DOI: 10.1515/tmmp-2017-0003
Tatra Mt. Math. Publ. 68 (2017), 29-45

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

Alicja Krzeszowiec - Wojciech Wojdowski

Abstract

We present a further generalization of the $\mathcal{T}_{A_{I}}$-density topology introduced in [W. Wojdowski, A category analogue of the generalization of Lebesgue density topology, Tatra Mt. Math. Publ. 42 (2009), 11-25] as a generalization of the I-density topology. We construct an ascending sequence $\left\{\mathcal{T}_{A_{I(n)}}\right\}_{n \in \mathbb{N}}$ of density topologies which leads to the $\mathcal{T}_{A_{I(\omega)}}$-density topology including all previous topologies. We examine several basic properties of the topologies.

The aim of the paper is to present a category analogue of results presented for the case of measure in WO4.

Let S be a σ-algebra of subsets of the real line \mathbb{R}, and $I \subset S$ a proper σ-ideal. We shall say that the sets $A, B \in S$ are equivalent $(A \sim B)$, if and only if $A \triangle B \in I$. We will denote by λ the Lebesgue measure on the real line.

Recall that the point $x \in \mathbb{R}$ is a Lebesgue density point of a measurable set A, if

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\lambda(A \cap[x-h, x+h])}{2 h}=1 \tag{*}
\end{equation*}
$$

In W1, W. Wilczyński gave his reformulation of the notion of a density point of a measurable set A in terms of convergence almost everywhere of the sequence of characteristic functions of dilations of a set A :

A point $x \in \mathbb{R}$ is Lebesgue density point of a measurable set A if and only if every subsequence

$$
\left\{\chi_{\left(n_{m} \cdot(A-x)\right) \cap[-1,1]}\right\}_{m \in \mathbb{N}} \quad \text { of } \quad\left\{\chi_{(n \cdot(A-x)) \cap[-1,1]}\right\}_{n \in \mathbb{N}}
$$

contains a subsequence

$$
\left\{\chi_{\left(n_{m_{p}} \cdot(A-x)\right) \cap[-1,1]}\right\}_{p \in \mathbb{N}}
$$

which converges to $\chi_{[-1,1]}$ almost everywhere on $[-1,1]$ (which means, except for on a null set).

[^0]Wilczynski's approach relieved the definition of the notion of a measure. His definition requires null sets only. Instead of the notion of convergence in measure of a sequence of measurable function, he uses a convergence almost everywhere. This has opened a new space for study of more subtle properties of the notion of the Lebesgue density point and density topology, their various modifications, and, most of all, category analogues (see PWW1, PWW2, CLO]).

The reformulated definition could be considered in more general settings as follows:

A point $x \in \mathbb{R}$ is an I-density point of a set $A \in S$ if every subsequence

$$
\left\{\chi_{\left(n_{m} \cdot(A-x)\right) \cap[-1,1]}\right\}_{m \in \mathbb{N}} \quad \text { of } \quad\left\{\chi_{(n \cdot(A-x)) \cap[-1,1]}\right\}_{n \in \mathbb{N}}
$$

contains a subsequence

$$
\left\{\chi_{\left(n_{m_{p}} \cdot(A-x)\right) \cap[-1,1]}\right\}_{p \in \mathbb{N}}
$$

which converges to $\chi_{[-1,1]} I$-almost everywhere on $[-1,1]$ (which means, except for on a set belonging to I).

In PWW2, Corollary 1, p. 556] in the category case, and in W2 in measure case, it is proved that the following conditions are equivalent:

1. x is an I-density point of a set $A \in S$,
2. for any decreasing to zero sequence of real numbers $\left\{t_{n}\right\}_{n \in \mathbb{N}}$, there is its subsequence $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$ such that the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]}\right\}_{m \in \mathbb{N}}$ of characteristic functions converges I-almost everywhere on $[-1,1]$ to $\chi_{[-1,1]}$.
Following Wilczyński's approach in WO1, we have introduced a notion of $\mathcal{A}_{d^{-}}$-density of a Lebesgue measurable set leading to a notion of $\mathcal{T}_{\mathcal{A}_{d}}$ topology on the real line stronger than the Lebesgue density topology. The generalization was related to a given appropriate family of subsets of $[-1,1]$, namely the family of measurable sets having density one at zero.

In WO3 and WO5, an \mathcal{A}_{I}-density as a category analogue of \mathcal{A}_{d}-density was introduced.

From now on, (S, I) stands for σ-algebra of sets with the Baire property and σ-ideal of first category sets.

In WO3, the author introduced \mathcal{A}_{I}, the family of subsets of interval $[-1,1]$ that are from S and have 0 as their I-density point.
Definition 1 (WO3, WO5). We say that x is an \mathcal{A}_{I}-density point of $A \in S$ if, for any sequence of real numbers $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ decreasing to zero, there exists a subsequence $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$ and a set $B \in \mathcal{A}_{I}$ such that the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot} \cdot(A-x) \cap[-1,1]\right\}_{m \in \mathbb{N}}$ of characteristic functions converges I-almost everywhere on B to 1 .

Remark 1. Originally, in the definition of an \mathcal{A}_{I}-density point in WO3, we required for the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]}\right\}_{m \in \mathbb{N}}$ to be convergent I-almost

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

everywhere on $[-1,1]$ to χ_{B}. In WO5, it was observed that the operator $\Phi_{\mathcal{A}_{I}}(A)$ corresponding to this condition is not monotonic, and thus, it is not a lower I-density.

The correct form is given in Definition 1 above. We shall show (after WO5] that the operator $\Phi_{\mathcal{A}_{I}}$ introduced according to the above definition is a lower density:

Theorem 1. The mapping $\Phi_{\mathcal{A}_{I}}: S \rightarrow 2^{\mathbb{R}}$ has the following properties:
(0) For each $A \in S, \Phi_{\mathcal{A}_{I}}(A) \in S$.
(1) For each $A \in S, A \sim \Phi_{\mathcal{A}_{I}}(A)$.
(2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I}}(A)=\Phi_{\mathcal{A}_{I}}(B)$.
(3) $\Phi_{\mathcal{A}_{I}}(\emptyset)=\emptyset, \Phi_{\mathcal{A}_{I}}(\mathbb{R})=\mathbb{R}$.
(4) For each $A, B \in S, \Phi_{\mathcal{A}_{I}}(A \cap B)=\Phi_{\mathcal{A}_{I}}(A) \cap \Phi_{\mathcal{A}_{I}}(B)$.

Proof. It suffices to prove (4). Observe first that if $A \subset B, A, B \in S$, then $\Phi_{\mathcal{A}_{I}}(A) \subset \Phi_{\mathcal{A}_{I}}(B)$, so $\Phi_{\mathcal{A}_{I}}(A \cap B) \subset \Phi_{\mathcal{A}_{I}}(A) \cap \Phi_{\mathcal{A}_{I}}(B)$. To prove the opposite inclusion, assume $x \in \Phi_{\mathcal{A}_{I}}(A) \cap \Phi_{\mathcal{A}_{I}}(B)$. Let $\left\{t_{n}\right\}_{n \in N}$ be an arbitrary sequence of real numbers decreasing to zero. From $x \in \Phi_{\mathcal{A}_{I}}(A)$, by definition, there is its subsequence $\left\{t_{n_{m}}\right\}_{m \in N}$ and a set $A_{1} \in \mathcal{A}_{I}$ such that the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]}\right\}_{m \in N}$ of characteristic functions converges I-almost everywhere on A_{1} to 1. Similarly, for $\left\{t_{n_{m}}\right\}_{m \in N}$ from $x \in \Phi_{\mathcal{A}_{I}}(B)$, by definition, there is a subsequence $\left\{t_{n_{m_{k}}}\right\}_{k \in N}$ and a set $B_{1} \in \mathcal{A}_{I}$ such that the sequence $\left\{\chi_{\left.\frac{1}{t_{n_{m_{k}}}} \cdot(A-x) \cap[-1,1]\right\}_{k \in N}}\right.$ of characteristic functions converges I-almost everywhere on B_{1} to 1 . It is clear that the sequence $\left\{\chi_{\frac{1}{t_{m_{m_{k}}}}} \cdot((A \cap B)-x) \cap[-1,1]\right\}_{k \in N}$ converges I-almost everywhere on $A_{1} \cap B_{1}$ to 1 , i.e., x is a $\Phi_{\mathcal{A}_{I}}$-density point of $A \cap B$.

Remark 2. With Definition 1, all the results from WO3 stay valid. Since, we do not require any convergence of the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]}\right\}_{m \in N}$ on the set $[-1,1] \backslash B$, some proofs may be even shorter.

Generalization

Definition 2. $\mathcal{A}_{I I}$ will denote a family of subsets of $[-1,1]$ having the Baire property that have zero as an $\mathcal{A}_{I^{-}}$-density point. $\mathcal{A}_{I I}^{+}$(and $\mathcal{A}_{I I}^{-}$) will denote a family of subsets of $[-1,1]$ having the Baire property that have zero as a right (left) $\mathcal{A}_{I^{-}}$-density point. If $A \in \mathcal{A}_{I I}^{+}\left(A \in \mathcal{A}_{I I}^{-}\right)$, we say that 0 is an $\mathcal{A}_{I^{\prime}}$-density point of A from the right (left).

Remark 3. Since $[-1,1] \in \mathcal{A}_{I}$, we clearly have $\mathcal{A}_{I} \subset \mathcal{A}_{I I}$.
Definition 3. We shall say that x is an $\mathcal{A}_{I I}$-density point of $A \in S$ if, for any sequence of real numbers $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ decreasing to zero, there exists a subsequence $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$ and a set $B \in \mathcal{A}_{I I}$, such that the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]}\right\}_{m \in \mathbb{N}}$ of characteristic functions converges I-almost everywhere on B to 1 .

The set of all $\mathcal{A}_{I I}$-density points of $A \in S$ will be denoted by $\Phi_{\mathcal{A}_{I I}}(A)$.
Proposition 1. For each $A \in S$,

$$
\Phi_{\mathcal{A}_{I}}(A) \subset \Phi_{\mathcal{A}_{I I}}(A)
$$

Proof. This is a simple consequence of the inclusion $\mathcal{A}_{I} \subset \mathcal{A}_{I I}$.
Lemma 1 (WO3]). Let $A \subset[0,1]$ be a set with the Baire property and let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of positive numbers converging to $1, a_{n}<\frac{3}{2}$. Then, the sequence of characteristic functions $\left\{\chi_{a_{n} \cdot A}\right\}_{n \in \mathbb{N}}$ converges I-a.e. on $[-1,1]$ to χ_{A}.

To shorten the notation, given a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, we will use $\left\{a_{n}^{(1)}\right\}_{n \in \mathbb{N}}$, $\left\{a_{n}^{(2)}\right\}_{n \in \mathbb{N}}, \ldots,\left\{a_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ for its consecutive subsequences, and $\left\{a_{n}^{(k)-1}\right\}_{n \in \mathbb{N}}$ will denote the sequence of elements of the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ directly preceding elements of $\left\{a_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ (immediate predecessors of elements of $\left\{a_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ in $\left\{a_{n}\right\}_{n \in \mathbb{N}}$). The sequence of immediate successors will be denoted by $\left\{a_{n}^{(k)+1}\right\}_{n \in \mathbb{N}}$.
Proposition 2. There exists a set A such that $\Phi(A)=\Phi_{\mathcal{A}_{I}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I I}}(A)$.
Proof. We start with the notion of the density from the right. We shall define a set E such that:

1) 0 is not an \mathcal{A}_{I}-density point of E from the right.
2) 0 is not an \mathcal{A}_{I}-density point of $\mathbb{R} \backslash E$ from the right.
3) 0 is an $\mathcal{A}_{I I}$-density point of E from the right.

The proof is analogous to the proof presented in WO4 for the measure case with the appropriate changes. For the convenience of the reader, we present it in a complete form.

Let $D \in \mathcal{A}_{I}$ be a set such that $[0,1] \backslash D \in S \backslash I$, and $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to $0, c_{1}<1$, such that $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}=0$.

The set $A \in S$ is defined as

$$
A=\bigcup_{n=1}^{\infty}\left[\left(c_{n} \cdot D\right) \cap\left(c_{n+1}, c_{n}\right)\right]
$$

From the definition of A, we have

$$
\left(\frac{1}{c_{n}} \cdot A\right) \cap\left(\frac{c_{n+1}}{c_{n}}, 1\right)=D \cap\left(\frac{c_{n+1}}{c_{n}}, 1\right)
$$

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

and by the proof in WO3, Proposition 3], $A \in \mathcal{A}_{I I}^{+}$, i.e., 0 is an \mathcal{A}_{I}-density point of A from the right.

Let $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to 0 such that

$$
\lim _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}=0, \quad d_{1}<1
$$

We define $E \in S$ as follows

$$
E=\bigcup_{n \in \mathbb{N}}\left[\left(d_{n} \cdot A\right) \cap\left(d_{n+1}, d_{n}\right)\right] .
$$

Let $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to zero. We can find subsequences $\left\{t_{n}^{(1)}\right\}_{n \in \mathbb{N}}$ and $\left\{d_{n}^{(1)}\right\}_{n \in \mathbb{N}}$ such that $d_{n}^{(1)} \leq t_{n}^{(1)}$, and there are neither elements of $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ nor of $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ between $d_{n}^{(1)}$ and $t_{n}^{(1)}$.

Let us consider the sequence $\left\{\frac{d_{n}^{(1)}}{t_{n}^{(1)}}\right\}_{n \in \mathbb{N}} \subset(0,1]$. It is possible to find a convergent subsequence $\left\{\frac{d_{n}^{(2)}}{t_{n}^{(2)}}\right\}_{n \in \mathbb{N}}$. There are two possibilities:
(a) $\lim _{n \rightarrow \infty} \frac{d_{n}^{(2)}}{t_{n}^{(2)}}=c \neq 0$, i.e., $\lim _{n \rightarrow \infty} \frac{d_{n}^{(2)}}{c t_{n}^{(2)}}=1$ (of course, $c \leq 1$).

Since $\lim _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}=0$, we have $\lim _{n \rightarrow \infty} \frac{d_{n}^{(2)+1}}{c \cdot t_{n}^{(2)}}=0$. By the definition of E, for every $0<\varepsilon<\frac{1}{2}$, there exists $n_{0} \in \mathbb{N}$ such that for $n>n_{0}$ we have

$$
\left(\frac{1}{c \cdot t_{n}^{(2)}} \cdot E\right) \cap(\varepsilon, 1-\varepsilon)=\left(\frac{d_{n}^{(2)}}{c \cdot t_{n}^{(2)}} \cdot A\right) \cap(\varepsilon, 1-\varepsilon)
$$

By Lemma 1 . $\left\{\chi_{\left(\frac{d_{n}^{(2)}}{c \cdot t_{n}^{(2)}} \cdot A \cap[0,1]\right)}\right\}_{n \in \mathbb{N}}$ converges I-a.e. to $\chi_{A \cap[0,1]}$ on $(\varepsilon, 1-\varepsilon)$.
Since ε was arbitrary, $\left\{\chi_{\left(\frac{d_{n}^{(2)}}{c \cdot t_{n}^{(2)}} \cdot A \cap[0,1]\right)}\right\}_{n \in \mathbb{N}}$ and thus also $\left\{\chi_{\left.\left(\left(\frac{1}{c \cdot t_{n}^{(2}} \cdot E\right) \cap[0,1]\right)\right\}_{n \in \mathbb{N}},}\right.$ converge I-a.e. to $\chi_{A \cap[0,1]}$ on $[0,1]$.

Equivalently, $\left\{\chi_{\left(\left(\frac{1}{t_{n}^{(2)}} \cdot E\right) \cap[0, c]\right)}\right\}_{n \in \mathbb{N}}$ converges I-a.e. to $\chi_{(c \cdot A) \cap[0, c]}$ on $[0, c]$, and thus, I-a.e. on $(c \cdot A) \cap[0, c]$ to 1 . Since 0 is an \mathcal{A}_{I}-density point of $(c \cdot A) \cap[0, c]$ from the right, we put

$$
C=(c \cdot A) \cap[0, c] \quad \text { and } \quad C \in \mathcal{A}_{I I}^{+} .
$$

(b) $\lim _{n \rightarrow \infty} \frac{d_{n}^{(2)}}{t_{n}^{(2)}}=0$.

Again, there are two possibilities:
(b1) The sequence $\left\{\frac{d_{n}^{(2)-1}}{t_{n}^{(2)}}\right\}_{n \in \mathbb{N}}$ has a subsequence $\left\{\frac{d_{n}^{(3)-1}}{t_{n}^{(3)}}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} \frac{d_{n}^{(3)-1}}{t_{n}^{(3)}}=c<\infty$. Then, we proceed similarly as in (a).

ALICJA KRZESZOWIEC — WOJCIECH WOJDOWSKI

We clearly have $c>1$, and, by an argument similar to that used in part (a), $\left\{\chi_{\left(\frac{1}{t_{n}^{(3)}} \cdot E\right) \cap[0, c]}\right\}_{n \in \mathbb{N}}$ is convergent I-a.e. on $[0,1]$ to $\chi_{(c \cdot A) \cap[0,1]}$, and thus, convergent I-a.e. on $(c \cdot A) \cap[0,1]$ to 1 . Since 0 is an \mathcal{A}_{I}-density point of $(c \cdot A) \cap[0,1]$ from the right, we put

$$
B=(c \cdot A) \cap[0,1] \quad \text { and } \quad B \in \mathcal{A}_{I I}^{+} .
$$

(b2) The sequence $\left\{\frac{d_{n}^{(2)-1}}{t_{n}^{(2)}}\right\}_{n \in \mathbb{N}}$ tends to infinity. By the definition of E, for every $0<\varepsilon<\frac{1}{2}$, there exists $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$

$$
\left(\frac{1}{t_{n}^{(2)}} \cdot E\right) \cap\left(\varepsilon, \frac{1}{\varepsilon}\right)=\left(\frac{d_{n}^{(2)-1}}{t_{n}^{(2)}} \cdot A\right) \cap\left(\varepsilon, \frac{1}{\varepsilon}\right) .
$$

We can find a subsequence $\left\{\frac{d_{n}^{(3)-1}}{t_{n}^{(3)}}\right\}_{n \in \mathbb{N}}$ of $\left\{\frac{d_{n}^{(2)-1}}{t_{n}^{(2)}}\right\}_{n \in \mathbb{N}}$ and a subsequence $\left\{c_{n}^{(1)}\right\}_{n \in \mathbb{N}}$ of sequence $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\frac{d_{n}^{(3)-1}}{t_{n}^{(3)}} c_{n}^{(1)} \leq 1, \quad \frac{d_{n+1}^{(3)-1}}{t_{n+1}^{(3)}} c_{n}^{(1)}>1, \quad \frac{d_{n}^{(3)-1}}{t_{n}^{(3)}} c_{n}^{(1)-1}>1 .
$$

We shall consider the behavior of the sequence $\left\{\frac{d_{n}^{(3)-1}}{t_{n}^{(3)}} c_{n}^{(1)}\right\}_{n \in \mathbb{N}^{*}}$. There are two cases (b2a) and (b2b).
(b2a) There is a subsequence $\left\{\frac{d_{n}^{(4)-1}}{t_{n}^{(4)}} c_{n}^{(2)}\right\}_{n \in \mathbb{N}}$ convergent to some $0<c \leq 1$.
Then, the sequence of characteristic functions $\left\{\chi_{\left(\frac{1}{t_{n}^{(4)}} \cdot E\right) \cap(0, c)}\right\}_{n \in \mathbb{N}}$ is convergent to $\chi_{(c \cdot D) \cap(0, c)} I$-a.e. on $(0, c)$, and thus, it converges I-a.e. on $(c \cdot D) \cap(0, c)$ to 1 . Since 0 is an I-density point of $(c \cdot D) \cap(0, c)$ from the right and as $b \leq 1$, put

$$
B=(c \cdot D) \cap[0, c] \quad \text { and } \quad B \in \mathcal{A}_{I}^{+} \subset \mathcal{A}_{I I}^{+} .
$$

(b2b) There is a subsequence $\left\{\frac{d_{n}^{(4)-1}}{t_{n}^{(4)}} c_{n}^{(2)}\right\}_{n \in \mathbb{N}}$ convergent to zero. We have the following two subcases.
(b2b1) The sequence $\left\{\frac{d_{n}^{(4)-1}}{t_{n}^{(4)}} c_{n}^{(2)-1}\right\}_{n \in \mathbb{N}}$ is bounded. Then, we can find its subsequence $\left\{\frac{d_{n}^{(5)-1}}{t_{n}^{(5)}} c_{n}^{(3)-1}\right\}_{n \in \mathbb{N}}$ convergent to some $c \geq 1$. Then, the sequence of characteristic functions $\left\{\chi_{\left(\frac{1}{t_{n}^{(5)}} \cdot E\right) \cap(0, c)}\right\}_{n \in \mathbb{N}}$ is convergent I-a.e. on $(0, c)$ to $\chi_{(c \cdot D) \cap(0, c)}$, and thus, it converges I-a.e. on $(c \cdot D) \cap(0,1)$ to 1 . Since 0 is an I-density point of $(c \cdot D) \cap(0, c)$ from the right and as $b \geq 1$, put

$$
B=(c \cdot D) \cap[0,1] \quad \text { and } \quad B \in \mathcal{A}_{I}^{+} \subset \mathcal{A}_{I I}^{+}
$$

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

(b2b2) We can find an increasing subsequence

$$
\left\{\frac{d_{n}^{(5)-1}}{t_{n}^{(5)}} c_{n}^{(3)-1}\right\}_{n \in \mathbb{N}} \quad \text { of } \quad\left\{\frac{d_{n}^{(4)-1}}{t_{n}^{(4)}} c_{n}^{(2)-1}\right\}_{n \in \mathbb{N}}
$$

convergent to infinity. Then, we can take one more subsequence $\left\{t_{n}^{(6)}\right\}_{n \in \mathbb{N}}$ to obtain the sequence of characteristic functions $\left\{\chi_{\left(\frac{1}{t_{n}^{(6)}} \cdot E\right) \cap(c, 1)}\right\}_{n \in \mathbb{N}}$ convergent to $\chi_{[0,1]} I$-a.e. on $[0,1]$ and thus, it converges I-a.e. on $[0,1]$ to 1 . Since $[0,1]$ has 0 as an I-density point from the right, we determine the set B as $B=[0,1]$ and $B \in \mathcal{A}_{I I}^{+}$.

Finally, 0 is an $\mathcal{A}_{I I}$-density point of E from the right and we define

$$
H=-E \cup E
$$

 nor of $\mathbb{R} \backslash H$.

Remark 4. Observe that in the above proof, the set $B \in \mathcal{A}_{I I}$ associated, as required in Definition 3, with the appropriate subsequence of $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ either equals the interval $[0,1]$ or is a dilation either of the set D or the set A, when restricted to the interval $(0, c)$ for some $c \in(0,1]$.

Theorem 2. The mapping $\Phi_{\mathcal{A}_{I I}}: S \rightarrow 2^{\mathbb{R}}$ has the following properties:
(0) For each $A \in S, \Phi_{\mathcal{A}_{I I}}(A) \in S$.
(1) For each $A \in S, A \sim \Phi_{\mathcal{A}_{I I}}(A)$.
(2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I I}}(A)=\Phi_{\mathcal{A}_{I I}}(B)$.
(3) $\Phi_{\mathcal{A}_{I I}}(\emptyset)=\emptyset, \Phi_{\mathcal{A}_{I I}}(\mathbb{R})=\mathbb{R}$.
(4) For each $A, B \in S, \Phi_{\mathcal{A}_{I I}}(A \cap B)=\Phi_{\mathcal{A}_{I I}}(A) \cap \Phi_{\mathcal{A}_{I I}}(B)$.

Proof. Conditions (2) and (3) are immediate consequences of the definition of $\Phi_{\mathcal{A}_{I I}}$.
(4) First, observe that if $A \subset B, A, B \in S$, then $\Phi_{\mathcal{A}_{I I}}(A) \subset \Phi_{\mathcal{A}_{I I}}(B)$, so $\Phi_{\mathcal{A}_{I I}}(A \cap B) \subset \Phi_{\mathcal{A}_{I I}}(A) \cap \Phi_{\mathcal{A}_{I I}}(B)$. To prove the opposite inclusion, assume $x \in \Phi_{\mathcal{A}_{I I}}(A) \cap \Phi_{\mathcal{A}_{I I}}(B)$. Let $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to zero. From $x \in \Phi_{\mathcal{A}_{I I}}(A)$, by definition, there is a subsequence $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$ and a set $A_{1} \in \mathcal{A}_{I I}$, such that the sequence $\left\{\chi_{\left(\frac{1}{t_{n_{m}}} \cdot(A-x)\right) \cap[-1,1]}\right\}_{n \in \mathbb{N}}$ of characteristic functions converges I-a.e. on A_{1} to 1 . Similarly, for $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$, there is a subsequence $\left\{t_{n_{m_{k}}}\right\}_{k \in \mathbb{N}}$ and a set $B_{1} \in \mathcal{A}_{I I}$ such that the sequence $\left\{\chi_{\left.\left(\frac{1}{t_{n_{m_{k}}}} \cdot(B-x)\right) \cap[-1,1]\right\}_{n \in \mathbb{N}}}\right.$ of characteristic functions converges I-a.e. on B_{1} to 1 .
 on $A_{1} \cap B_{1}$ to 1 , i.e., x is an $\mathcal{A}_{I I^{-}}$-density point of $A \cap B$.
(1) Let $A \in S$. Since $\Phi(A) \subset \Phi_{\mathcal{A}_{I I}}(A)$, we have $A \backslash \Phi_{\mathcal{A}_{I I}}(A) \subset A \backslash \Phi(A)$, and thus, $A \backslash \Phi_{\mathcal{A}_{I I}}(A) \in I$, since $A \backslash \Phi(A) \in I$.

From (3) and (4) we have

$$
\Phi_{\mathcal{A}_{I I}}(A) \cap \Phi_{\mathcal{A}_{I I}}(\mathbb{R} \backslash A)=\Phi_{\mathcal{A}_{I I}}(A \cap(\mathbb{R} \backslash A))=\emptyset
$$

so

$$
\Phi_{\mathcal{A}_{I I}}(\mathbb{R} \backslash A) \subset \mathbb{R} \backslash \Phi_{\mathcal{A}_{I I}}(A)
$$

and consequently

$$
\Phi_{\mathcal{A}_{I I}}(A) \backslash A=(\mathbb{R} \backslash A) \backslash\left(\mathbb{R} \backslash \Phi_{\mathcal{A}_{I I}}(A)\right) \subset(\mathbb{R} \backslash A) \backslash \Phi_{\mathcal{A}_{I I}}(\mathbb{R} \backslash A)
$$

From the first part of the proof, we obtain $\Phi_{\mathcal{A}_{I I}}(A) \backslash A \in I$, so $A \sim \Phi_{\mathcal{A}_{I I}}(A)$.
Condition (0) is a consequence of (1).
Remark 5. It is an immediate consequence of (0), (1) and (2) of Theorem 2 that $\Phi_{\mathcal{A}_{I I}}$ is idempotent, i.e., $\Phi_{\mathcal{A}_{I I}}(A)=\Phi_{\mathcal{A}_{I I}}\left(\Phi_{\mathcal{A}_{I I}}(A)\right)$.

Theorem 3. The family $\mathcal{T}_{\mathcal{A}_{I I}}=\left\{A \in S: A \subset \Phi_{\mathcal{A}_{I I}}(A)\right\}$ is a topology stronger than the \mathcal{A}_{I}-density topology.

Proof. (compare [W2]) By Theorem[2(3), we have $\emptyset, \mathbb{R} \in \mathcal{T}_{\mathcal{A}_{I I}}$, and the family $\mathcal{T}_{\mathcal{A}_{I I}}$ is closed under finite intersections by (4). To prove that $\mathcal{T}_{\mathcal{A}_{I I}}$ is closed under arbitrary unions, observe that from (1) $\Phi_{\mathcal{A}_{I I}}(A) \backslash A \in I$ for each $A \in S$. Take a family $\left\{A_{t}\right\}_{t \in T} \subset \mathcal{T}_{\mathcal{A}_{I I}}$. We have $A_{t} \subset \Phi_{\mathcal{A}_{I I}}(A)$ for each $t \in T$. Choose a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ such that for each $t \in T$ we have $A_{t} \backslash \bigcup_{n \in \mathbb{N}} A_{t_{n}} \in I$. It is possible by the CCC property of (S, I). Then,

$$
\Phi_{\mathcal{A}_{I I}}\left(A_{t}\right)=\Phi_{\mathcal{A}_{I I}}\left(\left(A_{t} \cap \bigcup_{n \in \mathbb{N}} A_{t_{n}}\right) \cup\left(A_{t} \backslash \bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)\right) \subset \Phi_{\mathcal{A}_{I I}}\left(\bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)
$$

for each $t \in T$. Hence,

$$
\bigcup_{n \in \mathbb{N}} A_{t_{n}} \subset \bigcup_{t \in T} A_{t} \subset \bigcup_{t \in T} \Phi_{\mathcal{A}_{I I}}\left(A_{t}\right) \subset \Phi_{\mathcal{A}_{I I}}\left(\bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)
$$

The first and the last set in the above sequence of inclusions differ in a set of first category and both belong to S, so $\bigcup_{t \in T} A_{t} \in S$. Also

$$
\bigcup_{t \in T} A_{t} \subset \Phi_{\mathcal{A}_{I I}}\left(\bigcup_{t \in T} A_{t}\right)
$$

by central inclusion and the monotonicity of $\Phi_{\mathcal{A}_{I I}}$, so finally $\bigcup_{t \in T} A_{t} \in \mathcal{T}_{\mathcal{A}_{I I}}$.
The set $(-E \cup E) \cup\{0\}$, where E is defined in Proposition 2, belongs to $\mathcal{T}_{\mathcal{A}_{I I}}$ but not to $\mathcal{T}_{\mathcal{A}_{I}}$.

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

Remark 6. Like the density topology, the $\mathcal{A}_{I I}$-density topology can be described in the form $\mathcal{T}_{\mathcal{A}_{I I}}=\left\{\Phi_{\mathcal{A}_{I I}}(A) \backslash P: A \in S\right.$ and $\left.P \in I\right\}$, for if $A \in \mathcal{T}_{\mathcal{A}_{I I}}$, then $A \in \Phi_{\mathcal{A}_{I I}}(A)$. Consequently, $A=\Phi_{\mathcal{A}_{I I}}(A) \backslash\left(\Phi_{\mathcal{A}_{I I}}(A) \backslash A\right)$, and we take $P=\Phi_{\mathcal{A}_{I I}}(A) \backslash A \in I$. Now, if $B=\Phi_{\mathcal{A}_{I I}}(A) \backslash P$, for some $A \in S$ and $P \in I$, then

$$
\begin{aligned}
& \Phi_{\mathcal{A}_{I I}}(B)=\Phi_{\mathcal{A}_{I I}}\left(\Phi_{\mathcal{A}_{I I}}(A) \backslash P\right)= \\
& \Phi_{\mathcal{A}_{I I}}\left(\Phi_{\mathcal{A}_{I I}}(A)\right)=\Phi_{\mathcal{A}_{I I}}(A) \supset \Phi_{\mathcal{A}_{I I}}(A) \backslash P=B
\end{aligned}
$$

from Theorem 2 (1), (2).
Theorem 4. For an arbitrary set $A \subset \mathbb{R}$,

$$
\operatorname{Int}_{\mathcal{T}_{\mathcal{A}_{\mathrm{II}}}}(\mathrm{~A})=\mathrm{A} \cap \Phi_{\mathcal{A}_{\mathrm{II}}}(\mathrm{~B}),
$$

where $B \in S$ is such that $B \subset A$ and $A \backslash B \in I$.
Theorem 5. A set $A \in \mathcal{T}_{\mathcal{A}_{I I}}$ is $\mathcal{T}_{\mathcal{A}_{I I}}$-regular open if and only if $A=\Phi_{\mathcal{A}_{I I}}(A)$.
Theorem 6. The following equalities hold:

$$
\begin{aligned}
I & =\left\{A \subset \mathbb{R}: A \text { is a } \mathcal{T}_{\mathcal{A}_{I I}}-\text { nowhere dense set }\right\} \\
& =\left\{A \subset \mathbb{R}: A \text { is a } \mathcal{T}_{\mathcal{A}_{I I}}-\text { first category set }\right\} \\
& =\left\{A \subset \mathbb{R}: A \text { is a } \mathcal{T}_{\mathcal{A}_{I I}}-\text { closed and } \mathcal{T}_{\mathcal{A}_{I I}}-\text { discrete set }\right\}
\end{aligned}
$$

Theorem 7.

(a) The σ-algebra of $\mathcal{T}_{\mathcal{A}_{I I}}$-Borel sets coincides with S.
(b) If $E \subset \mathbb{R}$ is a $\mathcal{T}_{\mathcal{A}_{I I}}$-compact set, then E is finite.
(c) The space $\left(\mathbb{R}, \mathcal{T}_{\mathcal{A}_{I I}}\right)$ is neither first countable, nor second countable, nor Lindelöf, nor separable. It is a Baire space.

Further generalization

We will continue the generalization of a density point by induction, defining an $\mathcal{A}_{I I I}$-density point of a set $A \in S$, later $\mathcal{A}_{I I I I}$-density point of the set, and so on. Let us denote the concatenation of k characters I by $I(k)$, for example, $\mathcal{A}_{I(4)}$ will denote $\mathcal{A}_{I I I I}$.

For $n=2$, the $\mathcal{A}_{I(2)}=\mathcal{A}_{I I}$-density point, $\Phi_{\mathcal{A}_{I(2)}}=\Phi_{\mathcal{A}_{I I}}$ operator, $\mathcal{T}_{\mathcal{A}_{I(2)}}=\mathcal{T}_{\mathcal{A}_{I I}}{ }^{-}$ -density topology were defined in the previous section.

Now, we present our induction hypothesis.
Let $n \in \mathbb{N}, n>2$. Suppose we have defined, consecutively for $k=1, \ldots, n-1$, the notions of $\mathcal{A}_{I(k)}$-density point, the mapping $\Phi_{\mathcal{A}_{I(k)}}: S \rightarrow 2^{\mathbb{R}}$, and the topology $\mathcal{T}_{\mathcal{A}_{I(k)}}$. Assume that for $k<n$, the appropriate analogues of Proposition 2, Remark 4 and Theorem 2 given below are valid.

For $k=1, \ldots, n-1$, the family $\mathcal{A}_{I(k)}$ is a family of subsets of $[-1,1]$ having the Baire property that have $\mathcal{A}_{I(k-1)}$-density point at 0 .

ALICJA KRZESZOWIEC — WOJCIECH WOJDOWSKI

Definition 4. For $k=1, \ldots, n-1$, we say that x is an $\mathcal{A}_{I(k)}$-density point of $A \in S$ if, for any sequence of real numbers $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ decreasing to zero, there exists a subsequence $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$ and a set $B \in \mathcal{A}_{I(k)}$, such that the sequence $\left\{\chi \frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]\right\}_{m \in \mathbb{N}}$ of characteristic functions converges I-a.e. on B to 1 .

The set of all $\mathcal{A}_{I(k)}$-density points of $A \in S$ is denoted by $\Phi_{\mathcal{A}_{I(k)}}(A)$.
Proposition 3. For $k=1, \ldots, n-1$, there exists a set A such that

$$
\Phi(A)=\Phi_{\mathcal{A}_{I(k-1)}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I(k)}}(A)
$$

Remark 7. For $k=1, \ldots, n-1$ in the proof of Proposition 2 the set $B \in$ $\mathcal{A}_{I(k-1)}$ associated, as required in Definition 4 with the appropriate subsequence of $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ either equals the interval $[0,1]$ or is a dilation either of the set D or the set A, when restricted to the interval $(0, c)$ for some $c \in(0,1]$.
Theorem 8. For $k=1, \ldots, n-1$, the mapping $\Phi_{\mathcal{A}_{I(k)}}: S \rightarrow 2^{\mathbb{R}}$ has the following properties:
(0) For each $A \in S, \Phi_{\mathcal{A}_{I(k)}}(A) \in S$.
(1) For each $A \in S, A \sim \Phi_{\mathcal{A}_{I(k)}}(A)$.
(2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I(k)}}(A)=\Phi_{\mathcal{A}_{I(k)}}(B)$.
(3) $\Phi_{\mathcal{A}_{I(k)}}(\emptyset)=\emptyset, \Phi_{\mathcal{A}_{I(k)}}(\mathbb{R})=\mathbb{R}$.
(4) For each $A, B \in S, \Phi_{\mathcal{A}_{I(k)}}(A \cap B)=\Phi_{\mathcal{A}_{I(k)}}(A) \cap \Phi_{\mathcal{A}_{I(k)}}(B)$.

Let us consider one more family of sets having the Baire property:
$\mathcal{A}_{I(n)}$: a family of subsets of $[-1,1]$ that have $\mathcal{A}_{I(n-1)}$-density point at 0 . $\mathcal{A}_{I(n)}^{+}$and $\mathcal{A}_{I(n)}^{-}$will denote a family of subsets of $[-1,1]$ having the Baire property that have 0 as a right (left) $\mathcal{A}_{I(n)}$-density point. If $A \in \mathcal{A}_{I(n)}^{+}\left(A \in \mathcal{A}_{I(n)}^{-}\right)$, we say that 0 is an $\mathcal{A}_{I(n)}$-density point of A from the right (left).
Definition 5. We say that x is an $\mathcal{A}_{I(n)}$-density point of $A \in S$ if, for any sequence of real numbers $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ decreasing to zero, there is a subsequence $\left\{t_{n_{m}}\right\}_{m \in \mathbb{N}}$ and a set $B \in \mathcal{A}_{I(n)}$, such that the sequence $\left\{\chi_{\frac{1}{t_{n_{m}}} \cdot(A-x) \cap[-1,1]}\right\}_{m \in \mathbb{N}}$ of characteristic functions converges I-a.e. on B to 1 .

Proposition 4.

(a) For each $A \in S$, $\Phi(A) \subset \Phi_{\mathcal{A}_{I}}(A) \subset \Phi_{A_{I I}}(A) \subset \cdots \subset \Phi_{\mathcal{A}_{I(n-1)}}(A) \subset$ $\Phi_{\mathcal{A}_{I(n)}}(A), n \in \mathbb{N}$.
(b) For each $n \in \mathbb{N}$, there exists a set A such that $\Phi(A) \varsubsetneqq \Phi_{\mathcal{A}_{I}}(A) \varsubsetneqq$ $\Phi_{\mathcal{A}_{I I}}(A) \varsubsetneqq \cdots \varsubsetneqq \Phi_{\mathcal{A}_{I(n-1)}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I(n)}}(A)$.
Proof. Part (a) follows from the fact that the requirements on A to have x as an $\mathcal{A}_{I(n)}$-density point are weaker than the requirements on the set to have x as an $\mathcal{A}_{I(n-1)}$-density point.

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

As previously, the proof of (b) is analogous to the proof presented in WO4 for the measure case with the appropriate changes. We present it here in a complete form for the convenience of the reader.

To prove (b), for given $n \in \mathbb{N}$, we extend the construction of the set H described in Proposition 2 up to n constructive steps. Again, we shall start with the right-side notion of the $\mathcal{A}_{I(n)}$-density. We shall define a set $E \in S$ such that:
(1) 0 is not an $\mathcal{A}_{I(n-1)}$-density point of E from the right.
(2) 0 is an $\mathcal{A}_{I(n)}$-density point of E from the right.

Let $D^{(1)} \in \mathcal{A}_{I}=\mathcal{A}_{I(1)}$ be an open set such that $[0,1] \backslash D^{(1)} \in S \backslash I$, and $\left\{{ }^{(1)} c_{i}\right\}_{i \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to $0,{ }^{(1)} c_{1}<1$, such that $\lim _{i \rightarrow \infty} \frac{(1) c_{i+1}}{(1)} c_{i}=0$. We define the set $D^{(2)} \in S$ as

$$
D^{(2)}=\bigcup_{i=1}^{\infty}\left[\left({ }^{(1)} c_{i} \cdot D^{(1)}\right) \cap\left({ }^{(1)} c_{i+1},{ }^{(1)} c_{i}\right)\right] \cap(0,1] .
$$

By definition of $D^{(2)}$,

$$
\left(\frac{1}{{ }^{(1)} c_{i}} \cdot D^{(2)}\right) \cap\left(\frac{{ }^{(1)} c_{i+1}}{{ }^{(1)} c_{i}}, 1\right)=D^{(1)} \cap\left(\frac{{ }^{(1)} c_{i+1}}{{ }^{(1)} c_{i}}, 1\right),
$$

$D^{(2)} \in \mathcal{A}_{I(2)}$ (by the proof of Proposition 2), i.e., 0 is an $\mathcal{A}_{I(1)}$-density point of $D^{(2)}$ from the right.

Now, let $\left\{{ }^{(2)} c_{i}\right\}_{i \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to 0 , ${ }^{(2)} c_{1}<1$, such that $\lim _{i \rightarrow \infty} \frac{{ }^{(2)} c_{i+1}}{(2)}=0$. We define the set $D^{(3)} \in S$ as

$$
D^{(3)}=\bigcup_{i=1}^{\infty}\left[\left({ }^{(2)} c_{i} \cdot D^{(2)}\right) \cap\left({ }^{(2)} c_{i+1},{ }^{(2)} c_{i}\right)\right] \cap(0,1] .
$$

Assume that we have consecutively defined the sets $D^{(k)}, k=1,2, \ldots, n$ in the above manner with the use of sequences of real numbers (respectively) $\left\{{ }^{(k)} c_{i}\right\}_{i \in \mathbb{N}}, k=1,2, \ldots, n-1$, decreasing to $0,{ }^{(k)} c_{1}<1$, such that $\lim _{i \rightarrow \infty} \frac{{ }^{(k)} c_{i+1}}{(k) c_{i}}=0$, such that $D^{(k)} \in \mathcal{A}_{I(k)}$, i.e., 0 is an $\mathcal{A}_{I(k-1)}$-density point of $D^{(k)}$ from the right. Let $\left\{{ }^{(n)} c_{i}\right\}_{i \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to $0,{ }^{(n)} c_{1}<1$, such that $\lim _{i \rightarrow \infty} \frac{{ }^{(n)} c_{i+1}}{(n) c_{i}}=0$. We define a set $E=D^{(n+1)} \in S$ as

$$
E=D^{(n+1)}=\bigcup_{i=1}^{\infty}\left[\left({ }^{(n)} c_{i} \cdot D^{(n)}\right) \cap\left({ }^{(n)} c_{i+1},{ }^{(n)} c_{i}\right)\right] \cap(0,1] .
$$

ALICJA KRZESZOWIEC - WOJCIECH WOJDOWSKI

Now, let $\left\{t_{i}\right\}_{i \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to zero. We can find some subsequences
$\left\{t_{i}^{(1)}\right\}_{i \in \mathbb{N}}$ and $\left\{{ }^{(n)} c_{i}^{(1)}\right\}_{i \in \mathbb{N}}$ of $\left\{t_{i}\right\}_{i \in \mathbb{N}} \quad$ and $\quad\left\{{ }^{(n)} c_{i}\right\}_{i \in \mathbb{N}}$, respectively, such that ${ }^{(n)} c_{i}^{(1)} \leq t_{i}^{(1)}$, and there are no elements of $\left\{t_{i}\right\}_{i \in \mathbb{N}}$ nor of $\left\{{ }^{(n)} c_{i}\right\}_{i \in \mathbb{N}}$ between ${ }^{(n)} c_{i}^{(1)}$ and $t_{i}^{(1)}$. Let us consider the sequence $\left\{\frac{c_{i}^{(n)} c_{i}^{(1)}}{t_{i}^{(1)}}\right\}_{i \in \mathbb{N}} \subset(0,1]$. We can find its convergent subsequence $\left\{\frac{{ }^{(n)} c_{i}^{(2)}}{t_{i}^{(2)}}\right\}_{i \in \mathbb{N}}$. There are two possibilities:
(a) $\lim _{n \rightarrow \infty} \frac{{ }^{(n)} c_{i}^{(2)}}{t_{i}^{(2)}}=a \neq 0$, i.e., $\lim _{n \rightarrow \infty} \frac{{ }^{(n)} c_{i}^{(2)}}{a t_{i}^{(2)}}=1$.

By an argument similar to that used in the proof of Proposition2(a), we prove that

$$
\left\{\chi\left(\left(\frac{1}{t_{i}^{(2)}} \cdot E\right) \cap[0, a]\right)\right\}_{i \in \mathbb{N}}
$$

converges I-a.e. to $\chi_{\left(a \cdot D^{(n-1)}\right) \cap[0, a]}$ on $[0, a]$.
We can consequently find one more subsequence $\left\{\frac{{ }^{(n)} c_{i}^{(3)}}{t_{i}^{(3)}}\right\}_{i \in \mathbb{N}}$ such that

$$
\left\{\chi\left(\left(\frac{1}{t_{i}^{(3)}} \cdot E\right) \cap[0, a]\right)\right\}_{i \in \mathbb{N}}
$$

converges I-a.e. to $\chi_{\left(a \cdot D^{(n)}\right) \cap[0, a]}$ on $[0, a]$, and thus, I-a.e. on $\left(a \cdot D^{(n)}\right) \cap[0, a]$ to 1. Since $\left(a \cdot D^{(n)}\right) \cap[0, a] \in \mathcal{A}_{I(n)}$, we put

$$
B=\left(a \cdot D^{(n)}\right) \cap[0, a] \quad \text { and } \quad B \in \mathcal{A}_{I(n)}^{+} .
$$

(b) $\lim _{n \rightarrow \infty} \frac{{ }^{(n)} c_{i}^{(2)}}{t_{i}^{(2)}}=0$.

Again, there are two possibilities:
(b1) The sequence $\left\{\frac{{ }^{(n)} c_{i}^{(2)-1}}{t_{i}^{(2)}}\right\}_{i \in \mathbb{N}}$ has a subsequence $\left\{\frac{{ }^{(n)} c_{i}^{(3)-1}}{t_{i}^{(3)}}\right\}_{i \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} \frac{{ }^{(n)} c_{i}^{(3)-1}}{t_{i}^{(3)}}=b<\infty$, then we proceed similarly as in (a).

We clearly have $b \geq 1$ and, by an argument similar to that used in part (a),

$$
\left\{\chi\left(\frac{1}{t_{i}^{(3)}} \cdot E\right) \cap[0, b]\right\}_{i \in \mathbb{N}}
$$

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

is convergent I-a.e. on $[0,1]$ to $\chi_{\left(b \cdot D^{(n)}\right) \cap[0,1]}$, and thus, convergent I-a.e. on $\left(b \cdot D^{(n)}\right) \cap[0,1]$ to 1 . Since $\left(b \cdot D^{(n)}\right) \cap[0,1] \in \mathcal{A}_{I(n)}$, we put

$$
B=\left(b \cdot D^{(n)}\right) \cap[0,1] \quad \text { and } \quad B \in \mathcal{A}_{I(n)}^{+} .
$$

(b2) The sequence $\left\{\frac{{ }^{(n)} c_{i}^{(2)-1}}{t_{i}^{(2)}}\right\}_{i \in \mathbb{N}}$ tends to infinity. By the definition of E, for every $0<\varepsilon<\frac{1}{2}$, there exists $i_{0} \in \mathbb{N}$ such that for all $i>i_{0}$ we have

$$
\left(\frac{1}{t_{i}^{(2)}} \cdot E\right) \cap\left(\varepsilon, \frac{1}{\varepsilon}\right)=\left(\frac{{ }^{(n)} c_{i}^{(2)-1}}{t_{i}^{(2)}} \cdot D^{(n)}\right) \cap\left(\varepsilon, \frac{1}{\varepsilon}\right) .
$$

Then, according to Remark 3 and assuming, in induction hypothesis, Remark 7 the sequence

$$
\left\{\chi\left(\left(\frac{1}{t_{i}^{(2)}} \cdot E\right) \cap[0, a]\right)\right\}_{i \in \mathbb{N}}
$$

is convergent I-a.e. on the interval $[0,1]$ to the characteristic function of a set B from S, which is either the interval $[0,1]$ or a set that, if restricted to interval $(0, c)$ for some $c \leq 1$, is the image under a dilation of some of $D^{(k)}, k=1,2, \ldots, n-1$. We may proceed as above and set $B \in \mathcal{A}_{I(n)}^{+}$.

Clearly, 0 is not an $\mathcal{A}_{I(n-1)}$-density point of E from the right and 0 is an $\mathcal{A}_{I(n)^{-}}$ -density point of E from the right, i.e., $0 \in \Phi_{\mathcal{A}_{I(n)}}(-E \cup E) \backslash \Phi_{\mathcal{A}_{I(n-1)}}(-E \cup E)$.

Let $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint open subintervals of $[0,1]$. In each $\left(a_{k}, b_{k}\right), k \leq n+1$, we inscribe the image under a dilation of the set $-D^{(k)} \cup D^{(k)}$ with the center of dilation at point 0 and a scale factor of $\frac{b_{k}-a_{k}}{2}$ to obtain a required set

$$
A=\bigcup_{k \leq n+1}\left[\left(\frac{b_{k}-a_{k}}{2} \cdot\left(-D^{(k)} \cup D^{(k)}\right)\right)+\frac{a_{k}+b_{k}}{2}\right] .
$$

For $k=1, \ldots, n+1$, the point $\frac{a_{k}+b_{k}}{2} \in \Phi_{\mathcal{A}_{I(k-1)}}(A) \backslash \Phi_{\mathcal{A}_{I(k-2)}}(A)$; we assume here $\Phi_{\mathcal{A}_{I(0)}}=\Phi(A)$ and $\Phi_{\mathcal{A}_{I(-1)}}=\emptyset$.

Theorem 9. For $n \in \mathbb{N}$, the mapping $\Phi_{\mathcal{A}_{I(n)}}: S \rightarrow 2^{\mathbb{R}}$ has the following properties:
(0) For each $A \in S, \Phi_{\mathcal{A}_{I(n)}}(A) \in S$.
(1) For each $A \in S, A \sim \Phi_{\mathcal{A}_{I(n)}}(A)$.
(2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I(n)}}(A)=\Phi_{\mathcal{A}_{I(n)}}(B)$.
(3) $\Phi_{\mathcal{A}_{I(n)}}(\emptyset)=\emptyset, \Phi_{\mathcal{A}_{I(n)}}(\mathbb{R})=\mathbb{R}$.
(4) For each $A, B \in S, \Phi_{\mathcal{A}_{I(n)}}(A \cap B)=\Phi_{\mathcal{A}_{I(n)}}(A) \cap \Phi_{\mathcal{A}_{I(n)}}(B)$.

Proof. (4) follows directly from Theorem [8).

Remark 8. It is an immediate consequence of (0), (1), and (2) of Theorem 9 that $\Phi_{\mathcal{A}_{I(n)}}$ is idempotent, i.e., $\Phi_{\mathcal{A}_{I(n)}}(A)=\Phi_{\mathcal{A}_{I(n)}}\left(\Phi_{\mathcal{A}_{I(n)}}(A)\right)$. We also have $\Phi_{\mathcal{A}_{I(n)}}(A) \cap \Phi_{\mathcal{A}_{I(n)}}(\mathbb{R} \backslash A)=\emptyset$.

Theorem 10. For every $n \in \mathbb{N}$, the family $\mathcal{T}_{\mathcal{A}_{I(n)}}=\left\{A \in S: A \subset \Phi_{\mathcal{A}_{I(n)}}(A)\right\}$ is a topology stronger than the $\mathcal{T}_{\mathcal{A}_{I(n-1)}}$-density topology.

Proof. By Theorem 9 we have $\emptyset, \mathbb{R} \in \mathcal{T}_{\mathcal{A}_{I(n)}}$, and the family $\mathcal{T}_{\mathcal{A}_{I(n)}}$ is closed under finite intersections. To prove that $\mathcal{T}_{\mathcal{A}_{I(n)}}$ is closed under arbitrary unions, observe that from Theorem $9(1), \Phi_{\mathcal{A}_{I(n)}}(A) \backslash A \in I$ for each $A \in S$. Take a family $\left\{A_{t}\right\}_{t \in T} \subset \mathcal{T}_{\mathcal{A}_{I(n)}}$. We have $A_{t} \subset \Phi_{\mathcal{A}_{I(n)}}(A)$ for each $t \in T$. Choose a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ such that, for each $t \in T$, we have $A_{t} \backslash \bigcup_{n \in \mathbb{N}} A_{t_{n}} \in I$. It is possible by the CCC property of (S, I). Then,

$$
\Phi_{\mathcal{A}_{I(n)}}\left(A_{t}\right)=\Phi_{\mathcal{A}_{I(n)}}\left(\left(A_{t} \cap \bigcup_{n \in \mathbb{N}} A_{t_{n}}\right) \cup\left(A_{t} \backslash \bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)\right) \subset \Phi_{\mathcal{A}_{I(n)}}\left(\bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)
$$

for each $t \in T$. Hence,

$$
\bigcup_{n \in \mathbb{N}} A_{t_{n}} \subset \bigcup_{t \in T} A_{t} \subset \bigcup_{t \in T} \Phi_{\mathcal{A}_{I(n)}}\left(A_{t}\right) \subset \Phi_{\mathcal{A}_{I(n)}}\left(\bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)
$$

The first and the last set in the above sequence of inclusions differ in a set of first category and both belong to S, so $\bigcup_{t \in T} A_{t} \in S$. Also $\bigcup_{t \in T} A_{t} \subset$ $\Phi_{\mathcal{A}_{I(n)}}\left(\bigcup_{t \in T} A_{t}\right)$, by central inclusion and the monotonicity of $\Phi_{\mathcal{A}_{I(n)}}$, so finally $\bigcup_{t \in T} A_{t} \in \mathcal{T}_{\mathcal{A}_{I(n)}}$.

The set $(-E \cup E) \cup\{0\}$, where E is defined in Proposition 4 , belongs to $\mathcal{T}_{\mathcal{A}_{I(n)}}$ but not to $\mathcal{T}_{\mathcal{A}_{I(n-1)}}$.

Thus, we now have

$$
\mathcal{T} \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I}} \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I I}} \varsubsetneqq \cdots \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I(n-1)}} \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I(n)}}
$$

where \mathcal{T} denotes the natural topology on the real line.
Similarly as in the case of $\mathcal{T}_{\mathcal{A}_{I I}}$, relying on results from WO3, one can obtain the following results.

Theorem 11. For an arbitrary set $A \subset \mathbb{R}$

$$
\operatorname{Int}_{\mathcal{T}_{\mathcal{A}_{I(n)}}}(\mathrm{A})=\mathrm{A} \cap \Phi_{\mathcal{A}_{\mathrm{I}(\mathrm{n})}}(\mathrm{B}),
$$

where $B \in S$ is such that $B \subset A$ and $A \backslash B \in I$.
Theorem 12. A set $A \in \mathcal{T}_{\mathcal{A}_{I(n)}}$ is $\mathcal{T}_{\mathcal{A}_{I(n)}}$-regular open if and only if $A=\Phi_{\mathcal{A}_{I(n)}}(A)$.

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

Theorem 13. The following equalities hold:

$$
\begin{aligned}
I & =\left\{A \subset \mathbb{R}: A \text { is a } \mathcal{T}_{\mathcal{A}_{I(n)}}-\text { nowhere dense set }\right\} \\
& =\left\{A \subset \mathbb{R}: A \text { is a } \mathcal{T}_{\mathcal{A}_{I(n)}}-\text { first category set }\right\} \\
& =\left\{A \subset \mathbb{R}: A \text { is a } \mathcal{T}_{\mathcal{A}_{I(n)}}-\text { closed and } \mathcal{T}_{\mathcal{A}_{I(n)}}-\text { discrete set }\right\}
\end{aligned}
$$

Theorem 14.

(a) The σ-algebra of $\mathcal{T}_{\mathcal{A}_{I(n)}}$ - Borel sets coincides with S.
(b) If $E \subset \mathbb{R}$ is a $\mathcal{T}_{\mathcal{A}_{I(n)}}$ - compact set, then E is finite.
(c) The space $\left(\mathbb{R}, \mathcal{T}_{\mathcal{A}_{I(n)}}\right)$ is neither first countable, nor second countable, nor Lindelöf, nor separable. It is a Baire space.

A final generalization

Definition 6. We shall say that x is an $\mathcal{A}_{I(\omega)}$-density point of $A \in S$ if it is an $\mathcal{A}_{I(n)}$-density point of A for some $n \in \mathbb{N}$.

Remark 9. For any $A \in S$, we have

$$
\Phi_{\mathcal{A}_{I(\omega)}}(A)=\bigcup_{n \in \mathbb{N}} \Phi_{\mathcal{A}_{I(n)}}(A) .
$$

There exists a set $A \in S$ such that

$$
\Phi_{\mathcal{A}_{I(n-1)}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I(n)}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I(\omega)}}(A), \quad n \in \mathbb{N} .
$$

Proposition 5.

(a) For each $A \in S, \Phi(A) \subset \Phi_{\mathcal{A}_{I}}(A) \subset \Phi_{A_{I I}}(A) \subset \cdots \subset \Phi_{\mathcal{A}_{I(n-1)}}(A) \subset$ $\Phi_{\mathcal{A}_{I(n)}}(A) \subset \cdots \subset \Phi_{\mathcal{A}_{I(\omega)}}(A)$.
(b) There exists a set A such that $\Phi(A) \varsubsetneqq \Phi_{\mathcal{A}_{I}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I I}}(A) \varsubsetneqq \cdots \varsubsetneqq$ $\Phi_{\mathcal{A}_{I(n-1)}}(A) \varsubsetneqq \Phi_{\mathcal{A}_{I(n)}}(A) \varsubsetneqq \cdots \not{ }_{\neq \mathcal{A}_{I(\omega)}}(A)$.

Proof. Part (a) is a consequence of Remark (9)
(b) Let $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint open subintervals of $[0,1]$. We take the sequence of sets $D^{(k)}, k=1,2,3, \ldots n+1$, defined in Proposition 4 and extend the sequence in similar manner for all $k>n+1$. Then, we define

$$
A=\bigcup_{k \in \mathbb{N}}\left[\left(\frac{b_{k}-a_{k}}{2} \cdot\left(-D^{(k)} \cup D^{(k)}\right)\right)+\frac{a_{k}+b_{k}}{2}\right]
$$

ALICJA KRZESZOWIEC — WOJCIECH WOJDOWSKI

Theorem 15. The mapping $\Phi_{\mathcal{A}_{I(\omega)}}: S \rightarrow 2^{\mathbb{R}}$ has the following properties:
(0) For each $A \in S, \Phi_{\mathcal{A}_{I(\omega)}}(A) \in S$.
(1) For each $A \in S, A \sim \Phi_{\mathcal{A}_{I(\omega)}}(A)$.
(2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I(\omega)}}(A)=\Phi_{\mathcal{A}_{I(\omega)}}(B)$.
(3) $\Phi_{\mathcal{A}_{I(n)}}(\emptyset)=\emptyset, \Phi_{\mathcal{A}_{I(\omega)}}(\mathbb{R})=\mathbb{R}$.
(4) For each $A, B \in S, \Phi_{\mathcal{A}_{I(\omega)}}(A \cap B)=\Phi_{\mathcal{A}_{I(\omega)}}(A) \cap \Phi_{\mathcal{A}_{I(\omega)}}(B)$.

Proof. (4) follows from the fact that if $x \in \Phi_{\mathcal{A}_{I(\omega)}}(A) \cap \Phi_{\mathcal{A}_{I(\omega)}}(B)$, then there exists $k, l \in \mathbb{N}$ such that

$$
x \in \Phi_{\mathcal{A}_{I(k)}}(A) \quad \text { and } \quad x \in \Phi_{\mathcal{A}_{I(l)}}(B)
$$

Then,

$$
x \in \Phi_{\mathcal{A}_{I(n)}}(A) \cap \Phi_{\mathcal{A}_{I(n)}}(B),
$$

where $n=\max \{k, l\}$, and $x \in \Phi_{\mathcal{A}_{I(n)}}(A \cap B) \subset \Phi_{\mathcal{A}_{I(\omega)}}(A \cap B)$ follows directly from Theorem 9 (4) and Remark 9 .

Theorem 16. The family $\mathcal{T}_{\mathcal{A}_{I(\omega)}}=\left\{A \in S: A \subset \Phi_{\mathcal{A}_{I(\omega)}}(A)\right\}$ is a topology stronger than the $\mathcal{T}_{\mathcal{A}_{I(n)}}$-density topology for every $n \in \mathbb{N}$.

Proof. Obvious.
Thus, we have now

$$
\mathcal{T} \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I}} \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I I}} \varsubsetneqq \cdots \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I(n-1)}} \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I(n)}} \ldots \varsubsetneqq \mathcal{T}_{\mathcal{A}_{I(\omega)}}
$$

Theorem 17. For an arbitrary set $A \subset \mathbb{R}$,

$$
\operatorname{Int}_{\mathcal{A}_{\mathcal{A}_{I(\omega)}}}(A)=A \cap \Phi_{\mathcal{A}_{I(\omega)}}(B)
$$

where $B \in S$ is such that $B \subset A$ and $A \backslash B \in I$.
Theorem 18. We have $\bigcup_{n \in \mathbb{N}} \mathcal{T}_{\mathcal{A}_{I(n)}} \not \ni \mathcal{T}_{\mathcal{A}_{I(\omega)}}$.
Proof. Since $\Phi_{\mathcal{A}_{I(\omega)}}(A)=\bigcup_{n \in \mathbb{N}} \Phi_{\mathcal{A}_{I(n)}}(A), A \subset \Phi_{\mathcal{A}_{I(n)}}(A)$ implies $A \subset \Phi_{\mathcal{A}_{I(\omega)}}(A)$. The set A defined in proposition 5 verifies that $\bigcup_{n \in \mathbb{N}} \mathcal{T}_{\mathcal{A}_{I(n)}} \neq \mathcal{T}_{\mathcal{A}_{I(\omega)}}$.

Theorem 19. There is a set $E \in S$ such that, for every $n \in \mathbb{N}$, the difference $\Phi_{\mathcal{A}_{I(n+1)}}(E) \backslash \Phi_{\mathcal{A}_{I(n)}}(E)$ is a countable set.

Proof. In each interval $[k, k+1], k \in \mathbb{N}$, we put a copy of the set A from Proposition 5 obtaining $E=\bigcup_{k \in \mathbb{N}}(A+k)$. Thus, in every interval $[k, k+1], k \in \mathbb{N}$, we have a point in $\Phi_{\mathcal{A}_{I(n+1)}}(E) \backslash \Phi_{\mathcal{A}_{I(n)}}(E)$.

ON GENERALIZATION OF THE $\mathcal{T}_{A_{I}}$-DENSITY TOPOLOGY

REFERENCES

[CLO] CIESIELSKI, K.-LARSON, L.-OSTASZEWSKI, K.: I-Density continuous functions, Mem. Amer. Math. Soc. 107 (1994), 133 p.
[PWW1] POREDA, W.-WAGNER-BOJAKOWSKA, E.-WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. CXXV (1985), 167-173.
[PWW2] POREDA, W.-WAGNER-BOJAKOWSKA, E.-WILCZYŃSKI, W.: Remarks on \mathcal{I}-density and \mathcal{I}-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985), 553-563.
[W1] WILCZYŃSKI, W.: A generalization of the density topology, Real Anal. Exchange 8 (1982-83), 16-20.
[W2] WILCZYŃSKI, W.: Density Topologies, in: Handbook of Measure Theory, Elsevier, Amsterdam, 2002, pp. 675-702.
[WO1] WOJDOWSKI, W.: A generalization of density topology, Real. Anal. Exchange 32 (2006/2007), 349-358.
[WO3] WOJDOWSKI, W.: A category analogue of the generalization of Lebesgue density topology, Tatra Mt. Math. Publ. 42 (2009), 11-25.
[WO4] WOJDOWSKI, W.: A further generalization of the $\mathcal{T}_{A_{d}}$-density topology, J. Appl. Anal. 19 (2013), 283-304.
[WO5] WOJDOWSKI, W.: Corrigendum in: A category analogue of the generalization of Lebesgue density topology, Tatra Mt. Math. Publ. 65 (2016), 161-164.

Received December 11, 2015

Department of Mathematics
Technical University of Eódź
ul. Wólczańska 215
PL-90-924 Łódź
POLAND
E-mail: alicjakrzeszowiec@gmail.com wojwoj@gmail.com

[^0]: © 2017 Mathematical Institute, Slovak Academy of Sciences. 2010 Mathematics Subject Classification: 28A05, 54A10.
 Keywords: density point, density topology.

