0

Rk

∞∑
n=k

1
2n+ 1

n!
(n− k)! ×

×
n∑

m=−n

[
2RHn,m + (1− n− μ)H2n,m

]
Yn,m(Ω). (15)

The surface spherical height functions Hn(Ω) and the surface spherical
squared height functions H2n(Ω) in Eq. (15) are defined as follows (e.g.,
Novák, 2000)

Hn(Ω) =
2n+ 1
4π

∫∫
Ω′∈Ω0

H(Ω′) Pn(cosψ) dΩ
′ =

n∑
m=−n

Hn,m Yn,m(Ω), (16)

H2n(Ω) =
2n+ 1
4π

∫∫
Ω′∈Ω0

H(Ω′)2 Pn(cosψ) dΩ
′ =

n∑
m=−n

H2n,m Yn,m(Ω). (17)

The surface spherical harmonic functions Yn(Ω) are given by (e.g., Heiska-
nen and Moritz, 1967)

Yn(Ω) =
2n + 1
4π

∫∫
Ω′∈Ω0

Pn(cosψ) dΩ
′ =

n∑
m=−n

Yn,m(Ω). (18)

The substitution from Eq. (15) to Eqs. (1) and (2) yields the expressions for
the atmosphere-generated gravitational potential and attraction. For r <
R + Hmax, the atmosphere-generated gravitational potential is introduced
in the following form

V a(r,Ω) = V a(R,Ω)− 2π Gρa
0
H(Ω)
R

N∑
n=1

n

2n+ 1
×
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×
n∑

m=−n

[
2RHn,m + (1− n− μ)H2n,m

]
Yn,m(Ω)− πGρa

0
H2(Ω)
R2

×

×
N∑

n=2

n(n− 1)
2n+ 1

n∑
m=−n

[
2RHn,m + (1− n− μ)H2n,m

]
Yn,m(Ω), (19)

where Hn,m and H2n,m are the GEM coefficients complete to degree and
orderN . The gravitational potential generated by the atmospheric spherical
shell enclosed between the upper limits of topography and atmosphere (first
constituent on the right-hand side of Eq. 5) is included in the expression for
the potential V a(R,Ω) which is evaluated on the geoid; i.e.,

V a(R,Ω) = 4π Gρa
0 R

μ r
2−μ
lim − (R+Hmax)2−μ

2− μ +

+Gρa
0

∫∫
Ω′∈Ω0

∫ R+Hmax

R+H(Ω′)

(
R

r′

)μ

�−1(R,ψ, r′)r′2 dr′dΩ′. (20)

The reciprocal spatial distance in Eq. (20) reads (e.g., Pick et al., 1973;
Eq. D-14, 4)

�−1(R,ψ, r′) =
1
r′

∞∑
n=0

(
R

r′

)n

Pn(cosψ)
(
r′ > R

)
. (21)

Substituting from Eq. (21) to Eq. (20), and subsequently integrating with
respect to r′, we arrive at

V a(R,Ω) = 4π Gρa
0 R

μ r
2−μ
lim − (R+Hmax)2−μ

2− μ +

+ 4π Gρa
0

R2

2− μ

[(
1 +

Hmax
R

)2−μ

− 1
]
− 2πGρa

0

N∑
n=0

1
2n+ 1

×

×
n∑

m=−n

[
2RHn,m + (1− n− μ)H2n,m

]
Yn,m(Ω). (22)

The first constituent on the right-hand side of Eq. (22) represents the gravi-
tational potential of the atmospheric spherical shell. The second constituent
is a function of the upper bound of the atmospheric spherical roughness
term. The last constituent defines the lower atmospheric bound in terms
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of the surface spherical height functions and the surface spherical squared
height functions. The atmospheric density distribution function in Eq. (22)
can be specified individually for the atmospheric spherical shell and for the
atmospheric spherical roughness term. The gravitational potential of the
atmospheric spherical shell can then be computed either using the expres-
sion in Eq. (22) or adopting the available atmospheric density model such
as the USSA76.
For r < R+Hmax, the atmosphere-generated gravitational attraction is

given by

ga(r,Ω) = ga(R,Ω)− 2π Gρa
0
H(Ω)
R2

N∑
n=2

n(n− 1)
2n + 1

n∑
m=−n

×

×
[
2RHn,m + (1− n− μ)H2n,m

]
Yn,m(Ω)− π Gρa

0
H2(Ω)
R3

×

×
N∑

n=3

n(n− 1)(n − 2)
2n+ 1

n∑
m=−n

[
2RHn,m + (1− n− μ)H2n,m

]
×

× Yn,m(Ω), (23)

where the attraction ga(R,Ω) which is evaluated on the geoid reads

ga(R,Ω) =−2π Gρ
a
0

R

N∑
n=1

n

2n+ 1

n∑
m=−n

×

×
[
2RHn,m + (1− n− μ)H2n,m

]
Yn,m(Ω). (24)

The expressions for the atmosphere-generated gravitational attraction in
Eqs. (23) and (24) comprise only terms for the lower atmospheric bound.
Equations (19) and (22) through (24) are used in the next section for the
global modeling of atmospheric corrections.

3. Global atmospheric effects

The 5 × 5 arc-min elevation data from the ETOPO5 (provided by the
NOAA’s National Geophysical Data Centre) are used to generate the GEM
coefficients. These coefficients are utilized to compute the atmospheric ef-
fects with a spectral resolution complete to degree and order 180. The
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Fig. 1. The atmospheric density model ρa (r) up to 6 km above the sea level computed
using Eq. (3) for the parameters: ρao = 1.2227 kg/m

3, μ = 850 and R = 6378137 m.

Fig. 2. The global atmospheric effect on gravity disturbances evaluated on a 1×1 arc-deg
grid at the earth’s surface.
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Fig. 3. The global complete atmospheric correction on gravity anomalies evaluated on a
1× 1 arc-deg grid at the earth’s surface.

atmospheric effects on gravity disturbances, gravity anomalies and geoid
undulations are evaluated globally on a 1 × 1 arc-deg geographical grid.
The maximum mean heights of the global elevation model with 180-degree
spectral resolution reach 6 km. The atmospheric density distribution up to
the upper limit of topography (6 km above the sea level) is defined accord-
ing to Eq. (3) for the chosen parameters ρa

0 = 1.2227 kg/m
3, μ = 850 and

R = 6378137 m (cf. Sjöberg, 1998). The density within the lower atmo-
sphere (< 6 km) is shown in Fig. 1. For the elevations above 6 km, the
atmospheric density distribution from the USSA76 model is adopted.
The atmospheric effect on gravity disturbances evaluated at the earth’s

surface using Eq. (23) is shown in Fig. 2. It globally varies from –0.03
to 0.18 mGal with the mean of 0.01 mGal, and the standard deviation is
0.04 mGal. The complete atmospheric effect on gravity anomalies evalu-
ated at the earth’s surface is shown in Fig. 3. It is everywhere negative
and globally varies from –1.76 to –1.13 mGal with the mean of –1.63 mGal,
and the standard deviation is 0.11 mGal. The complete atmospheric effect
on gravity anomalies comprises not only the direct atmospheric effect on
gravity but also the secondary indirect atmospheric effect (cf. e.g., Tenzer
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et al., 2006). The secondary indirect atmospheric effect is defined as the
product of the atmosphere-generated gravitational potential V a (r,Ω) and
the term 2r−1. The atmosphere-generated gravitational potential V a (r,Ω)
is evaluated at the earth’s surface using Eq. (19). The secondary indirect
atmospheric effect is shown in Fig. 4. It varies from 1.30 to 1.72 mGal with
the mean of 1.65 mGal, and the standard deviation is 0.07 mGal.

4. Summary and conclusions

We have computed globally the atmospheric effects on the gravity field
quantities using the expressions for spectral analysis of gravitational field.
Disregarding temporal and lateral atmospheric density variations, the den-
sity distribution model within the lower atmosphere up to 6 km above the
sea level is defined as a function of the nominal atmospheric density at the
sea level and the height. For elevations above 6 km, we adopted the USSA76
atmospheric density model. From the error analysis in Tenzer et al. (2006),
it follows that the accuracy of used atmospheric density distribution model
determines the resulting accuracy of computed atmospheric effects on grav-
ity and potential, while the errors due to inaccuracies of the digital elevation
models are considerably smaller. Relatively large errors are thus expected
in forward modeling the global atmospheric effects when using a simple ra-
dially distributed atmospheric density model especially due to neglecting
the latitudinal density variations within the lower atmosphere. The main
global atmospheric density variations are attributed to the average annual
temperature latitudinal variations between equatorial and polar regions of
about 300 to 260 K (cf. Wallace and Hobbs, 1977; see also Sjöberg, 2006).
These latitudinal temperature variations represent some 15% higher atmo-
spheric densities at the polar areas and correspond to errors of computing
the atmospheric potential and attraction up to 3 m2/s2 and 0.03 mGal, re-
spectively. The seasonal atmospheric density variations of about 10% are
not considered in the total error budget.
The results in section 3 revealed that the atmospheric effects are strongly

correlated with the geometry of the lower atmospheric bound. There is a
stronger correlation of the atmospheric-attraction related correction term
(direct atmospheric effect) compared to the atmospheric-potential related
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Fig. 4. The global secondary indirect atmospheric effect evaluated on a 1×1 arc-deg grid
at the earth’s surface.

Fig. 5. The global atmospheric effect on geoid undulations evaluated on a 1× 1 arc-deg
grid.
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correction terms (primary and secondary indirect atmospheric effects). The
maximum absolute values of all atmospheric effects are located mainly over
the mountainous regions. As also can be seen from Figs. 2 and 3, the
complete atmospheric effect on gravity anomalies is at least one-order of
magnitude larger than the atmospheric effect on gravity disturbances, due
to the fact that the complete effect on gravity anomalies comprises not
only the direct atmospheric effect on gravity but also the secondary indirect
atmospheric effect.
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M., Webring M., Winester D., 2005: New standards for reducing gravity data: The
North American gravity database. Geophysics, 70, J25–J32.

Li X., Hildebrand T. G., Hinze W. J., Keller G. R., Ravat D., Webring M., 2006: The
quest for the perfect gravity anomaly. Part 1 - New calculation standards: 76th

Annual International Meeting, SEG, Expanded Abstracts, 859–863.
MacMillan W. P., 1930: The theory of the potential. Dover, New York.
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