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SECRET SHARING ON INFINITE GRAPHS

László Csirmaz

ABSTRACT. We extend the notion of perfect secret sharing scheme for access
structures with infinitely many participants. In particular we investigate cases
when the participants are the vertices of an (infinite) graph, and the minimal
qualified sets are the edges. The (worst case) information ratio of an access struc-
ture is the largest lower bound on the amount of information some participant
must remember for each bit in the secret—just the inverse of the information rate.
We determine this value for several infinite graphs: infinite path, two-dimensional
square and honeycomb lattices; and give upper and lower bounds on the ratio for
the triangular lattice.

It is also shown that the information ratio is not necessarily local, i.e., all finite
spanned subgraphs have strictly smaller ratio than the whole graph. We conclude
the paper by posing several open problems.

1. Introduction

A secret sharing scheme is a method of distributing secret data among a set
of participants so that only specified qualified subsets of participants are able
to recover the secret. In addition, if the unqualified subsets collectively yield no
extra information, i.e., the joint shares are statistically independent of the secret,
then the scheme is called perfect. The description of qualified subsets among all
possible subsets of participants is the access structure. In this paper only perfect
secret sharing schemes are considered; when we speak about a secret sharing
scheme, it is assumed to be perfect.

The most frequently investigated property is the efficiency of the system: how
many bits of information the participants must remember for each bit of the
secret in the worst case. This amount is the (worst case) information ratio of
the system, which is just the inverse of the most commonly used information rate.
(The name comes from the analogy to noisy channels.) Next to the worst case,
the average is also a good measure of the efficiency; in this paper by information
ratio we mean the worst case one.
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Determining the (worst case or average) information ratio, even in special
cases, turned out to be extremely hard, both theoretically and technically. Sev-
eral particular classes of access structures were investigated separately: access
structures on four or five element sets [16, 20], access structures with three
or four minimal sets [17], but most importantly access structures where the
minimal qualified subsets are of size two—the so-called graph access structures
[2, 4, 5, 8, 12, 13, 21].

Here we start the research in a new direction: we consider access structures
with infinitely many participants. In the exposition we restrict ourselves to graph
access structures. Our definitions, and some of the results, generalize easily for
arbitrary access structures. Secret sharing systems on infinite domain with finite
access structures were investigated in [6].

We determine the exact value of the (worst case) information ratio for a couple
of infinite graphs. This part uses a new result on the exact information ratio for
a particular family of graphs (Theorem 4.2). We also show that the information
ratio is not necessarily local, i.e., there are cases when this number for the whole
graph is larger than that of any of its finite subgraph (Corollary 4.6).

The paper is organized as follows. In the next section we recall the definition
of a perfect secret sharing system, define the worst case and average information
ratio, and introduce the so-called entropy method [4, 5, 7, 20]. Section 3 defines
secret sharing systems on infinite structures. We introduce a generalization of
the decomposition technique for the infinite case (Theorem 3.6), and show that
Stinson’s celebrated bound works in the infinite case as well (Corollary 3.9).
In Section 4 we determine the exact information ratio of a particular family
of graphs. It is used to prove the optimality of several constructions in Section 5.
Finally Section 6 concludes the paper, and lists some problems. For undefined
notions and for an introduction to secret sharing schemes see [2] or [8]; for those
in information theory consult [11].

All logarithms in this paper are of base 2.

2. Definitions

This section defines some of the most important notions which are used in
the paper. First we recall some graph properties, then give a formal definition
of a (finite) perfect secret sharing scheme based on graphs. Finally we connect
perfect secret sharing schemes to certain submodular functions.

Let G = 〈V, E〉 be a (finite or infinite) graph with vertex set V and edge
set E. A subset A of V is independent if there is no edge between vertices in A.
A covering of the graph G is a collection of subgraphs of G such that every edge
is contained on one of the (not necessarily spanned) subgraphs in the collection.
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The collection is k-covering if every edge of G is covered exactly k times. For
subsets of vertices we usually omit the ∪ sign, and write AB for A ∪B. Also, if
v ∈ V is a vertex, then Av denotes A ∪ {v}.

A perfect secret sharing scheme S for a finite graph G is a collection of random
variables ξv for each v ∈ V and a ξs (the secret) with a joint distribution so that

(i) if vw is an edge in G, then ξv and ξw together determine the value of ξs ;
(ii) if A is an independent set, then ξs and the collection {ξv : v ∈ A} are

statistically independent.

The size of the discrete random variable ξ is measured by its entropy, or infor-
mation content, and is denoted by H(ξ), see [11]. This amount has to be well
defined and finite, consequently all random variables in this paper are assumed
to be finite, i.e., they can take only finitely many different values with positive
probability. This is the main obstacle one has to overcome when defining a secret
scheme on infinite domain.

The information ratio for a vertex (or participant) v ∈ G is H(ξv)/H(ξs).
This value tells how many bits of information v must remember for each bit
in the secret. The worst case (or average) information ratio of S is the highest
(resp. average) information ratio among all participants.

Given a graph G its information ratio is the infimum of the corresponding
value for all perfect secret sharing schemes S defined on G.

Definition 2.1. The information ratio of the (finite) graph G, denoted as
R(G), is defined as

R(G) = inf
S

max
v∈V

H(ξv)
H(ξs)

.

The widely used information rate is the inverse of this value.
While the “information rate” is the customary measure in the literature,

cf. [2, 4, 5, 7, 12, 20, 21], we found its inverse, the ratio, to be more intuitive,
furthermore certain expressions are easier to write and understand using the
ratio.

As it has been pointed out in [1], it is not evident that the “infimum” in
Definition 2.1 should actually be taken by some scheme S, i.e., whether the
infimum is always a minimum. In [1] there is presented a general access structure
where the infimum is not taken by any scheme. For access structures based on
graphs the question whether inf = min is an open problem.

Let S be a perfect secret sharing scheme based on the (finite) graph G with
the random variable acting ξs as secret, and ξv for v ∈ V acting as shares. For
each subset A of the vertices one can define the real-valued function f as

f(A) def=
H

({ξv : v ∈ A})

H(ξs)
. (1)
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Clearly, the information ratio of S is the maximal value in
{
f(v) : v ∈ V

}
, while

the average information ratio is the average of these values. Using standard
properties of the entropy function, cf. [11], following inequalities hold for all
subsets A, B of the participants:

(a) f(∅) = 0, and in general f(A) ≥ 0 (positivity);
(b) if A ⊆ B ⊆ V , then f(A) ≤ f(B) (monotonicity);
(c) f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) (submodularity).

It is well known that for two (finite) random variables η and ξ, the value of η
determines the value of ξ iff H(ηξ) = H(η), moreover η and ξ are (statistically)
independent iff H(ηξ) = H(η) + H(ξ). Using these facts and the definition of
the perfect secret sharing scheme, we also have

(d) if A ⊆ B, A is an independent set and B is not, then f(A) + 1 ≤ f(B)
(strong monotonicity);

(e) if neither A nor B is independent but A ∩ B is so, then f(A) + f(B)
≥ 1 + f(A ∩B) + f(A ∪B) (strong submodularity).

The entropy method, see, e.g., [2], can be rephrased as follows. Prove that for
any real-valued function f satisfying properties (a)–(e), for some vertex v ∈ G,
f(v) ≥ r. Then, as functions coming from secret sharing schemes also satisfy
these properties, conclude, that the (worst case) information ratio of G is also
at least r.

Note that this method is not necessarily universal, as properties (a)–(e) are too
weak to capture exactly the functions coming from entropy see [18]. However, for
graphs all existing lower bound proofs use the entropy method, and no example
is known where the entropy method would not work.

3. The case of infinite graphs

Trying to define secret sharing on an infinite object one faces several prob-
lems. As there are infinitely many participants, one has to define infinitely many
random variables with a joint distribution. But infinitely many pairwise random
bits (probably needed for any construction) require infinite event space where
the standard entropy function does not exist. We used entropy as a tool to de-
fine the relative size of a share compared to the secret, but even finding such
a weaker notion is problematic; see Problem 6.1.

Rather than defining the information ratio directly, we choose an indirect
way. In case of graphs the set of participant might be infinite, but the minimal
qualified subsets are finite, namely pairs. Thus it seems quite natural to consider
finite restrictions. Our starting point is the following easy, but very useful fact
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about secret sharing schemes on finite graphs. The fact generalizes easily to other
access structures as well.

Fact 3.1. Suppose G′ is a spanned subgraph of G. The information ratio of G′

is at most as large as the information ratio of G, i.e., R(G′) ≤ R(G).

In general, this claim is not true for arbitrary subgraphs. By S h a m i r ’s
result in [19], R(Kn) = 1 where Kn is the complete graph on n vertices, while
by [8], there is a graph G′ ⊆ Kn where R(G′) ≥ 0.25 log2 n.

Looking at an infinite graph as the “limit” of its finite spanned subgraphs,
Fact 3.1 suggests the following definition:

Definition 3.2. The information ratio R(G) for the infinite graph G is

R(G) = sup
{
R(G′) : G′ is a finite, spanned subgraph of G

}
.

By Fact 3.1 this is a sound definition, and applying to a finite G gives back the
original value.

If the (finite) graph G is the disjoint union of G1 and G2, i.e., there are no
cross edges between G1 and G2, then any secret sharing scheme on G trivially
splits into a secret sharing scheme on G1, and another one on G2.

Claim 3.3. If G has several connected components, then

R(G) = sup
{
R(G′) : G′ is a connected component of G

}
.

Consequently, in Definition 3.2 it is enough to consider connected finite sub-
graphs of G only.

We have defined the information ratio of an infinite graph as a supremum.
It is a natural question whether this value is actually taken, or it is a proper
one.

Definition 3.4. The graph G is local if there is a finite spanned subgraph G′

of G such that R(G) = R(G′). Otherwise G is not local.

Of course, when R(G) is infinite, then G cannot be local as no finite graph
has infinite information ratio. Locality is interesting only when R(G) is finite.

When constructing secret sharing schemes the most frequently used tool is
S t i n s o n ’s decomposition technique from [21]. For our case it can be worded
as

Theorem 3.5 (S t i n s o n ). Let Gi ⊆ G be arbitrary subgraphs of G, and as-
sume that each edge of G is in at least k of the subgraphs. Let Si be a perfect
secret sharing scheme on Gi such that Si assigns Si(v) bits to v ∈ G for each
bit in the secret

(Si(v) = 0 if v /∈ Gi

)
. Then there is a scheme S on G which

assigns

S(v) =
1
k

∑
Si(v)

bits to v for each bit in the secret.
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This theorem is meaningful for finite graphs only. The following generaliza-
tion, however, holds for infinite graphs as well.

Theorem 3.6. Let Gi ⊆ G be arbitrary (finite or infinite) subgraphs of G, and
assume that each edge of G is in at least k of the subgraphs. For a vertex v ∈ G
define ri(v) = 0 if v /∈ Gi, and ri(v) = R(Gi), i.e., the information ratio of Gi

otherwise. Then

R(G) ≤ sup
v∈G

∑
ri(v)
k

.

P r o o f. Let us denote the value of the sup on the right hand side by r; we may
assume that r is finite otherwise there is nothing to prove. Let G′ ⊆ G be a finite
spanned subgraph of G. According to Definition 3.2, we need to check that there
is a perfect secret sharing scheme S on G′ which assigns at most r bits to each
vertex of G′ for each bit in the secret.

As G′ has finitely many edges, we can choose a finite set I of the indices of
the subgraphs Gi such that each edge of G′ is in at least k of the subgraphs in
the family {Gi : i ∈ I}. For i ∈ I let G′i be the spanned subgraph of Gi restricted
to the vertices of G′. As R(Gi) = ri and G′i is a spanned subgraph of Gi, by
Fact 3.1 there is a secret sharing scheme Si on G′i which assigns at most ri bits
to all v ∈ G′i for each bit in the secret. By Theorem 3.5 there exists a scheme S
which assigns

S(v) =
1
k

∑

i∈I

Si(v) ≤ 1
k

∑

i∈I

ri(v) ≤
∑

ri(v)
k

≤ r

bits to v ∈ G′, which was wanted. ¤

We close this section by a generalization of S t i n s o n ’s result [21]. For the
proof we need some well-known facts. The first statement is a folklore, the proof
is an easy application of the entropy method, see, e.g., [2], or the results in
Section 4.

Claim 3.7. If G is empty (independent), then R(G) = 0. Otherwise R(G) ≥ 1.

The complete graph on (countably) infinitely many points is denoted by K∞,
and the (infinite) graph where one point is connected to an infinite independent
set is denoted as Star∞.

Claim 3.8. R(K∞) = R(Star∞) = 1.

P r o o f. All finite spanned subgraph of K∞ is the complete graph. By S h a -
m i r ’s result in [19] all of them have ratio 1, thus their sup is also 1.

As for the other graph, R(Star∞) ≥ 1 by Claim 3.7. We show that this value is
also ≤ 1. Each finite, connected spanned subgraph of Star∞ is a (finite) star. Let
the secret be the random bit s ∈ {0, 1}, and let r ∈ {0, 1} be selected randomly
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Figure 1. Secret sharing on a star.

and independently from s. The center of the star will get s ⊕ r, and all other
vertices get r. This is a perfect secret sharing scheme; all participants get 1 bit,
and the secret is 1 bit as well (see Figure 1). Thus the ratio in this case is 1 as
well. ¤

Corollary 3.9. If the maximal degree of G is d, then R(G) ≤ (d + 1)/2.

P r o o f. For each vertex v in G consider the star Gv with center v and all edges
outgoing from v as rays. These subgraphs Gv cover all edges twice, and each
vertex is in at most d + 1 of these subgraphs (once as center, and d times as
endpoint of a ray). Now R(Gv) = 1 by Claim 3.8, and apply Theorem 3.6. ¤

4. Lower bounds: the comb

Almost all lower bounds use the entropy method, see [4, 5, 7, 20] which has
been outlined at the end of Section 2. We shall use this method for a particular
family of graphs, which will then be used to determine the exact ratio of several
infinite graphs as well.

• • • •

• • • •

. . . • •

• •

1 2 k−1 k

• •

• •

1 2

Figure 2. The graphs Combk and Comb2.

Definition 4.1. For k ≥ 2 Combk is the graph on 2k vertices as indicated on
Figure 2, in particular Comb2 is the path of length 3. Comb∞ is the infinite
comb with no 2-degree vertex.
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Figure 3. Two out of the k 1-covers of Combk.

The main result of this section is

Theorem 4.2. For k ≥ 2, R(Combk) = 2− 1/k.

P r o o f. First, by using Stinson’s decomposition method, we show that the ratio
is ≤ 2− 1/k. Figure 3 indicates the first two of the k different covers of Combk;
each component in a cover is a star on two, three or four vertices, thus has
information ratio 1. The numbers below the vertices indicate the number of bits
they receive using this cover. Putting together all k covers each edge is covered
k times, the bottom vertices receive a total of 2k− 1 bits, while the top vertices
receive k bits. Using Theorem 3.5 we conclude that R(Combk) ≤ (2k − 1)/k.

For the other direction we use the entropy method. Label the bottom vertices
of Combk from left to right as A1, A2, . . . , Ak, the top vertices as a1, . . . , ak

so that ai is connected to Ai only. Given any secret sharing scheme on Combk,
define the real-valued function f as in (1). For a subset A of the vertices let

f(A) =
H

({ξv : v ∈ A})

H(ξs)
.

This function satisfies properties (a)–(e) enlisted in Section 2. We claim that for
any such function f we have

k∑

i=1

f(Ai) ≥ 2k − 1. (2)

Showing this we are done. Indeed, the sum of these k terms is at least 2k − 1,
thus at least one of them is ≥ (2k−1)/k. Consequently for at least one vertex Ai

we have

f(Ai) =
H(ξAi)
H(ξs)

≥ 2k − 1
k

,

i.e., Ai must remember at least 2− 1/k bits for each bit in the secret.
To finish the proof, we state and prove Lemmas 4.3 and 4.4. Inequality (2) is

just the sum of the claims of the lemmas. ¤
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Lemma 4.3.
∑k

i=1 f(Ai) ≥ f(A1A2 . . . Ak) + k − 2.

P r o o f. In general for any 2 ≤ ` ≤ k,
∑`

i=1 f(Ai) ≥ f(A1A2 . . . A`) + ` − 2
which we will prove by induction on `. When ` = 2 the claim is f(A1)+f(A2) ≥
f(A1A2), which is just the submodularity (c).

Now suppose we know the claim to be true for `− 1; to conclude it for ` it is
enough to check that whenever ` ≥ 3 then

f(A1A2 . . . A`−1) + f(A`) ≥ f(A1 . . . A`) + 1. (3)

As ` ≥ 3, both A1 . . . A`−1 and A`−1A` contain edge, i.e., they are a qualified
sets. Then property (e) says that

f(A1A2 . . . A`−1) + f(A`−1A`) ≥ f(A1 . . . A`) + f(A`−1) + 1

as the singleton A`−1 is not qualified. By the submodularity (c) we have

f(A`−1) + f(A`) ≥ f(A`−1A`).

Adding up the last two inequalities we get (3), as required. ¤
Lemma 4.4. f(A1A2 . . . Ak) ≥ k + 1.

P r o o f. Let X = {A1A2 . . . Ak}, and consider the differences

di = f(Xa1 . . . ai)− f(a1 . . . ai).

As f(∅) = 0, the value we are interested in is d0. The trick is to consider these
differences in reverse order. As {Xa1 . . . ak} is qualified, while {a1 . . . ak} is not,
condition (d) gives 1 ≤ dk. Furthermore, for all 1 ≤ i ≤ k, di + 1 ≤ di−1 which
implies k + 1 ≤ d0 as the lemma states.

Now both {Aia1 . . . ai} and {Xa1 . . . ai−1} are qualified, their intersection,
which is {Aia1 . . . ai−1}, is not, thus (e) gives

f(Aia1 . . . ai) + f(Xa1 . . . ai−1) ≥ f(Aia1 . . . ai−1) + f(Xa1 . . . ai) + 1.

Furthermore the submodularity (c) tells

f(a1 . . . ai) + f(Aia1 . . . ai−1) ≥ f(Aia1 . . . ai) + f(a1 . . . ai−1).

Adding these up and rearranging we get di + 1 ≤ di−1, as needed. ¤
Theorem 4.5. The information ratio of Comb∞ is 2.

P r o o f. Fist we show that 2 is an upper bound. To this end let G be an arbitrary
finite spanned subgraph of Comb∞. Then, for some k, G is a spanned subgraph of
an isomorphic copy of Combk, therefore R(G) ≤ R(Combk) < 2. Consequently,
R(Comb∞) as the sup of R(G) for these G’s, is ≤ 2, as was claimed.

On the other hand, for each natural number k, Combk is a spanned sub-
graph of Comb∞, thus R(Comb∞) is at least as large as R(Combk) = 2− 1/k.
Consequently, R(Comb∞) cannot be smaller than 2. ¤
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Figure 4. Paths, honeycomb, and 2-lattice.

Corollary 4.6. Comb∞ is not local, i.e., all of its finite spanned subgraphs
have smaller information ratio.

5. Examples

The path of length n (with n + 1 vertices) is denoted as Pn, and P∞ is the
infinite path, or the 1-dimensional lattice.

The honeycomb is the two-dimensional tiling of the plane with regular hexa-
gons. The two-dimensional (square) lattice is the usual checkered paper like tiling
(see Fig. 4), and the triagonal tiling is the tiling with regular triangles (Fig. 7).

Example 5.1. R(P∞) = 3/2.

P r o o f. We have seen that Comb2 is the same graph as the path of length 3, thus
by Theorem 4.2 R(Comb2) = R(P3) = 3/2. (For other proofs see, e.g., [2, 4, 7],
or the Appendix.) As P3 is a spanned subgraph of P∞), we have R(P3) = 3/2
≤ R(P∞). For the other direction we use Theorem 3.6 for the 2-cover indicated
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Figure 5. Covering P∞ by stars.

on Figure 5. All subgraphs in the cover are stars having ratio 1; each edge is
covered twice and each vertex gets 3 bits. Thus R(P∞) ≤ 3/2. ¤

Example 5.2. R(honeycomb) = 2.
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P r o o f. As each vertex has degree 3, Corollary 3.9 says that the ratio is at
most 2. On the other hand, the honeycomb contains the infinite comb as a span-
ned subgraph (left picture on Figure 6). Consequently, 2 = R(Comb∞) ≤
R(honeycomb). ¤

Example 5.3. R(2-lattice) = 2.

P r o o f. Here each vertex has degree 4, thus Corollary 3.9 gives only 5/2. We
could, however, apply Theorem 3.6 directly for the four-cycles C4 indicated on
Figure 4. Each edge is covered once, and each vertex is in two cycles. As C4 has
information ratio 1 we proved that the information ratio for the 2-lattice is ≤ 2.
The statement on C4 can be shown as follows: let the random bit s ∈ {0, 1} be
the secret, and pick r ∈ {0, 1} randomly and independently from s. Give r to
the first and third node in C4, and r ⊕ s to the two other nodes.

The lower bound follows from the fact that the infinite comb can be embedded
to the 2-lattice as a spanned subgraph, see Figure 6. ¤

bb bb bb bb bb"" "" "" "" ""

"" "" "" "" ""bb bb bb bb bb

"" "" "" "" ""bb bb bb bb bb

Figure 6. The comb as spanned subgraph.

The proof given here does not tell whether the 2-lattice is local or not. In the
Appendix we show that a particular graph on 8 vertices has information ratio 2.
That graph is a spanned subgraph of the 2-lattice, thus the 2-lattice is not local.

Example 5.4. 2 ≤ R(triangle lattice) ≤ 12/5.

P r o o f. The lower bound follows again from the fact that the comb can be
embedded into this lattice as well, see Figure 7.
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Figure 7. The triangle lattice.
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The construction which gives the upper bound 12/5 is due to P é t e r G e r g e -
l y [14]. Consider the diamond-shaped graph on four vertices at the right hand
side of Figure 7. This graph has ratio 1, which can be shown as follows: pick the
secret s from {0, 1, 2} uniformly, and pick a random r from the same set. Give
r to nodes on the left and on the right, give s + r mod 3 to the top vertex, and
s−r mod 3 to the bottom vertex. Any two connected vertices can recover the se-
cret s, moreover each assigned number is independent of s. The two unconnected
vertices receive the same share, thus their joint information is independent of
the secret as well. Both the secret and the shares have entropy log 3, thus the
ratio is 1.

The cover consists of all spanned subgraphs of the triangle lattice isomorphic
to this graph. It is easy to check that this is a 5-cover (each edge is in 5 of such
subgraphs), and each vertex is covered 12 times. By Theorem 3.6 this gives 12/5
as an upper bound. ¤
Problem 5.5. Determine the exact information ratio of the triangle lattice.

The universal or random graph turns up in many branches of mathematics,
see, e.g., [3]. It has several equivalent definitions, one of them can be rephrased
as follows. The universal graph is the (up to isomorphism) unique graph on
countably many vertices which has the following property. Picking finitely many
vertices vi and numbers εi ∈ {0, 1}, there exists a vertex in the graph which is
connected to vi just in case εi = 1.

Example 5.6. The information ratio for the universal graph is ∞.

P r o o f. As we have remarked, there is a graph of n vertices with information
ratio ≥ 0.25 log n, see [8]. As all finite graphs can be embedded into the universal
graph as spanned subgraphs, its information ratio is at least 0.25 log n, i.e., not
bounded. ¤
Example 5.7. The information ratio for the infinite binary tree is 2.

P r o o f. Lower bound: for each k the graph Combk can be embedded into this
graph, consequently R ≥ 2.

Upper bound: we show that each tree has information ratio ≤ 2 by using the
Theorem 3.6. We may assume that the tree is connected. Pick any vertex and
consider it as “root.” Direct the edges recursively away from the root. When all
edges have been directed, each node has one invertex except for the root which
has none. Consider the stars with center at a vertex consisting of all outgoing
edges. Each edge is covered exactly once, and each vertex gets one or two bits
(one bit for the root and leaves, and two bits for all other vertices). ¤

In [10] it has been proved that all finite trees have information ratio 2−1/k for
some integer k ≥ 1. Therefore the information ratio of an infinite tree is the sup

12
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Figure 8. The ladder and a cover.

of numbers of this form. If T is an infinite tree, then either R(T ) = 2, and then
T is not local (as, e.g., is the case for the complete binary tree in Example 5.7),
or R(T ) = 2−1/k for some integer k ≥ 1, and then T is local. The next example
shows that there is an infinite graph with ratio strictly between 3/2 and 2.

Example 5.8. There is an infinite graph with information ratio 5/3.

P r o o f. Consider the (rooted) complete binary tree from Example 5.7, and in-
sert a new vertex at the midpoint of every edge. This will be our graph T .

As three-tooth comb can be embedded into T , its information ratio is R(T ) ≥
R(Comb3) = 2 − 1/3. The upper bound comes from Theorem 3.6: we define
a 3-cover by stars so that each vertex gets 5 bits; this gives R(T ) ≤ 5/3. First
take the stars with center at the inserted new vertices and both edges as rays.
Second take stars at the old vertices with all incident edges as rays, but take
them twice. That way an old vertex gets 2 · 1 + 3 bits (two from the double
star, and one from each new neighbor), while a new vertex gets 2 · 2 + 1 bits, as
required. ¤

Example 5.9. The infinite ladder L on Figure 8 has information ratio 10/6 ≤
R(L) ≤ 11/6.

P r o o f. The upper bound comes from the following construction (see Figure 8).
The 1-cover on the right has period 6. It uses stars and C4, both assigns a single
bit for each bit in the secret. In a period all vertices get 2 bits, except for one
in the top, and one in the bottom which get only 1 bit. Shifting this cover by
1, . . . , 5 we get a 6-cover, and each vertex gets a total of 11 bits. By Theorem 3.6
the upper bound follows.

For the lower bound one can observe that the infinite path is a spanned
subgraph—this gives 9/6 as a lower bound. For the missing 1/6 we prove in the
Appendix that the graph G1 on Figure 9 has information ratio 10/6. As this is
a spanned subgraph of the ladder, we are done. ¤

We remark that the ladder of width 2 has information ratio 2. It is a spanned
subgraph of the 2-lattice (≤ 2), and contains Comb∞ as a spanned subgraph
(≥ 2).

13
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6. Conclusion and further problems

Determining the exact amount of information a participant must remember in
a perfect secret sharing scheme is an important problem both from theoretical
and practical point of view. Access structures based on graphs pose special
challenges. They are easier to define, have a transparent, and sometimes trivial
structure.

In this paper we extended the definition of secret sharing for infinitely many
participants, and gave a definition for its information ratio. We consider this
extension to be an important contribution, and hope to see further, interesting
applications.

We have used a compactness-type definition to overcome the difficulty of
infinite entropy: the information ratio is defined as the sup of the ratio for the
finite embedded structures. The first problem is to find an appropriate definition
of the “relative information content” for arbitrary random variables.

Problem 6.1. Given two random variables ξ and η, define their relative size,
which is the analog of H(ξ)/H(η) when both ξ and η are finite.

In [6] the authors show that the secret and shares, as random variables, cannot
be based on a countable domain, even if the number of participants is finite. The
paper also contains the following example using reals: let the secret ξs be uniform
in [0, 1), then choose the shares ξi of the first k−1 of the participants uniformly
and independently in [0, 1), and choose ξk ∈ [0, 1) so that

ξs = ξ1 + · · ·+ ξk−1 + ξk (mod 1)

It is easy to check that ξs is independent of any set of k−1 shares, and, of course,
all shares determine the secret uniquely. Just as in the finite case, this scheme can
be used as a building block to create a perfect secret sharing when all qualified
subsets are finite: simply distribute ξs for each qualified subset independently. In
this case each participant will receive as many shares as many minimal qualified
sets are in. In particular, if the scheme is based on a graph, then this number
will be the degree of the vertex.

In case of finite complete graphs the above construction has extremely high
information ratio. S h a m i r ’s construction from [19] is more efficient, it has the
lowest possible information ratio 1. Can Shamir’s construction be generalized
for the infinite case? The beginning is easy. Pick elements xi of a field for each
participant, and pick the point xs for the secret (these values are public). Choose
a secret linear function p(x) = ax + b according to a certain distribution. The
value of the secret is ξs = p(xs); and the shares are ξi = p(xi). Clearly all pair of
shares determine the function p, thus the value ξs. What is not clear, it is why
ξs and ξi should be independent.

14
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Problem 6.2. Does there exist a distribution on the linear functions (a) over
the reals, (b) over some appropriately chosen infinite field, so that ξs and ξi are
independent random variables?

By the result of [6] the field cannot be countable. In the next problems “deter-
mines” can (and should) mean that ξs is determined uniquely with probability 1.

The existence of an “finite/infinite” threshold scheme seems to be a pure
probability theoretical question.

Problem 6.3. Does there exist a perfect scheme where the secret is independent
of any finite collection of the shares, but is determined by infinitely many of
them? Or, at least, does there exist a ramp scheme where the secret is independent
of any finite collection of the shares, but is determined by any cofinite collection
(i.e., all but finitely many) of shares?

We return to schemes based on graphs. In almost all examples we have used
Theorem 3.6, the generalization of Stinson’s decomposition theorem. Does it
generalize for infinite schemes as well?

Problem 6.4. Suppose that Gi are (arbitrary) subgraphs of G, and Si is a per-
fect secret sharing scheme on Gi. Moreover, assume that all edges of G are
contained in at least one of the subgraphs. Does it follow that there is perfect
secret sharing scheme on G?

The problem is that the secret in Si might have arbitrary distribution, and it is
not clear how to combine those distributions into a single variable.

We have seen two examples for non-local graphs: the comb, and the complete
binary tree. Both of them have information ratio 2, but every finite spanned
subgraph has smaller information ratio.

Problem 6.5. Is there any non-local graph with information ratio strictly be-
low 2?

In fact, is the following stronger conjecture true:

Problem 6.6. Is it true that if R(G) < 2, then R(G) = 2 − 1/k for some
integer k?
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Appendix

We determine the exact information ratio for the graphs G1 and G2 of
Figure 9. G1 is a spanned subgraph of the infinite ladder in Example 5.9 while
G2 is a spanned subgraph of the 2-lattice (but not of the ladder).

• • • •

• •

a b c d

B C

• • • •

• • • •

a b c d

A B C D

Figure 9. The graphs G1 and G2.
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Claim 6.7. The information ratio of G1 is 5/3.

P r o o f. For the upper bound consider the following 3 covers of G1. The first
cover consists of the cycle BbcCB (assigning 1 bit for each secret bit), plus the
two edges ab and cd. Using this cover nodes b and c get two bits, all other nodes
get one bit. The second cover contains the star with rays ba, bB, bc; the path
Ccd and the edge BC. Here a, b, and d get one bit, all other nodes get two bits.
The third cover is the mirror image of the second one: the star cb, cC cD, the
path abB, and the edge BC. Using all three covers all edges are covered three
times, and every node gets either three (a and d), or five bits (all the rest).

For the lower bound we use the entropy method. Assume f satisfies properties
(a)–(e) listed at the end of Section 2. We claim that

f(b) + f(c) + f(C) ≥ 5, (4)

i.e., at least one of b, c and C gets 5/3 bits for each bit in the secret.
First we give a strengthening of the usual proof that the information ratio of

the path of length 3 is at least 3/2. That proof goes by showing that f(bc) ≥
f(abcd) − f(ad) + 2. As abcd is qualified and ad is not, f(abcd) − f(ad) ≥ 1.
That is, f(b) + f(c) ≥ f(bc) ≥ 3, therefore either f(b) or f(c) is ≥ 3/2. Here we
show that in this inequality f(abcd) can be replaced by f(acd):

f(a) + f(b) ≥ f(ab)

f(ab) + f(bc) ≥ f(b) + f(abc) + 1

f(abc) ≥ f(ac) + 1

f(ac) + f(ad) ≥ f(a) + f(acd)

f(bc) + f(ad) ≥ f(acd) + 2

Second, we take into account the vertices B and C as well:

f(c) + f(C) ≥ f(cC)

f(cd) + f(cC) ≥ f(c) + f(cdC) + 1

f(acd) + f(cdC) ≥ f(cd) + f(acdC)

f(acdC) ≥ f(adC) + 1

f(adC) + f(adB) ≥ f(ad) + f(adBC)

f(adBC) ≥ f(adB) + 1

f(C) + f(acd) ≥ f(ad) + 3

As f(b) + f(c) ≥ f(bc), the sum of the two inequalities gives (4). ¤

Claim 6.8. G2 has information ratio 2.
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P r o o f. R(G2) ≤ 2 as G2 is a spanned subgraph of the 2-lattice, and the
2-lattice has information ratio 2. On the other hand, let f be again any function
satisfying (a)–(e); we claim that

f(bc) + f(BC) ≥ 8. (5)

As f(b) + b(c) + f(B) + f(C) ≥ f(bc) + f(BC) ≥ 8, the lower bound 2 follows.
Each of the inequalities below is instances of one of the properties (a)–(e) of

the function f :

f(a) + f(b) ≥ f(ab)

f(ab) + f(bc) ≥ 1 + f(b) + f(abc)

f(acAC)− f(acA) ≥ f(acACD)− f(acAD) ≥ 1

f(acABC)− f(acAC) ≥ 1

f(ac)− f(a) ≥ f(acB)− f(aB)

−− f(acB)− f(aB) ≥ 1 + f(acABC)− f(aABC)

f(abc)− f(ac) ≥ f(abcA)− f(acA)

f(bc) ≥ 4 + f(abcA)− f(aABC)

Swapping lower case and upper case letters leaves the graph unchanged, thus we
also have the “swapped” instance:

f(BC) ≥ 4 + f(aABC)− f(abcA).

Adding these latter two inequalities we get (5), as required. ¤
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Corrigendum to

Secret sharing on infinite graphs

László Csirmaz∗

Central European University

Abstract
The proof of Claim 6.8 in the Appendix of [1] is incorrect. Here we give a new (and hopefully
correct) proof.
Key words. Secret sharing scheme, information theory, infinite graph, lattice.

1 Introduction

The proof of Claim 6.8 in the Appendix of [1] is incorrect. I am indebted to Prof. Hamiredza
Maimani [2] who called my attention to the error.

2 The new proof

Claim 2.1 The information ratio of the graph G depicted on figure 1 is 2.

• • • •

• • • •

a b c d

A B C D

Figure 1: The graph G

Proof The proof of the first part of the claim, namely that R(G) ≤ 2 was correct. G is a spanned
subgraph of the 2-lattice, and the 2-lattice has information ratio 2. For proving the lower bound we
use the method outlined in the paper [1]. Let f be any function satisfying the Shannon inequalities
(a)–(e) enlisted there, we claim that

f(bc) + f(BC) ≥ 8. (1)

As f(b) + b(c) + f(B) + f(C) ≥ f(bc) + f(BC) ≥ 8, at least one of f(b), f(c), f(B), and f(C)
must be ≥ 2, thus the lower bound 2 follows.

To get inequality (1) we use instances of the Shannon inequalities (a)–(e) as follows:

f(a) + f(b) ≥ f(ab)
f(ab) + f(bc) ≥ 1 + f(b) + f(abc)

f(acBD)− f(acD) ≥ f(acABD)− f(acAD) ≥ 1
f(acBCD)− f(acBD) ≥ 1

f(ac)− f(a) ≥ f(acC)− f(aC)
f(acC)− f(aC) ≥ 1 + f(acBCD)− f(aBCD)

f(abc)− f(ac) ≥ f(abcD)− f(acD)

f(bc) ≥ 4 + f(abcD)− f(aBCD).
∗The author can be reached at csirmaz AT renyi DOT hu
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Now the graph G is invariant under the following permutation of the vertices: a ↔ D, b ↔ C,
c ↔ D, d ↔ A, thus applying this transformation to the above inequality we get another valid
inequality for our graph:

f(CB) ≥ 4 + f(DCBa)− f(Dcba).

Adding these latter two inequalities we get (1), as required. �
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