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ON VECTOR VALUED MULTIPLIERS

FOR THE CLASS

OF STRONGLY HK-INTEGRABLE FUNCTIONS

Surinder Pal Singh — Savita Bhatnagar

ABSTRACT. We investigate the space of vector valued multipliers of strongly

Henstock-Kurzweil integrable functions. We prove that if X is a commutative
Banach algebra with identity e such that ‖e‖ = 1 and g : [a, b] −→ X is of strongly
bounded variation, then the multiplication operator defined by Mg(f) := fg maps
SHK to HK. We also prove a partial converse, when X is a Gel’fand space.

1. Introduction

A multiplier for a family A of functions on a compact real interval [a, b] is
a function g on [a, b] such that fg ∈ A, for each f ∈ A. By Riesz Representation
theorem, L∞[a, b] is precisely the class of multipliers for L1[a, b], see [6].

It is known that real valued continuous functions are not multipliers for the
class of real valued Henstock-Kurzweil integrable functions on [a, b]. In fact, this
set of multipliers is precisely the set of functions of bounded variation on [a, b],
see [3, Theorems 6.1.5 and 6.1.9].

This paper aims to study the vector valued multipliers for the family of vector
valued strongly Henstock-Kurzweil integrable functions. The case of scalar val-
ued multipliers for the Henstock-Kurzweil integrable functions is already known.
Such multipliers for the real valued and for the vector valued Henstock-Kurzweil
integrable functions are given in [3] and [5], respectively.

The study of multipliers and the Riesz Representation theorem, for the real
valued functions, is related by the fact that if g is a function of bounded varia-
tion, then Mg(f) := fg defines a multiplication operator from HK to HK and

c© 2017 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 26A39; Secondary 46G10, 28B05.
Keywords: strong Henstock-Kurzweil integrability, bounded variation, Banach algebra, mul-
tiplier, ACG∗ functions, Radon-Nikodym property.

Supported by “DST Purse Grant”.

69



SURINDER PAL SINGH — SAVITA BHATNAGAR

Tg(f) := (HK)
∫ b

a
fg defines a bounded linear functional on HK, see [2, Theo-

rems 12.1 and 12.3].

Let X be a commutative Banach algebra with identity e such that ‖e‖ = 1.
We prove that if g : [a, b] −→ X is of strongly bounded variation, then the
multiplication operator defined by Mg(f) := fg maps SHK to HK, so that Tg

defined by Tg(f) := (HK)
∫ b

a
fg is a bounded linear operator from SHK to X.

We prove the converse under some restrictions. For that we require X to be
a Gel’fand space, which is equivalent to the requirement that X satisfies the
Radon-Nikodym property with respect to the Lebesgue measure on [a, b]. In that
case, we prove that if T : SHK −→ X is a bounded linear operator, then there
exists some g ∈ ∗BV such that τ

(
T (f)

)
= (HK)

∫ b

a
τ(fg) holds for all f ∈ SHK

and for all multiplicative linear functionals τ on X.

If X = R, then our results are reduced to the Riesz Representation theo-
rem and the related multipliers for the class of Henstock-Kurzweil integrable
functions.

2. Preliminaries

Let [a, b] be a compact real interval, I be the family of compact subintervals
of [a, b] and X be a commutative Banach algebra with identity e of norm 1.

A function F : I −→ X is said to be additive if F (J ∪ K) = F (J) + F (K),
for all non-overlapping intervals J,K ∈ I such that J ∪K ∈ I.

A collection
{
(ti, Ji); i = 1, . . . , k

}
of point-interval pairs is called a tagged-

-partition of the interval [a, b] if each ti ∈ Ji and {Ji : i = 1, . . . , k} are pairwise
non-overlapping compact subintervals of [a, b] with [a, b] =

⋃k
i=1 Ji.

Any positive function δ : [a, b] −→ (0,+∞) is called a gauge on [a, b] and the
above tagged partition is said to be δ-fine if Ji ⊂

(
ti− δ(ti), ti+ δ(ti)

)
, for every

i = 1, . . . , k.

A function f : [a, b] −→ X is said to be strongly Henstock-Kurzweil integrable
on [a, b], if there is an additive function F : I −→ X such that for every ε > 0
there exists a gauge δ on [a, b] such that the inequality

k∑
i=1

‖f(ti)μ(Ji)− F (Ji)‖X < ε (2.1)

is satisfied for every δ-fine tagged partition
{
(ti, Ji) : i = 1, . . . , k

}
of [a, b].

The HK-integral is defined on the same lines, except the summation sign
in (2.1) comes inside the norm sign. In that case,F ([a, b]) is known as the Hen-

stock-Kurzweil integral of f over an interval [a, b] and is denoted by (HK)
∫ b

a
fdμ.

For more details on these integrals, see [7].
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The classes of the strongly Henstock-Kurzweil and the Henstock-Kurzweil
integrable functions from [a, b] to X are denoted by SHK and HK, respectively.
If X is a finite dimensional space, then SHK = HK. In general, SHK ⊆ HK,
for more details, see [7].

It is easy to see that the product of an SHK function and a vector valued
continuous function may not be in SHK. For example, take

f(t) :=

∞∑
n=1

2ncnχIn(t)e,

where Σcn is a non-absolutely convergent series for which
∑ |cn|/

√
n does not

converge and each In = (2−n, 2−n+1). Take g to have the value 2(sgn cn)e/
√
n

at the midpoint of each In, the value zero at the endpoints of each In and at 0,
and linear on the rest of [0, 1]. Then, it can be shown that fg /∈ SHK.

����������� 2.1	 Let F : [a, b] −→ X be a given function.

(1) F is said to be of strongly bounded variation (BV) on [a, b] if

sup
∑
i

‖F (di)− F (ci)‖X < ∞,

where the supremum is taken over all finite collections of non-overlapping
intervals {[ci, di]} in [a, b].

(2) F is said to be of bounded variation (∗BV) on [a, b] if

sup

∥∥∥∥∥
∑
i

[
F (di)− F (ci)

]∥∥∥∥∥
X

< ∞,

where the supremum is taken over all finite collections of non-overlapping
intervals {[ci, di]} in [a, b].

(3) F is said to be strongly absolutely continuous (AC) on [a, b] if for each ε > 0
there exists η > 0 such that∑

i

‖F (di)− F (ci)‖X < ε,

for all finite collections of non-overlapping intervals {[ci, di]} in [a, b] satis-
fying Σi(di − ci) < η.

���������� 2.2	 A function F : [a, b] −→ X is said to be of strong bounded
slope variation on [a, b] if

sup
n∑

i=1

∥∥∥∥F (xi+1)− F (xi)

xi+1 − xi
− F (xi)− F (xi−1)

xi − xi−1

∥∥∥∥
X

< ∞, (2.2)

where the supremum is taken over all partitions a = x0 < x1 < · · · < xn+1 = b
of [a, b]. As usual, a function F : [a, b] −→ X is said to be of weak bounded
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slope variation on [a, b] if for every x∗ ∈ X∗, the real valued function x∗ ◦ F is
of bounded slope variation on [a, b].

����������� 2.3	 Let F : [a, b] −→ X be a given function.

(1) The oscillation of F on [c, d] ⊂ [a, b] is defined as

w(F, [c, d]) := sup
[α,β]⊆[c,d]

‖F (β)− F (α)‖X .

(2) F is said to be AC∗ on a set E ⊂ [a, b] if∑
i

w(F, [ci, di]) < ε,

for all finite collections {[ci, di]} of non-overlapping intervals that have
endpoints in E and satisfy Σi(di − ci) < η.

(3) F is said to be ACG∗ on [a, b] if [a, b] can be decomposed as a countable
union of sets on each of which F is AC∗.

The classes of BV , ∗BV,AC,AC∗ and ACG∗ functions over [a, b] are denoted
themselves by BV , ∗BV,AC,AC∗ and ACG∗, respectively. In case of real valued
functions, the class BV will be denoted by BVR.

Clearly, AC∗ ⊂ AC ⊂ BV. Moreover, the collections AC and AC∗ are the
same, when E is an interval. For more details on these integrals, see [7].

As usual, a function F : [a, b] −→ X is said to be of weakly bounded variation
if x∗ ◦ (F ) ∈ BV, for each function x∗ ∈ X∗.

In [7, Theorem 7.1.9], the following result is proved.


����� 2.4	 Let F : [a, b] −→ X be a given function. Then, F is ∗BV if and
only if F is of weakly bounded variation on [a, b].

For more on the above notions ACG∗,SHK,BV for vector valued functions,
the reader may refer to [7].

As X is a commutative Banach algebra with identity e of norm 1, by [6, The-
orem 18.3], every proper ideal of X is contained in a maximal ideal, and every
maximal ideal is closed.

Let Δ denote the set of all non-zero multiplicative linear functionals (MLFs)
of X. Since X has an identity, we have Δ �= ∅. Indeed, by [6, Theorem 18.17],
there is a one-to-one correspondence between Δ and the class of maximal ideals
in the sense that every maximal ideal is the kernel of some τ ∈ Δ, and conversely,
the kernel of every τ(∈ Δ) is the maximal ideal associated with τ .

We now present a result on integration by parts for SHK functions. It is
a generalization of [3, Lemma 6.1.2].
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��� 2.1	 Let f ∈ SHK and φ ∈ L1([a, b], X). Then, the map s −→ f(s)
∫ s

a
φ

belongs to HK and

(HK)

b∫
a

⎧⎨
⎩f(s)

s∫
a

φ(t) dt

⎫⎬
⎭ ds =

b∫
a

⎧⎨
⎩(HK)

b∫
s

f(t) dt

⎫⎬
⎭φ(s) d(s).

P r o o f. Let F (s) = (HK)
∫ s

a
f(t) dt; s ∈ [a, b] and let ε > 0 be given. By Saks-

-Henstock lemma, there is a gauge δ1 on [a, b] such that∑
(t,[u,v])∈P )

∥∥f(t)(v − u)− [F (v)− F (u)
]∥∥

X
< ε,

holds, for each δ1-fine partial division P of [a, b].

Also, by [7, Theorem 7.4.1], F is continuous on [a, b] and thus, uniformly
continuous on [a, b]. Choose δ2 > 0 such that ‖F (β)−F (α)‖ < ε holds for every
subinterval [α, β] ⊂ [a, b] with 0 < β − α < δ2.

Define a gauge δ on [a, b] by setting δ(x) := min
{
δ1(x), δ2

}
, for all x ∈ [a, b].

Let P be any δ-fine tagged-partition of the interval [a, b].

Let g(s) :=
∫ s

a
φ, for all s ∈ [a, b] and let M :=

∫ b

a
‖φ‖X be the L1-norm of φ.

Note that F (b)g(b) =
∑

(t,[u,v])∈P

[
F (v)g(v)− F (u)g(u)

]
and we have

∥∥∥∥∥∥
∑

(t,[u,v])∈P

f(t)g(t)(v− u)−
b∫

a

⎛
⎝HK

b∫
s

f(t) dt

⎞
⎠φ(s) ds

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∑

(t,[u,v])∈P

[
f(t)g(t)(v− u)− [

F (v)g(v)− F (u)g(u)
]]

+

b∫
a

⎛
⎝F (b)− (HK)

b∫
s

f(t) dt

⎞
⎠φ(s) ds

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∑

(t,[u,v])∈P

⎡
⎣f(t)g(t)(v− u)− [

F (v)g(v)− F (u)g(u)
]
+

v∫
u

F (s)φ(s) ds

⎤
⎦
∥∥∥∥∥∥
X

≤
∥∥∥∥∥∥

∑
(t,[u,v])∈P

[
f(t)g(t)(v− u)− [

F (v)− F (u)
]
g(t)

]∥∥∥∥∥∥
X

+

∥∥∥∥∥∥
∑

(t,[u,v])∈P

⎡
⎣[F (v)− F (u)

]
g(t)− [

F (v)g(v)− F (u)g(u)
]
+

v∫
u

Fφ

⎤
⎦
∥∥∥∥∥∥
X

≤
∥∥∥∥∥∥

∑
(t,[u,v])∈P

⎛
⎝f(t)(v − u)− (HK)

v∫
u

f

⎞
⎠

t∫
a

φ

∥∥∥∥∥∥
X
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+

∥∥∥∥∥∥
∑

(t,[u,v])∈P

⎡
⎣[F (v)− F (u)

] t∫
v

φ +

v∫
u

[
F − F (u)

]
φ

⎤
⎦
∥∥∥∥∥∥
X

≤ Mε+ ε
∑

(t,[u,v])∈P

⎡
⎣

t∫
v

‖φ‖X +

v∫
u

‖φ‖X

⎤
⎦ ≤ 3Mε.

Since ε > 0 is arbitrary, the result follows. �

��� 2.2	 Let g : [a, b] −→ X be such that g ∈ BV. Then, there is a sequence
{φn} of X-valued step functions on [a, b] such that sup

n
‖φn‖1,X < ∞ and

lim
n→∞

t∫
a

φndμ = g(t)− g(a) for all t ∈ [a, b].

P r o o f. The proof is analogous to the real case, as in [3, Theorem 6.1.4]. �

��� 2.3	 Let f ∈ SHK and {φn} be a sequence in L1([a, b], X) such that
supn∈N ‖φn‖1,X < ∞. Let gn(s) :=

∫ s

a
φn(t) dt for all s ∈ [a, b]. Then, the se-

quence {fgn} is HK-equi-integrable on [a, b].

P r o o f. Imitate the proof of Lemma 2.1 and obtain a gauge independent
of n. �

��� 2.4	 Under the hypothesis of Lemma 2.3, if the sequence {gn} is point-
wise convergent on [a, b], then limn−→∞ fgn ∈ HK and

(HK)

b∫
a

lim
n−→∞

fgn = lim
n−→∞

(HK)

b∫
a

fgn.

P r o o f. See [7, the page 65, Theorem 3.5.2]. �

Remark 1	 For each f ∈ SHK, if we define

‖f‖HK := sup

⎧⎨
⎩
∥∥∥∥∥∥ (HK)

∫
I

f

∥∥∥∥∥∥
X

: I ∈ I
⎫⎬
⎭ ,

then ‖.‖HK is a semi-norm on SHK.

Further, if we define a relation ∼ on SHK as f ∼ g if f = g a.e., then ∼ is
an equivalence relation on SHK. Therefore, SHK/∼ is a normed linear space,
which is not a Banach space even for X = R.
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����� 2.5	 If f ∈ SHK and g ∈ BV, then fg ∈ HK. Moreover, in this case,∥∥∥∥∥∥ (HK)

b∫
a

fg

∥∥∥∥∥∥ ≤ ‖f‖HK
{
‖g(a)‖+Var

(
g, [a, b]

)}
.

P r o o f. The proof follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3, rea-
soning as in Theorem 6.1.8 in [3, page 173]. �

Hence, any g ∈ BV corresponds to the multiplication operator

Mg : SHK−→HK given by Mg(f) := fg for all f ∈ SHK.

Also, the corresponding integral operator

Tg : SHK −→ X given by Tg(f) := (HK)

b∫
a

fg

is a bounded linear operator, which is analogous to the Riesz representation
theorem for the vector valued case.

3. The problem with multipliers

The question, whether every multiplier of SHK is given by a function g ∈ BV,
remains unresolved. The following are associated problems:

(1) Let T : SHK −→ X be a bounded linear operator. Can we find some
g ∈ BV such that T (f) = (HK)

∫
fg, for all f ∈ SHK?

(2) Let M : SHK −→ HK be a multiplication operator. Can we find some
g ∈ BV such that M (f) = fg, for all f ∈ SHK?

From [3], following the scalar case, define

CSHK :=

⎧⎨
⎩F : there is f ∈ SHK such that F (t) =

b∫
t

f, for all t ∈ [a, b]

⎫⎬
⎭ .

Then, CSHK is a linear subspace of C
(
[a, b], X

)
. Define T0 : CSHK → X by

T0(F ) := T (f). Then T0 is a bounded linear operator on the linear subspace
CSHK of C

(
[a, b], X

)
. The question is:

Can T0 be lifted to C
(
[a, b], X

)
while preserving norm?
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That is, whether Hahn-Banach type theorem is true for such bounded linear
operators. The answer is NO. In fact, the operators between Banach spaces,
for which such norm preserving extensions are possible, are called Hahn-Banach
operators, see [4]. In general, such a result is not true.

In [2], this converse problem for X = R, that is, the multipliers of HK
integrable functions are of bounded variation, has been proved without using
Hahn-Banach extensions. By these proofs, we encounter the following problem
in Banach-valued functions:

A strongly absolutely continuous function may not be differentiable.

For more details, see [7, Example 7.3.9]. To remedy the above problem, we put
certain restrictions on the Banach algebra X. We have the following notions and
results from [1, pages 61, 107].

����������� 3.1	

(1) A Banach space X is said to have the Radon-Nikodym property (RNP)
with respect to the finite measure space (Ω,Σ, μ) if for each μ-continuous
vector measure G : Σ → X of strongly bounded variation, there exists
g ∈ L1(μ,X) such that

G(E) =

∫
E

g dμ, for all E ∈ Σ.

(2) A Banach space X is said to be a Gel’fand space if each absolutely contin-
uous function f : [a, b] → X is differentiable almost everywhere.


����� 3.2	 A Banach space X is a Gel’fand space if and only if X has the
RNP with respect to the Lebesgue measure on the Borel sets in [a, b].

P r o o f. See [1, Theorem 2, page 107]. �

Remark 2	 It can be seen from the proof of the above theorem that if X has
RNP then the derivative of an absolutely continuous function is a Bochner
integrable function.

Spaces that have RNP include reflexive spaces, separable duals, spaces with
a bounded complete basis, Lp(μ,X), if X has RNP and 1 < p < ∞. However,
spaces L1[0, 1], BV0[0, 1], c0, c, 


∞, L∞[0, 1], L1(μ), μ not purely atomic, C(Ω),Ω
infinite compact T2-space, K(X)-compact operators on X = 
p, Lp, C(Ω) do not
have RNP, see [1, p. 218].
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4. The main result


����� 4.1	 If the Banach algebra X is a Gel’fand space and T : SHK → X
is a bounded linear operator, then there exists g ∈ ∗BV such that

τ
(
T (f)

)
= (HK)

b∫
a

τ(f)τ(g), for all f ∈ SHK and τ ∈ Δ. (4.1)

P r o o f. DefineG(t) := T
(
χ[a,t]e

)
, for all t ∈ [a, b]. We complete the proof in four

steps, as below.

Step I: The function G satisfies the Lipschitz condition and hence is abso-
lutely continuous on [a, b]. This is true, as for any [c, d] ⊂ [a, b], we have

‖G(d)−G(c)‖ =
∥∥T (χ(c,d]e

)∥∥ ≤ ‖T‖∥∥χ(c,d]e
∥∥
HK= ‖T‖(d− c).

Since X is Gel’fand space and G ∈ AC, it is differentiable almost every-
where. Let g(t) := G′(t), almost everywhere on [a, b].

Step II: The function G is of weak bounded slope variation.
Let x∗ ∈ X∗. For any partition {y0, y1, . . . , ym+1} of [a, b], we have

m∑
i=1

∣∣∣∣x∗
(
G(yi+1)−G(yi)

yi+1 − yi
− G(yi)−G(yi−1)

yi − yi−1

)∣∣∣∣ =
m∑
i=1

∣∣x∗(T (φi)
)∣∣

=

m∑
i=1

x∗(T (eiφi)
)
, (4.2)

where ei is either e or −e, as the case may be, and

φi :=
χ(yi−yi+1]

yi+1 − yi
− χ(yi−1−yi]

yi − yi−1
.

Since T is bounded, so is x∗ ◦ T. Therefore, (4.2) becomes

(x∗ ◦ T )
(

m∑
i=1

eiφi

)
≤ ‖x∗ ◦ T‖

∥∥∥∥∥
m∑
i=1

eiφi

∥∥∥∥∥
HK

≤ 2‖x∗ ◦ T‖ ≤ 2‖x∗‖‖T‖.

This proves that x∗ ◦ G is of bounded slope variation, for all x∗ ∈ X∗.
Hence, G is of weak bounded slope variation.

Step III: For all step functions φ : [a, b] → X and for all x∗ ∈ X∗, we have

x∗(T (φ)) = (HK)

b∫
a

x∗(φg). (4.3)

Fix any x∗∈ X∗. Since the function G satisfies the Lipschitz condition,
so does the function x∗ ◦ G. Also x∗ ◦ G is of bounded slope variation.
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By Lemma 12.6 from [2], x∗ ◦ G is the primitive of some scalar function
from BVR, say gx∗ ∈ BVR.

Therefore, (x∗ ◦ G)(t) =
∫ t

a
gx∗(s) ds, for all t ∈ [a, b], which implies

(x∗◦G)′ = gx∗, a.e. on [a, b]. Note that (x∗◦G)′ = x∗◦ g, whenever G′ = g.
Thus gx∗ = x∗(g), a.e. on [a, b].

The linearity of x∗ ensures (4.3), for all step functions φ : [a, b] → X.

Step IV: The result (4.1) holds.
Let f ∈ SHK. We first show that there is a sequence {ϕn} of X-valued

step functions weakly control convergent to f .
Applying [7, Theorem 7.4.3], the primitive F of f is ACG∗ on [a, b]. That

is, [a, b] is a countable union of closed sets {Xi}, on each of which F is
AC∗. For convenience, assume that a, b ∈ Xi for all i. For each n ∈ N, let
Fn(x) = F (x) when x ∈ X1 ∪ . . . ∪ Xn and linear elsewhere. Then, Fn is
AC∗ on [a, b] and hence, AC on [a, b], see [7, Theorem 7.1.11].

Since X is a Gel’fand space, each Fn is differentiable almost everywhere.
For each n ∈ N, put fn(x) := F ′

n(x), almost everywhere on [a, b]. Therefore,
there is a subsequence {fnk

} of {fn}, which is weakly control convergent
to f on [a, b].

Also by Remark 2, each fn is Bochner integrable on [a, b]. Therefore,
for each n, there are X-valued simple functions and hence X-valued step
functions ϕn satisfying

b∫
a

‖fn − ϕn‖X < 2−n.

Thus,
∑∞

n=1 ‖fn(t)−ϕn(t)‖ converges almost everywhere and is strongly
Henstock-Kurzweil integrable on [a, b]. As ϕn = [ϕn − fn] + fn, we have
{ϕn} −→ f , a.e. on [a, b]. Since∥∥∥∥∥∥

v∫
u

ϕn

∥∥∥∥∥∥ ≤
v∫

u

‖fn − ϕn‖+
∥∥∥∥∥∥

v∫
u

fn

∥∥∥∥∥∥ ,
the subsequence {ϕnk

} of {ϕn} is weakly control convergent to f on [a, b].
Now, if τ ∈ Δ, then, by [2, Theorem 12.4], we obtain

τ
(
T (f)

)
= lim

n→∞ τ
(
T (ϕn)

)
= lim

n→∞(HK)

b∫
a

τ(ϕn)τ(g) = (HK)

b∫
a

τ(f)τ(g).

Hence, the result. �

This also proves the following result.
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����� 4.2	 If the Banach algebra X is a Gel’fand space and M : SHK−→
HK is a bounded linear multiplication operator, then there exists g ∈ ∗BV such
that

τ
(
M (f)

)
= τ(fg), for all f ∈ SHK and τ ∈ Δ.

In other words,
τ(M ) = τ(Mg).

Concluding Remarks 4.3	

(1) If f ∈ HK, then its primitive is only ∗ACG and not ACG∗, so the above
proof works only for f ∈ SHK. For ∗ACG functions, see [7].

(2) What is the solution to the problem in case of strongly McShane integrable
functions when dimX is infinite or the case of functions of several variables?
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