

ON GENERALIZATION OF THE T_{A_I} -DENSITY TOPOLOGY

Alicja Krzeszowiec — Wojciech Wojdowski

ABSTRACT. We present a further generalization of the \mathcal{T}_{A_I} -density topology introduced in [W. Wojdowski, *A category analogue of the generalization of Lebesgue density topology*, Tatra Mt. Math. Publ. **42** (2009), 11–25] as a generalization of the *I*-density topology. We construct an ascending sequence $\{\mathcal{T}_{A_{I(n)}}\}_{n\in\mathbb{N}}$ of density topologies which leads to the $\mathcal{T}_{A_{I(\omega)}}$ -density topology including all previous topologies. We examine several basic properties of the topologies.

The aim of the paper is to present a category analogue of results presented for the case of measure in [WO4].

Let S be a σ -algebra of subsets of the real line \mathbb{R} , and $I \subset S$ a proper σ -ideal. We shall say that the sets $A, B \in S$ are equivalent $(A \sim B)$, if and only if $A \bigtriangleup B \in I$. We will denote by λ the Lebesgue measure on the real line.

Recall that the point $x \in \mathbb{R}$ is a Lebesgue density point of a measurable set A, if

$$\lim_{h \to 0} \frac{\lambda \left(A \cap [x - h, x + h]\right)}{2h} = 1. \tag{(*)}$$

In [W1], W. Wilczyński gave his reformulation of the notion of a density point of a measurable set A in terms of convergence almost everywhere of the sequence of characteristic functions of dilations of a set A:

A point $x \in \mathbb{R}$ is Lebesgue density point of a measurable set A if and only if every subsequence

$$\left\{\chi_{(n_m \cdot (A-x)) \cap [-1,1]}\right\}_{m \in \mathbb{N}} \quad \text{of} \quad \left\{\chi_{(n \cdot (A-x)) \cap [-1,1]}\right\}_{n \in \mathbb{N}}$$

contains a subsequence

$$\left\{\chi_{\left(n_{m_{p}}\cdot(A-x)\right)\cap\left[-1,1\right]}\right\}_{p\in\mathbb{N}}$$

which converges to $\chi_{[-1,1]}$ almost everywhere on [-1,1] (which means, except for on a null set).

^{© 2017} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 28A05, 54A10.

Keywords: density point, density topology.

Wilczynski's approach relieved the definition of the notion of a measure. His definition requires null sets only. Instead of the notion of convergence in measure of a sequence of measurable function, he uses a convergence almost everywhere. This has opened a new space for study of more subtle properties of the notion of the Lebesgue density point and density topology, their various modifications, and, most of all, category analogues (see [PWW1], [PWW2], [CLO]).

The reformulated definition could be considered in more general settings as follows:

A point $x \in \mathbb{R}$ is an *I*-density point of a set $A \in S$ if every subsequence

$$\left\{\chi_{(n_m \cdot (A-x)) \cap [-1,1]}\right\}_{m \in \mathbb{N}} \quad \text{of} \quad \left\{\chi_{(n \cdot (A-x)) \cap [-1,1]}\right\}_{n \in \mathbb{N}}$$

contains a subsequence

$$\left\{\chi_{\left(n_{m_{p}}\cdot(A-x)\right)\cap\left[-1,1\right]}\right\}_{p\in\mathbb{N}}$$

which converges to $\chi_{[-1,1]}$ *I*-almost everywhere on [-1,1] (which means, except for on a set belonging to *I*).

In [PWW2, Corollary 1, p. 556] in the category case, and in [W2] in measure case, it is proved that the following conditions are equivalent:

- 1. x is an *I*-density point of a set $A \in S$,
- 2. for any decreasing to zero sequence of real numbers $\{t_n\}_{n\in\mathbb{N}}$, there is its subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that the sequence $\{\chi_{\frac{1}{t_{n_m}}} \cdot (A-x)\cap [-1,1]\}_{m\in\mathbb{N}}$ of characteristic functions converges *I*-almost everywhere on [-1,1] to $\chi_{[-1,1]}$.

Following W i l c z y ń s k i's approach in [WO1], we have introduced a notion of \mathcal{A}_d -density of a Lebesgue measurable set leading to a notion of $\mathcal{T}_{\mathcal{A}_d}$ topology on the real line stronger than the Lebesgue density topology. The generalization was related to a given appropriate family of subsets of [-1, 1], namely the family of measurable sets having density one at zero.

In [WO3] and [WO5], an \mathcal{A}_I -density as a category analogue of \mathcal{A}_d -density was introduced.

From now on, (S, I) stands for σ -algebra of sets with the Baire property and σ -ideal of first category sets.

In [WO3], the author introduced \mathcal{A}_I , the family of subsets of interval [-1, 1] that are from S and have 0 as their *I*-density point.

DEFINITION 1 ([WO3], [WO5]). We say that x is an \mathcal{A}_I -density point of $A \in S$ if, for any sequence of real numbers $\{t_n\}_{n \in \mathbb{N}}$ decreasing to zero, there exists a subsequence $\{t_{n_m}\}_{m \in \mathbb{N}}$ and a set $B \in \mathcal{A}_I$ such that the sequence $\{\chi_{\frac{1}{t_{n_m}} \cdot (A-x) \cap [-1,1]}\}_{m \in \mathbb{N}}$ of characteristic functions converges *I*-almost everywhere on *B* to 1.

Remark 1. Originally, in the definition of an \mathcal{A}_I -density point in [WO3], we required for the sequence $\left\{\chi_{\frac{1}{t_{n_m}} \cdot (A-x) \cap [-1,1]}\right\}_{m \in \mathbb{N}}$ to be convergent *I*-almost

everywhere on [-1, 1] to χ_B . In [WO5], it was observed that the operator $\Phi_{\mathcal{A}_I}(A)$ corresponding to this condition is not monotonic, and thus, it is not a lower *I*-density.

The correct form is given in Definition 1 above. We shall show (after [WO5]) that the operator Φ_{A_I} introduced according to the above definition is a lower density:

THEOREM 1. The mapping $\Phi_{\mathcal{A}_I}: S \to 2^{\mathbb{R}}$ has the following properties:

- (0) For each $A \in S$, $\Phi_{\mathcal{A}_I}(A) \in S$.
- (1) For each $A \in S$, $A \sim \Phi_{\mathcal{A}_I}(A)$.
- (2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_I}(A) = \Phi_{\mathcal{A}_I}(B)$.
- (3) $\Phi_{\mathcal{A}_I}(\emptyset) = \emptyset, \ \Phi_{\mathcal{A}_I}(\mathbb{R}) = \mathbb{R}.$
- (4) For each $A, B \in S$, $\Phi_{\mathcal{A}_I}(A \cap B) = \Phi_{\mathcal{A}_I}(A) \cap \Phi_{\mathcal{A}_I}(B)$.

Proof. It suffices to prove (4). Observe first that if $A \subset B$, $A, B \in S$, then $\Phi_{\mathcal{A}_I}(A) \subset \Phi_{\mathcal{A}_I}(B)$, so $\Phi_{\mathcal{A}_I}(A \cap B) \subset \Phi_{\mathcal{A}_I}(A) \cap \Phi_{\mathcal{A}_I}(B)$. To prove the opposite inclusion, assume $x \in \Phi_{\mathcal{A}_I}(A) \cap \Phi_{\mathcal{A}_I}(B)$. Let $\{t_n\}_{n \in N}$ be an arbitrary sequence of real numbers decreasing to zero. From $x \in \Phi_{\mathcal{A}_I}(A)$, by definition, there is its subsequence $\{t_{n_m}\}_{m \in N}$ and a set $A_1 \in \mathcal{A}_I$ such that the sequence $\{\chi_{\frac{1}{t_{n_m}} \cdot (A-x) \cap [-1,1]}\}_{m \in N}$ of characteristic functions converges *I*-almost everywhere on A_1 to 1. Similarly, for $\{t_{n_m}\}_{m \in N}$ from $x \in \Phi_{\mathcal{A}_I}(B)$, by definition, there is a subsequence $\{t_{n_{m_k}}\}_{k \in N}$ and a set $B_1 \in \mathcal{A}_I$ such that the sequence $\{\chi_{\frac{1}{t_{n_mk}} \cdot (A-x) \cap [-1,1]}\}_{k \in N}$ of characteristic functions converges *I*-almost everywhere on B_1 to 1. It is clear that the sequence $\{\chi_{\frac{1}{t_{n_mk}} \cdot ((A \cap B) - x) \cap [-1,1]}\}_{k \in N}$ converges *I*-almost everywhere on $A_1 \cap B_1$ to 1, i.e., x is a $\Phi_{\mathcal{A}_I}$ -density point of $A \cap B$.

Remark 2. With Definition 1, all the results from [WO3] stay valid. Since, we do not require any convergence of the sequence $\{\chi_{\frac{1}{t_{n_m}}} \cdot (A-x) \cap [-1,1]\}_{m \in N}$ on the set $[-1,1] \setminus B$, some proofs may be even shorter.

Generalization

DEFINITION 2. \mathcal{A}_{II} will denote a family of subsets of [-1, 1] having the Baire property that have zero as an \mathcal{A}_I -density point. \mathcal{A}_{II}^+ (and \mathcal{A}_{II}^-) will denote a family of subsets of [-1, 1] having the Baire property that have zero as a right (left) \mathcal{A}_I -density point. If $A \in \mathcal{A}_{II}^+$ ($A \in \mathcal{A}_{II}^-$), we say that 0 is an \mathcal{A}_I -density point of A from the right (left).

Remark 3. Since $[-1,1] \in \mathcal{A}_I$, we clearly have $\mathcal{A}_I \subset \mathcal{A}_{II}$.

DEFINITION 3. We shall say that x is an \mathcal{A}_{II} -density point of $A \in S$ if, for any sequence of real numbers $\{t_n\}_{n\in\mathbb{N}}$ decreasing to zero, there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ and a set $B \in \mathcal{A}_{II}$, such that the sequence $\{\chi_{\frac{1}{t_{n_m}}} \cdot (A-x) \cap [-1,1]\}_{m\in\mathbb{N}}$ of characteristic functions converges *I*-almost everywhere on *B* to 1.

The set of all \mathcal{A}_{II} -density points of $A \in S$ will be denoted by $\Phi_{\mathcal{A}_{II}}(A)$.

PROPOSITION 1. For each $A \in S$,

$$\Phi_{\mathcal{A}_I}(A) \subset \Phi_{\mathcal{A}_{II}}(A) \,.$$

Proof. This is a simple consequence of the inclusion $\mathcal{A}_I \subset \mathcal{A}_{II}$.

LEMMA 1 ([WO3]). Let $A \subset [0, 1]$ be a set with the Baire property and let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of positive numbers converging to 1, $a_n < \frac{3}{2}$. Then, the sequence of characteristic functions $\{\chi_{a_n \cdot A}\}_{n \in \mathbb{N}}$ converges I-a.e. on [-1, 1] to χ_A .

To shorten the notation, given a sequence $\{a_n\}_{n\in\mathbb{N}}$, we will use $\{a_n^{(1)}\}_{n\in\mathbb{N}}$, $\{a_n^{(2)}\}_{n\in\mathbb{N}},\ldots,\{a_n^{(k)}\}_{n\in\mathbb{N}}$ for its consecutive subsequences, and $\{a_n^{(k)-1}\}_{n\in\mathbb{N}}$ will denote the sequence of elements of the sequence $\{a_n\}_{n\in\mathbb{N}}$ directly preceding elements of $\{a_n^{(k)}\}_{n\in\mathbb{N}}$ (immediate predecessors of elements of $\{a_n^{(k)}\}_{n\in\mathbb{N}}$ in $\{a_n\}_{n\in\mathbb{N}}$). The sequence of immediate successors will be denoted by $\{a_n^{(k)+1}\}_{n\in\mathbb{N}}$.

PROPOSITION 2. There exists a set A such that $\Phi(A) = \Phi_{A_I}(A) \subseteq \Phi_{A_{II}}(A)$.

Proof. We start with the notion of the density from the right. We shall define a set E such that:

- 1) 0 is not an \mathcal{A}_I -density point of E from the right.
- 2) 0 is not an \mathcal{A}_I -density point of $\mathbb{R} \setminus E$ from the right.
- 3) 0 is an \mathcal{A}_{II} -density point of E from the right.

The proof is analogous to the proof presented in [WO4] for the measure case with the appropriate changes. For the convenience of the reader, we present it in a complete form.

Let $D \in \mathcal{A}_I$ be a set such that $[0,1] \setminus D \in S \setminus I$, and $\{c_n\}_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to 0, $c_1 < 1$, such that $\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 0$.

The set $A \in S$ is defined as

$$A = \bigcup_{n=1}^{\infty} \left[(c_n \cdot D) \cap (c_{n+1}, c_n) \right].$$

From the definition of A, we have

$$\left(\frac{1}{c_n} \cdot A\right) \cap \left(\frac{c_{n+1}}{c_n}, 1\right) = D \cap \left(\frac{c_{n+1}}{c_n}, 1\right),$$

and by the proof in [WO3, Proposition 3], $A \in \mathcal{A}_{II}^+$, i.e., 0 is an \mathcal{A}_I -density point of A from the right.

Let $\{d_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to 0 such that

$$\lim_{n \to \infty} \frac{a_{n+1}}{d_n} = 0, \quad d_1 < 1.$$

We define $E \in S$ as follows

$$E = \bigcup_{n \in \mathbb{N}} \left[(d_n \cdot A) \cap (d_{n+1}, d_n) \right].$$

Let $\{t_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to zero. We can find subsequences $\{t_n^{(1)}\}_{n\in\mathbb{N}}$ and $\{d_n^{(1)}\}_{n\in\mathbb{N}}$ such that $d_n^{(1)} \le t_n^{(1)}$, and there are neither elements of $\{t_n\}_{n\in\mathbb{N}}$ nor of $\{d_n\}_{n\in\mathbb{N}}$ between $d_n^{(1)}$ and $t_n^{(1)}$.

Let us consider the sequence $\left\{\frac{d_n^{(1)}}{t_n^{(1)}}\right\}_{n \in \mathbb{N}} \subset (0, 1]$. It is possible to find a convergent subsequence $\left\{\frac{d_n^{(2)}}{t_n^{(2)}}\right\}_{n \in \mathbb{N}}$. There are two possibilities:

(a) $\lim_{n\to\infty} \frac{d_n^{(2)}}{t_n^{(2)}} = c \neq 0$, i.e., $\lim_{n\to\infty} \frac{d_n^{(2)}}{ct_n^{(2)}} = 1$ (of course, $c \leq 1$).

Since $\lim_{n\to\infty} \frac{d_{n+1}}{d_n} = 0$, we have $\lim_{n\to\infty} \frac{d_n^{(2)+1}}{c \cdot t_n^{(2)}} = 0$. By the definition of E, for every $0 < \varepsilon < \frac{1}{2}$, there exists $n_0 \in \mathbb{N}$ such that for $n > n_0$ we have

$$\left(\frac{1}{c \cdot t_n^{(2)}} \cdot E\right) \cap (\varepsilon, 1 - \varepsilon) = \left(\frac{d_n^{(2)}}{c \cdot t_n^{(2)}} \cdot A\right) \cap (\varepsilon, 1 - \varepsilon)$$

By Lemma 1, $\left\{\chi_{\left(\frac{d_n^{(2)}}{c\cdot t_n^{(2)}}\cdot A\cap[0,1]\right)}\right\}_{n\in\mathbb{N}}$ converges *I*-a.e. to $\chi_{A\cap[0,1]}$ on $(\varepsilon, 1-\varepsilon)$.

Since ε was arbitrary, $\left\{\chi_{\left(\frac{d_n^{(2)}}{c,t^{(2)}}\cdot A\cap[0,1]\right)}\right\}_{n\in\mathbb{N}}$ and thus also $\left\{\chi_{\left(\left(\frac{1}{c\cdot t_n^{(2)}}\cdot E\right)\cap[0,1]\right)}\right\}_{n\in\mathbb{N}}$ converge *I*-a.e. to $\chi_{A \cap [0,1]}$ on [0,1].

Equivalently, $\left\{\chi_{\left(\left(\frac{1}{t^{(2)}}\cdot E\right)\cap[0,c]\right)}\right\}_{n\in\mathbb{N}}$ converges *I*-a.e. to $\chi_{(c\cdot A)\cap[0,c]}$ on [0,c], and thus, *I*-a.e. on $(c \cdot A) \cap [0, c]$ to 1. Since 0 is an \mathcal{A}_I -density point of $(c \cdot A) \cap [0, c]$ from the right, we put

$$C = (c \cdot A) \cap [0, c]$$
 and $C \in \mathcal{A}_{II}^+$.

(b) $\lim_{n \to \infty} \frac{d_n^{(2)}}{t^{(2)}} = 0.$

Again, there are two possibilities: (b1) The sequence $\left\{\frac{d_n^{(2)-1}}{t_n^{(2)}}\right\}_{n\in\mathbb{N}}$ has a subsequence $\left\{\frac{d_n^{(3)-1}}{t_n^{(3)}}\right\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} \frac{d_n^{(3)-1}}{t_n^{(3)}} = c < \infty$. Then, we proceed similarly as in (a).

We clearly have c > 1, and, by an argument similar to that used in part (a), $\left\{\chi_{\left(\frac{1}{t_{n}^{(3)}}\cdot E\right)\cap[0,c]}\right\}_{n\in\mathbb{N}}$ is convergent *I*-a.e. on [0,1] to $\chi_{(c\cdot A)\cap[0,1]}$, and thus, convergent *I*-a.e. on $(c\cdot A)\cap[0,1]$ to 1. Since 0 is an \mathcal{A}_{I} -density point of $(c\cdot A)\cap[0,1]$ from the right, we put

$$B = (c \cdot A) \cap [0, 1]$$
 and $B \in \mathcal{A}_{II}^+$.

(b2) The sequence $\left\{\frac{d_n^{(2)-1}}{t_n^{(2)}}\right\}_{n\in\mathbb{N}}$ tends to infinity. By the definition of E, for every $0 < \varepsilon < \frac{1}{2}$, there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$

$$\left(\frac{1}{t_n^{(2)}} \cdot E\right) \cap \left(\varepsilon, \frac{1}{\varepsilon}\right) = \left(\frac{d_n^{(2)-1}}{t_n^{(2)}} \cdot A\right) \cap \left(\varepsilon, \frac{1}{\varepsilon}\right).$$

We can find a subsequence $\left\{\frac{d_n^{(3)-1}}{t_n^{(3)}}\right\}_{n\in\mathbb{N}}$ of $\left\{\frac{d_n^{(2)-1}}{t_n^{(2)}}\right\}_{n\in\mathbb{N}}$ and a subsequence $\left\{c_n^{(1)}\right\}_{n\in\mathbb{N}}$ of sequence $\left\{c_n\right\}_{n\in\mathbb{N}}$ such that

$$\frac{d_n^{(3)-1}}{t_n^{(3)}}c_n^{(1)} \le 1, \quad \frac{d_{n+1}^{(3)-1}}{t_{n+1}^{(3)}}c_n^{(1)} > 1, \quad \frac{d_n^{(3)-1}}{t_n^{(3)}}c_n^{(1)-1} > 1.$$

We shall consider the behavior of the sequence $\left\{\frac{d_n^{(3)-1}}{t_n^{(3)}}c_n^{(1)}\right\}_{n\in\mathbb{N}}$. There are two cases (b2a) and (b2b).

(b2a) There is a subsequence $\left\{\frac{d_n^{(4)-1}}{t_n^{(4)}}c_n^{(2)}\right\}_{n\in\mathbb{N}}$ convergent to some $0 < c \leq 1$. Then, the sequence of characteristic functions $\left\{\chi_{\left(\frac{1}{t_n^{(4)}}\cdot E\right)\cap(0,c)}\right\}_{n\in\mathbb{N}}$ is convergent to $\chi_{(c\cdot D)\cap(0,c)}$ *I*-a.e. on (0,c), and thus, it converges *I*-a.e. on $(c\cdot D)\cap(0,c)$ to 1. Since 0 is an *I*-density point of $(c\cdot D)\cap(0,c)$ from the right and as $b \leq 1$, put

$$B = (c \cdot D) \cap [0, c] \quad \text{and} \quad B \in \mathcal{A}_I^+ \subset \mathcal{A}_{II}^+$$

(b2b) There is a subsequence $\left\{\frac{d_n^{(4)-1}}{t_n^{(4)}}c_n^{(2)}\right\}_{n\in\mathbb{N}}$ convergent to zero. We have the following two subcases.

(b2b1) The sequence $\left\{\frac{d_n^{(4)-1}}{t_n^{(4)}}c_n^{(2)-1}\right\}_{n\in\mathbb{N}}$ is bounded. Then, we can find its subsequence $\left\{\frac{d_n^{(5)-1}}{t_n^{(5)}}c_n^{(3)-1}\right\}_{n\in\mathbb{N}}$ convergent to some $c \geq 1$. Then, the sequence of characteristic functions $\left\{\chi_{\left(\frac{1}{t_n^{(5)}}\cdot E\right)\cap(0,c)}\right\}_{n\in\mathbb{N}}$ is convergent *I*-a.e. on (0,c) to $\chi_{(c\cdot D)\cap(0,c)}$, and thus, it converges *I*-a.e. on $(c\cdot D)\cap(0,1)$ to 1. Since 0 is an *I*-density point of $(c\cdot D)\cap(0,c)$ from the right and as $b\geq 1$, put

$$B = (c \cdot D) \cap [0, 1]$$
 and $B \in \mathcal{A}_I^+ \subset \mathcal{A}_{II}^+$.

(b2b2) We can find an increasing subsequence

$$\left\{\frac{d_n^{(5)-1}}{t_n^{(5)}}c_n^{(3)-1}\right\}_{n\in\mathbb{N}} \quad \text{of} \quad \left\{\frac{d_n^{(4)-1}}{t_n^{(4)}}c_n^{(2)-1}\right\}_{n\in\mathbb{N}}$$

convergent to infinity. Then, we can take one more subsequence $\{t_n^{(6)}\}_{n\in\mathbb{N}}$ to obtain the sequence of characteristic functions $\{\chi_{\left(\frac{1}{t_n^{(6)}}\cdot E\right)\cap(c,1)}\}_{n\in\mathbb{N}}$ convergent to $\chi_{[0,1]}$ *I*-a.e. on [0,1] and thus, it converges *I*-a.e. on [0,1] to 1. Since [0,1] has 0 as an *I*-density point from the right, we determine the set *B* as B = [0,1] and $B \in \mathcal{A}_{II}^+$.

Finally, 0 is an \mathcal{A}_{II} -density point of E from the right and we define

$$H = -E \cup E.$$

Clearly, 0 is an \mathcal{A}_{II} -density point of H, however, not an \mathcal{A}_{I} -density point of H nor of $\mathbb{R} \setminus H$.

Remark 4. Observe that in the above proof, the set $B \in \mathcal{A}_{II}$ associated, as required in Definition 3, with the appropriate subsequence of $\{t_n\}_{n \in \mathbb{N}}$ either equals the interval [0, 1] or is a dilation either of the set D or the set A, when restricted to the interval (0, c) for some $c \in (0, 1]$.

THEOREM 2. The mapping $\Phi_{A_{II}}: S \to 2^{\mathbb{R}}$ has the following properties:

- (0) For each $A \in S$, $\Phi_{\mathcal{A}_{II}}(A) \in S$.
- (1) For each $A \in S$, $A \sim \Phi_{\mathcal{A}_{II}}(A)$.
- (2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{II}}(A) = \Phi_{\mathcal{A}_{II}}(B)$.
- (3) $\Phi_{\mathcal{A}_{II}}(\emptyset) = \emptyset, \ \Phi_{\mathcal{A}_{II}}(\mathbb{R}) = \mathbb{R}.$
- (4) For each $A, B \in S$, $\Phi_{\mathcal{A}_{II}}(A \cap B) = \Phi_{\mathcal{A}_{II}}(A) \cap \Phi_{\mathcal{A}_{II}}(B)$.

Proof. Conditions (2) and (3) are immediate consequences of the definition of $\Phi_{A_{II}}$.

(4) First, observe that if $A \subset B$, $A, B \in S$, then $\Phi_{\mathcal{A}_{II}}(A) \subset \Phi_{\mathcal{A}_{II}}(B)$, so $\Phi_{\mathcal{A}_{II}}(A \cap B) \subset \Phi_{\mathcal{A}_{II}}(A) \cap \Phi_{\mathcal{A}_{II}}(B)$. To prove the opposite inclusion, assume $x \in \Phi_{\mathcal{A}_{II}}(A) \cap \Phi_{\mathcal{A}_{II}}(B)$. Let $\{t_n\}_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to zero. From $x \in \Phi_{\mathcal{A}_{II}}(A)$, by definition, there is a subsequence $\{t_{n_m}\}_{m \in \mathbb{N}}$ and a set $A_1 \in \mathcal{A}_{II}$, such that the sequence $\{\chi_{\left(\frac{1}{t_{n_m}} \cdot (A-x)\right) \cap [-1,1]}\}_{n \in \mathbb{N}}$ of characteristic functions converges *I*-a.e. on A_1 to 1. Similarly, for $\{t_{n_m}\}_{m \in \mathbb{N}}$, there is a subsequence $\{t_{n_{m_k}}\}_{k \in \mathbb{N}}$ and a set $B_1 \in \mathcal{A}_{II}$ such that the sequence $\{\chi_{\left(\frac{1}{t_{n_{m_k}}} \cdot (B-x)\right) \cap [-1,1]}\}_{n \in \mathbb{N}}$ of characteristic functions converges *I*-a.e. on B_1 to 1. Since $A_1 \cap B_1 \in \mathcal{A}_{II}$, the sequence $\left\{\chi_{\left(\frac{1}{t_{n_{m_k}}} \cdot ((A \cap B) - x)\right) \cap [-1,1]}\right\}_{n \in \mathbb{N}}$ converges *I*-a.e. on $A_1 \cap B_1$ to 1, i.e., x is an \mathcal{A}_{II} -density point of $A \cap B$.

(1) Let $A \in S$. Since $\Phi(A) \subset \Phi_{A_{II}}(A)$, we have $A \setminus \Phi_{A_{II}}(A) \subset A \setminus \Phi(A)$, and thus, $A \setminus \Phi_{A_{II}}(A) \in I$, since $A \setminus \Phi(A) \in I$.

From (3) and (4) we have

$$\Phi_{\mathcal{A}_{II}}(A) \cap \Phi_{\mathcal{A}_{II}}(\mathbb{R} \setminus A) = \Phi_{\mathcal{A}_{II}}(A \cap (\mathbb{R} \setminus A)) = \emptyset,$$

 \mathbf{SO}

$$\Phi_{\mathcal{A}_{II}}\left(\mathbb{R}\setminus A\right)\subset\mathbb{R}\setminus\Phi_{\mathcal{A}_{II}}(A)$$

and consequently

$$\Phi_{\mathcal{A}_{II}}(A) \setminus A = (\mathbb{R} \setminus A) \setminus (\mathbb{R} \setminus \Phi_{\mathcal{A}_{II}}(A)) \subset (\mathbb{R} \setminus A) \setminus \Phi_{\mathcal{A}_{II}}(\mathbb{R} \setminus A).$$

From the first part of the proof, we obtain $\Phi_{\mathcal{A}_{II}}(A) \setminus A \in I$, so $A \sim \Phi_{\mathcal{A}_{II}}(A)$.

Condition (0) is a consequence of (1).

Remark 5. It is an immediate consequence of (0), (1) and (2) of Theorem 2 that $\Phi_{\mathcal{A}_{II}}$ is idempotent, i.e., $\Phi_{\mathcal{A}_{II}}(A) = \Phi_{\mathcal{A}_{II}}(\Phi_{\mathcal{A}_{II}}(A))$.

 \square

THEOREM 3. The family $\mathcal{T}_{A_{II}} = \{A \in S : A \subset \Phi_{A_{II}}(A)\}$ is a topology stronger than the \mathcal{A}_{I} -density topology.

Proof. (compare [W2]) By Theorem 2 (3), we have $\emptyset, \mathbb{R} \in \mathcal{T}_{\mathcal{A}_{II}}$, and the family $\mathcal{T}_{\mathcal{A}_{II}}$ is closed under finite intersections by (4). To prove that $\mathcal{T}_{\mathcal{A}_{II}}$ is closed under arbitrary unions, observe that from (1) $\Phi_{\mathcal{A}_{II}}(A) \setminus A \in I$ for each $A \in S$. Take a family $\{A_t\}_{t\in T} \subset \mathcal{T}_{\mathcal{A}_{II}}$. We have $A_t \subset \Phi_{\mathcal{A}_{II}}(A)$ for each $t\in T$. Choose a sequence $\{t_n\}_{n\in\mathbb{N}}$ such that for each $t\in T$ we have $A_t \setminus \bigcup_{n\in\mathbb{N}} A_{t_n} \in I$. It is possible by the CCC property of (S, I). Then,

$$\Phi_{\mathcal{A}_{II}}\left(A_{t}\right) = \Phi_{\mathcal{A}_{II}}\left(\left(A_{t} \cap \bigcup_{n \in \mathbb{N}} A_{t_{n}}\right) \cup \left(A_{t} \setminus \bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)\right) \subset \Phi_{\mathcal{A}_{II}}\left(\bigcup_{n \in \mathbb{N}} A_{t_{n}}\right)$$

for each $t \in T$. Hence,

$$\bigcup_{n\in\mathbb{N}} A_{t_n} \subset \bigcup_{t\in T} A_t \subset \bigcup_{t\in T} \Phi_{\mathcal{A}_{II}}(A_t) \subset \Phi_{\mathcal{A}_{II}}\left(\bigcup_{n\in\mathbb{N}} A_{t_n}\right).$$

The first and the last set in the above sequence of inclusions differ in a set of first category and both belong to S, so $\bigcup_{t \in T} A_t \in S$. Also

$$\bigcup_{t\in T} A_t \subset \Phi_{\mathcal{A}_{II}}\left(\bigcup_{t\in T} A_t\right),$$

by central inclusion and the monotonicity of $\Phi_{\mathcal{A}_{II}}$, so finally $\bigcup_{t \in T} A_t \in \mathcal{T}_{\mathcal{A}_{II}}$.

The set $(-E \cup E) \cup \{0\}$, where *E* is defined in Proposition 2, belongs to $\mathcal{T}_{\mathcal{A}_{II}}$ but not to $\mathcal{T}_{\mathcal{A}_I}$.

Remark 6. Like the density topology, the \mathcal{A}_{II} -density topology can be described in the form $\mathcal{T}_{\mathcal{A}_{II}} = \{ \Phi_{\mathcal{A}_{II}}(A) \setminus P : A \in S \text{ and } P \in I \}$, for if $A \in \mathcal{T}_{\mathcal{A}_{II}}$, then $A \in \Phi_{\mathcal{A}_{II}}(A)$. Consequently, $A = \Phi_{\mathcal{A}_{II}}(A) \setminus (\Phi_{\mathcal{A}_{II}}(A) \setminus A)$, and we take $P = \Phi_{\mathcal{A}_{II}}(A) \setminus A \in I$. Now, if $B = \Phi_{\mathcal{A}_{II}}(A) \setminus P$, for some $A \in S$ and $P \in I$, then $\Phi_{\mathcal{A}_{II}}(B) = \Phi_{\mathcal{A}_{II}}(\Phi_{\mathcal{A}_{II}}(A) \setminus P) =$

$$\Phi_{\mathcal{A}_{II}}(\Phi_{\mathcal{A}_{II}}(A)) = \Phi_{\mathcal{A}_{II}}(A) \supset \Phi_{\mathcal{A}_{II}}(A) \setminus P = B,$$

from Theorem 2 (1),(2).

THEOREM 4. For an arbitrary set $A \subset \mathbb{R}$,

$$\operatorname{Int}_{\mathcal{T}_{\mathcal{A}_{\mathrm{II}}}}(A) = A \cap \Phi_{\mathcal{A}_{\mathrm{II}}}(B) \,,$$

where $B \in S$ is such that $B \subset A$ and $A \setminus B \in I$.

THEOREM 5. A set $A \in \mathcal{T}_{\mathcal{A}_{II}}$ is $\mathcal{T}_{\mathcal{A}_{II}}$ -regular open if and only if $A = \Phi_{\mathcal{A}_{II}}(A)$.

THEOREM 6. The following equalities hold:

- $I = \{A \subset \mathbb{R} : A \text{ is a } \mathcal{T}_{\mathcal{A}_{II}} nowhere \text{ dense set} \}$
 - $= \{A \subset \mathbb{R} : A \text{ is a } \mathcal{T}_{\mathcal{A}_{II}} \text{first category set} \}$
 - $= \{A \subset \mathbb{R} : A \text{ is a } \mathcal{T}_{\mathcal{A}_{II}} closed \text{ and } \mathcal{T}_{\mathcal{A}_{II}} discrete \text{ set} \}.$

THEOREM 7.

- (a) The σ -algebra of $\mathcal{T}_{\mathcal{A}_{II}}$ -Borel sets coincides with S.
- (b) If $E \subset \mathbb{R}$ is a $\mathcal{T}_{\mathcal{A}_{II}}$ -compact set, then E is finite.
- (c) The space $(\mathbb{R}, \mathcal{T}_{\mathcal{A}_{II}})$ is neither first countable, nor second countable, nor Lindelöf, nor separable. It is a Baire space.

Further generalization

We will continue the generalization of a density point by induction, defining an \mathcal{A}_{III} -density point of a set $A \in S$, later \mathcal{A}_{IIII} -density point of the set, and so on. Let us denote the concatenation of k characters I by I(k), for example, $\mathcal{A}_{I(4)}$ will denote \mathcal{A}_{IIII} .

For n=2, the $\mathcal{A}_{I(2)} = \mathcal{A}_{II}$ -density point, $\Phi_{\mathcal{A}_{I(2)}} = \Phi_{\mathcal{A}_{II}}$ operator, $\mathcal{T}_{\mathcal{A}_{I(2)}} = \mathcal{T}_{\mathcal{A}_{II}}$ -density topology were defined in the previous section.

Now, we present our induction hypothesis.

Let $n \in \mathbb{N}$, n > 2. Suppose we have defined, consecutively for $k = 1, \ldots, n - 1$, the notions of $\mathcal{A}_{I(k)}$ -density point, the mapping $\Phi_{\mathcal{A}_{I(k)}} : S \to 2^{\mathbb{R}}$, and the topology $\mathcal{T}_{\mathcal{A}_{I(k)}}$. Assume that for k < n, the appropriate analogues of Proposition 2, Remark 4 and Theorem 2 given below are valid.

For k = 1, ..., n - 1, the family $\mathcal{A}_{I(k)}$ is a family of subsets of [-1, 1] having the Baire property that have $\mathcal{A}_{I(k-1)}$ -density point at 0.

DEFINITION 4. For k = 1, ..., n - 1, we say that x is an $\mathcal{A}_{I(k)}$ -density point of $A \in S$ if, for any sequence of real numbers $\{t_n\}_{n \in \mathbb{N}}$ decreasing to zero, there exists a subsequence $\{t_{n_m}\}_{m \in \mathbb{N}}$ and a set $B \in \mathcal{A}_{I(k)}$, such that the sequence $\{\chi_{\frac{1}{t_{n_m}} \cdot (A-x) \cap [-1,1]}\}_{m \in \mathbb{N}}$ of characteristic functions converges *I*-a.e. on *B* to 1.

The set of all $\mathcal{A}_{I(k)}$ -density points of $A \in S$ is denoted by $\Phi_{\mathcal{A}_{I(k)}}(A)$.

PROPOSITION 3. For k = 1, ..., n - 1, there exists a set A such that

$$\Phi(A) = \Phi_{\mathcal{A}_{I(k-1)}}(A) \subsetneqq \Phi_{\mathcal{A}_{I(k)}}(A).$$

Remark 7. For k = 1, ..., n-1 in the proof of Proposition 2, the set $B \in \mathcal{A}_{I(k-1)}$ associated, as required in Definition 4, with the appropriate subsequence of $\{t_n\}_{n \in \mathbb{N}}$ either equals the interval [0, 1] or is a dilation either of the set D or the set A, when restricted to the interval (0, c) for some $c \in (0, 1]$.

THEOREM 8. For k = 1, ..., n-1, the mapping $\Phi_{\mathcal{A}_{I(k)}}: S \to 2^{\mathbb{R}}$ has the following properties:

- (0) For each $A \in S$, $\Phi_{\mathcal{A}_{I(k)}}(A) \in S$.
- (1) For each $A \in S$, $A \sim \Phi_{\mathcal{A}_{I(k)}}(A)$.
- (2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I(k)}}(A) = \Phi_{\mathcal{A}_{I(k)}}(B)$.
- (3) $\Phi_{\mathcal{A}_{I(k)}}(\emptyset) = \emptyset, \ \Phi_{\mathcal{A}_{I(k)}}(\mathbb{R}) = \mathbb{R}.$
- (4) For each $A, B \in S$, $\Phi_{\mathcal{A}_{I(k)}}(A \cap B) = \Phi_{\mathcal{A}_{I(k)}}(A) \cap \Phi_{\mathcal{A}_{I(k)}}(B)$.

Let us consider one more family of sets having the Baire property:

 $\mathcal{A}_{I(n)}$: a family of subsets of [-1, 1] that have $\mathcal{A}_{I(n-1)}$ -density point at 0. $\mathcal{A}_{I(n)}^+$ and $\mathcal{A}_{I(n)}^-$ will denote a family of subsets of [-1, 1] having the Baire property that have 0 as a right (left) $\mathcal{A}_{I(n)}$ -density point. If $A \in \mathcal{A}_{I(n)}^+$ $(A \in \mathcal{A}_{I(n)}^-)$, we say that 0 is an $\mathcal{A}_{I(n)}$ -density point of A from the right (left).

DEFINITION 5. We say that x is an $\mathcal{A}_{I(n)}$ -density point of $A \in S$ if, for any sequence of real numbers $\{t_n\}_{n\in\mathbb{N}}$ decreasing to zero, there is a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ and a set $B \in \mathcal{A}_{I(n)}$, such that the sequence $\{\chi_{\frac{1}{t_{n_m}} \cdot (A-x)\cap [-1,1]}\}_{m\in\mathbb{N}}$ of characteristic functions converges *I*-a.e. on *B* to 1.

PROPOSITION 4.

- (a) For each $A \in S$, $\Phi(A) \subset \Phi_{\mathcal{A}_I}(A) \subset \Phi_{\mathcal{A}_{II}}(A) \subset \cdots \subset \Phi_{\mathcal{A}_{I(n-1)}}(A) \subset \Phi_{\mathcal{A}_{I(n-1)}}(A)$, $n \in \mathbb{N}$.
- (b) For each $n \in \mathbb{N}$, there exists a set A such that $\Phi(A) \subsetneq \Phi_{\mathcal{A}_I}(A) \subsetneq \Phi_{\mathcal{A}_I}(A) \subsetneq \Phi_{\mathcal{A}_{I(n-1)}}(A) \subsetneqq \Phi_{\mathcal{A}_{I(n)}}(A)$.

Proof. Part (a) follows from the fact that the requirements on A to have x as an $\mathcal{A}_{I(n)}$ -density point are weaker than the requirements on the set to have x as an $\mathcal{A}_{I(n-1)}$ -density point.

ON GENERALIZATION OF THE \mathcal{T}_{A_I} -DENSITY TOPOLOGY

As previously, the proof of (b) is analogous to the proof presented in [WO4] for the measure case with the appropriate changes. We present it here in a complete form for the convenience of the reader.

To prove (b), for given $n \in \mathbb{N}$, we extend the construction of the set H described in Proposition 2 up to n constructive steps. Again, we shall start with the right-side notion of the $\mathcal{A}_{I(n)}$ -density. We shall define a set $E \in S$ such that:

- (1) 0 is not an $\mathcal{A}_{I(n-1)}$ -density point of E from the right.
- (2) 0 is an $\mathcal{A}_{I(n)}$ -density point of E from the right.

Let $D^{(1)} \in \mathcal{A}_I = \mathcal{A}_{I(1)}$ be an open set such that $[0,1] \setminus D^{(1)} \in S \setminus I$, and $\{{}^{(1)}c_i\}_{i \in \mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to 0, ${}^{(1)}c_1 < 1$, such that $\lim_{i \to \infty} \frac{{}^{(1)}c_{i+1}}{{}^{(1)}c_i} = 0$. We define the set $D^{(2)} \in S$ as

$$D^{(2)} = \bigcup_{i=1}^{\infty} \left[\left({}^{(1)}c_i \cdot D^{(1)} \right) \cap \left({}^{(1)}c_{i+1}, {}^{(1)}c_i \right) \right] \cap (0,1].$$

By definition of $D^{(2)}$,

$$\left(\frac{1}{{}^{(1)}c_i} \cdot D^{(2)}\right) \cap \left(\frac{{}^{(1)}c_{i+1}}{{}^{(1)}c_i}, 1\right) = D^{(1)} \cap \left(\frac{{}^{(1)}c_{i+1}}{{}^{(1)}c_i}, 1\right),$$

 $D^{(2)} \in \mathcal{A}_{I(2)}$ (by the proof of Proposition 2), i.e., 0 is an $\mathcal{A}_{I(1)}$ -density point of $D^{(2)}$ from the right.

Now, let ${\binom{(2)}{c_i}}_{i\in\mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to 0, ${\binom{(2)}{c_1}} < 1$, such that $\lim_{i\to\infty} \frac{{\binom{(2)}{c_{i+1}}}}{{\binom{(2)}{c_i}}} = 0$. We define the set $D^{(3)} \in S$ as

$$D^{(3)} = \bigcup_{i=1}^{\infty} \left[\left({}^{(2)}c_i \cdot D^{(2)} \right) \cap \left({}^{(2)}c_{i+1}, {}^{(2)}c_i \right) \right] \cap (0,1].$$

Assume that we have consecutively defined the sets $D^{(k)}$, k = 1, 2, ..., nin the above manner with the use of sequences of real numbers (respectively) $\{{}^{(k)}c_i\}_{i\in\mathbb{N}}, k=1, 2, ..., n-1$, decreasing to $0, {}^{(k)}c_1 < 1$, such that $\lim_{i\to\infty} \frac{{}^{(k)}c_{i+1}}{{}^{(k)}c_i} = 0$, such that $D^{(k)} \in \mathcal{A}_{I(k)}$, i.e., 0 is an $\mathcal{A}_{I(k-1)}$ -density point of $D^{(k)}$ from the right. Let $\{{}^{(n)}c_i\}_{i\in\mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to $0, {}^{(n)}c_1 < 1$, such that $\lim_{i\to\infty} \frac{{}^{(n)}c_{i+1}}{{}^{(n)}c_i} = 0$. We define a set $E = D^{(n+1)} \in S$ as

$$E = D^{(n+1)} = \bigcup_{i=1}^{\infty} \left[\left({}^{(n)}c_i \cdot D^{(n)} \right) \cap \left({}^{(n)}c_{i+1}, {}^{(n)}c_i \right) \right] \cap (0,1].$$

Now, let $\{t_i\}_{i\in\mathbb{N}}$ be an arbitrary sequence of real numbers decreasing to zero. We can find some subsequences

 $\left\{t_i^{(1)}\right\}_{i\in\mathbb{N}} \quad \text{and} \quad \left\{^{(n)}c_i^{(1)}\right\}_{i\in\mathbb{N}} \quad \text{of} \quad \left\{t_i\right\}_{i\in\mathbb{N}} \quad \text{and} \quad \left\{^{(n)}c_i\right\}_{i\in\mathbb{N}}, \quad \text{respectively},$

such that ${}^{(n)}c_i^{(1)} \leq t_i^{(1)}$, and there are no elements of $\{t_i\}_{i\in\mathbb{N}}$ nor of $\{{}^{(n)}c_i\}_{i\in\mathbb{N}}$ between ${}^{(n)}c_i^{(1)}$ and $t_i^{(1)}$. Let us consider the sequence $\{\frac{{}^{(n)}c_i^{(1)}}{t_i^{(1)}}\}_{i\in\mathbb{N}} \subset (0,1]$. We can find its convergent subsequence $\{\frac{{}^{(n)}c_i^{(2)}}{t_i^{(2)}}\}_{i\in\mathbb{N}}$. There are two possibilities:

(a)
$$\lim_{n \to \infty} \frac{{}^{(n)}c_i^{(2)}}{t_i^{(2)}} = a \neq 0$$
, i.e., $\lim_{n \to \infty} \frac{{}^{(n)}c_i^{(2)}}{at_i^{(2)}} = 1$.

By an argument similar to that used in the proof of Proposition 2 (a), we prove that

$$\left\{\chi_{\left(\left(\frac{1}{t_{i}^{(2)}}\cdot E\right)\cap[0,a]\right)}\right\}_{i\in\mathbb{N}}$$

converges *I*-a.e. to $\chi_{(a \cdot D^{(n-1)}) \cap [0,a]}$ on [0,a].

We can consequently find one more subsequence $\big\{\frac{{}^{(n)}c_i^{(3)}}{t_i^{(3)}}\big\}_{i\in\mathbb{N}}$ such that

$$\left\{\chi_{\left(\left(\frac{1}{t_i^{(3)}}\cdot E\right)\cap[0,a]\right)}\right\}_{i\in\mathbb{N}}$$

converges *I*-a.e. to $\chi_{(a \cdot D^{(n)}) \cap [0,a]}$ on [0,a], and thus, *I*-a.e. on $(a \cdot D^{(n)}) \cap [0,a]$ to 1. Since $(a \cdot D^{(n)}) \cap [0,a] \in \mathcal{A}_{I(n)}$, we put

$$B = \left(a \cdot D^{(n)}\right) \cap [0, a] \quad \text{and} \quad B \in \mathcal{A}^+_{I(n)}.$$

(b) $\lim_{n \to \infty} \frac{{}^{(n)}c_i^{(2)}}{t_i^{(2)}} = 0.$

Again, there are two possibilities:

(b1) The sequence $\left\{\frac{{}^{(n)}c_i^{(2)-1}}{t_i^{(2)}}\right\}_{i\in\mathbb{N}}$ has a subsequence $\left\{\frac{{}^{(n)}c_i^{(3)-1}}{t_i^{(3)}}\right\}_{i\in\mathbb{N}}$ such that $\lim_{n\to\infty}\frac{{}^{(n)}c_i^{(3)-1}}{t_i^{(3)}} = b < \infty$, then we proceed similarly as in (a).

We clearly have $b \ge 1$ and, by an argument similar to that used in part (a),

$$\left\{\chi_{\left(\frac{1}{t_i^{(3)}}\cdot E\right)\cap[0,b]}\right\}_{i\in\mathbb{N}}$$

ON GENERALIZATION OF THE \mathcal{T}_{A_I} -DENSITY TOPOLOGY

is convergent *I*-a.e. on [0,1] to $\chi_{(b \cdot D^{(n)}) \cap [0,1]}$, and thus, convergent *I*-a.e. on $(b \cdot D^{(n)}) \cap [0,1]$ to 1. Since $(b \cdot D^{(n)}) \cap [0,1] \in \mathcal{A}_{I(n)}$, we put

 $B = (b \cdot D^{(n)}) \cap [0, 1]$ and $B \in \mathcal{A}^+_{I(n)}$.

(b2) The sequence $\left\{\frac{{}^{(n)}c_i^{(2)-1}}{t_i^{(2)}}\right\}_{i\in\mathbb{N}}$ tends to infinity. By the definition of E, for every $0 < \varepsilon < \frac{1}{2}$, there exists $i_0 \in \mathbb{N}$ such that for all $i > i_0$ we have

$$\left(\frac{1}{t_i^{(2)}} \cdot E\right) \cap \left(\varepsilon, \frac{1}{\varepsilon}\right) = \left(\frac{{}^{(n)}c_i^{(2)-1}}{t_i^{(2)}} \cdot D^{(n)}\right) \cap \left(\varepsilon, \frac{1}{\varepsilon}\right).$$

Then, according to Remark 3 and assuming, in induction hypothesis, Remark 7, the sequence

$$\left\{\chi_{\left(\left(\frac{1}{t_{i}^{(2)}}\cdot E\right)\cap[0,a]\right)}\right\}_{i\in\mathbb{N}}$$

is convergent *I*-a.e. on the interval [0, 1] to the characteristic function of a set *B* from *S*, which is either the interval [0, 1] or a set that, if restricted to interval (0, c) for some $c \leq 1$, is the image under a dilation of some of $D^{(k)}$, $k = 1, 2, \ldots, n-1$. We may proceed as above and set $B \in \mathcal{A}_{I(n)}^+$.

Clearly, 0 is not an $\mathcal{A}_{I(n-1)}$ -density point of E from the right and 0 is an $\mathcal{A}_{I(n)}$ -density point of E from the right, i.e., $0 \in \Phi_{\mathcal{A}_{I(n)}}(-E \cup E) \setminus \Phi_{\mathcal{A}_{I(n-1)}}(-E \cup E)$.

Let $\{(a_n, b_n)\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint open subintervals of [0, 1]. In each (a_k, b_k) , $k \leq n + 1$, we inscribe the image under a dilation of the set $-D^{(k)} \cup D^{(k)}$ with the center of dilation at point 0 and a scale factor of $\frac{b_k - a_k}{2}$ to obtain a required set

$$A = \bigcup_{k \le n+1} \left[\left(\frac{b_k - a_k}{2} \cdot \left(-D^{(k)} \cup D^{(k)} \right) \right) + \frac{a_k + b_k}{2} \right].$$

For $k = 1, \ldots, n+1$, the point $\frac{a_k+b_k}{2} \in \Phi_{\mathcal{A}_{I(k-1)}}(A) \setminus \Phi_{\mathcal{A}_{I(k-2)}}(A)$; we assume here $\Phi_{\mathcal{A}_{I(0)}} = \Phi(A)$ and $\Phi_{\mathcal{A}_{I(-1)}} = \emptyset$.

THEOREM 9. For $n \in \mathbb{N}$, the mapping $\Phi_{\mathcal{A}_{I(n)}} : S \to 2^{\mathbb{R}}$ has the following properties:

- (0) For each $A \in S$, $\Phi_{\mathcal{A}_{I(n)}}(A) \in S$.
- (1) For each $A \in S$, $A \sim \Phi_{\mathcal{A}_{I(n)}}(A)$.
- (2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I(n)}}(A) = \Phi_{\mathcal{A}_{I(n)}}(B)$.
- (3) $\Phi_{\mathcal{A}_{I(n)}}(\emptyset) = \emptyset, \ \Phi_{\mathcal{A}_{I(n)}}(\mathbb{R}) = \mathbb{R}.$
- (4) For each $A, B \in S$, $\Phi_{\mathcal{A}_{I(n)}}(A \cap B) = \Phi_{\mathcal{A}_{I(n)}}(A) \cap \Phi_{\mathcal{A}_{I(n)}}(B)$.

P r o o f. (4) follows directly from Theorem 8 (4).

41

Remark 8. It is an immediate consequence of (0), (1), and (2) of Theorem 9 that $\Phi_{\mathcal{A}_{I(n)}}$ is idempotent, i.e., $\Phi_{\mathcal{A}_{I(n)}}(A) = \Phi_{\mathcal{A}_{I(n)}}(\Phi_{\mathcal{A}_{I(n)}}(A))$. We also have $\Phi_{\mathcal{A}_{I(n)}}(A) \cap \Phi_{\mathcal{A}_{I(n)}}(\mathbb{R} \setminus A) = \emptyset$.

THEOREM 10. For every $n \in \mathbb{N}$, the family $\mathcal{T}_{\mathcal{A}_{I(n)}} = \{A \in S : A \subset \Phi_{\mathcal{A}_{I(n)}}(A)\}$ is a topology stronger than the $\mathcal{T}_{\mathcal{A}_{I(n-1)}}$ -density topology.

Proof. By Theorem 9, we have $\emptyset, \mathbb{R} \in \mathcal{T}_{\mathcal{A}_{I(n)}}$, and the family $\mathcal{T}_{\mathcal{A}_{I(n)}}$ is closed under finite intersections. To prove that $\mathcal{T}_{\mathcal{A}_{I(n)}}$ is closed under arbitrary unions, observe that from Theorem 9 (1), $\Phi_{\mathcal{A}_{I(n)}}(A) \setminus A \in I$ for each $A \in S$. Take a family $\{A_t\}_{t \in T} \subset \mathcal{T}_{\mathcal{A}_{I(n)}}$. We have $A_t \subset \Phi_{\mathcal{A}_{I(n)}}(A)$ for each $t \in T$. Choose a sequence $\{t_n\}_{n \in \mathbb{N}}$ such that, for each $t \in T$, we have $A_t \setminus \bigcup_{n \in \mathbb{N}} A_{t_n} \in I$. It is possible by the CCC property of (S, I). Then,

$$\Phi_{\mathcal{A}_{I(n)}}(A_t) = \Phi_{\mathcal{A}_{I(n)}}\left(\left(A_t \cap \bigcup_{n \in \mathbb{N}} A_{t_n}\right) \cup \left(A_t \setminus \bigcup_{n \in \mathbb{N}} A_{t_n}\right)\right) \subset \Phi_{\mathcal{A}_{I(n)}}\left(\bigcup_{n \in \mathbb{N}} A_{t_n}\right)$$

for each $t \in T$. Hence,

$$\bigcup_{n\in\mathbb{N}}A_{t_n}\subset\bigcup_{t\in T}A_t\subset\bigcup_{t\in T}\Phi_{\mathcal{A}_{I(n)}}(A_t)\subset\Phi_{\mathcal{A}_{I(n)}}\left(\bigcup_{n\in\mathbb{N}}A_{t_n}\right).$$

The first and the last set in the above sequence of inclusions differ in a set of first category and both belong to S, so $\bigcup_{t\in T} A_t \in S$. Also $\bigcup_{t\in T} A_t \subset \Phi_{\mathcal{A}_{I(n)}}(\bigcup_{t\in T} A_t)$, by central inclusion and the monotonicity of $\Phi_{\mathcal{A}_{I(n)}}$, so finally $\bigcup_{t\in T} A_t \in \mathcal{T}_{\mathcal{A}_{I(n)}}$.

The set $(-E \cup E) \cup \{0\}$, where *E* is defined in Proposition 4, belongs to $\mathcal{T}_{\mathcal{A}_{I(n)}}$ but not to $\mathcal{T}_{\mathcal{A}_{I(n-1)}}$.

Thus, we now have

$$\mathcal{T} \subsetneqq \mathcal{T}_{\mathcal{A}_I} \subsetneqq \mathcal{T}_{\mathcal{A}_{II}} \subsetneqq \cdots \subsetneqq \mathcal{T}_{\mathcal{A}_{I(n-1)}} \subsetneqq \mathcal{T}_{\mathcal{A}_{I(n)}},$$

where \mathcal{T} denotes the natural topology on the real line.

Similarly as in the case of $\mathcal{T}_{\mathcal{A}_{II}}$, relying on results from [WO3], one can obtain the following results.

THEOREM 11. For an arbitrary set $A \subset \mathbb{R}$

$$\operatorname{Int}_{\mathcal{T}_{\mathcal{A}_{I(n)}}}(A) = A \cap \Phi_{\mathcal{A}_{I(n)}}(B) \,,$$

where $B \in S$ is such that $B \subset A$ and $A \setminus B \in I$.

THEOREM 12. A set $A \in \mathcal{T}_{\mathcal{A}_{I(n)}}$ is $\mathcal{T}_{\mathcal{A}_{I(n)}}$ -regular open if and only if $A = \Phi_{\mathcal{A}_{I(n)}}(A)$.

THEOREM 13. The following equalities hold:

- $I = \{A \subset \mathbb{R} : A \text{ is a } \mathcal{T}_{\mathcal{A}_{I(n)}} \text{ nowhere dense set} \}$
 - $= \{A \subset \mathbb{R} : A \text{ is a } \mathcal{T}_{\mathcal{A}_{I(n)}} \text{ first category set} \}$
 - $= \{A \subset \mathbb{R} : A \text{ is a } \mathcal{T}_{\mathcal{A}_{I(n)}} \text{ closed and } \mathcal{T}_{\mathcal{A}_{I(n)}} \text{ discrete set} \}.$

THEOREM 14.

- (a) The σ -algebra of $\mathcal{T}_{\mathcal{A}_{I(n)}}$ Borel sets coincides with S.
- (b) If $E \subset \mathbb{R}$ is a $\mathcal{T}_{\mathcal{A}_{I(n)}}$ compact set, then E is finite.
- (c) The space $(\mathbb{R}, \mathcal{T}_{\mathcal{A}_{I(n)}})$ is neither first countable, nor second countable, nor Lindelöf, nor separable. It is a Baire space.

A final generalization

DEFINITION 6. We shall say that x is an $\mathcal{A}_{I(\omega)}$ -density point of $A \in S$ if it is an $\mathcal{A}_{I(n)}$ -density point of A for some $n \in \mathbb{N}$.

Remark 9. For any $A \in S$, we have

$$\Phi_{\mathcal{A}_{I(\omega)}}(A) = \bigcup_{n \in \mathbb{N}} \Phi_{\mathcal{A}_{I(n)}}(A)$$

There exists a set $A \in S$ such that

$$\Phi_{\mathcal{A}_{I(n-1)}}(A) \subsetneqq \Phi_{\mathcal{A}_{I(n)}}(A) \subsetneqq \Phi_{\mathcal{A}_{I(\omega)}}(A), \quad n \in \mathbb{N}.$$

PROPOSITION 5.

- (a) For each $A \in S$, $\Phi(A) \subset \Phi_{\mathcal{A}_{I}}(A) \subset \Phi_{\mathcal{A}_{II}}(A) \subset \cdots \subset \Phi_{\mathcal{A}_{I(n-1)}}(A) \subset \Phi_{\mathcal{A}_{I(n-1)}}(A) \subset \Phi_{\mathcal{A}_{I(n)}}(A) \subset \cdots \subset \Phi_{\mathcal{A}_{I(\omega)}}(A).$
- (b) There exists a set A such that $\Phi(A) \subsetneqq \Phi_{\mathcal{A}_{I}(A)} (A) \subsetneqq \Phi_{\mathcal{A}_{II}}(A) \hookrightarrow \Phi_{\mathcal{A}_{II}}(A) \hookrightarrow \Phi_{\mathcal{A}_{I(n-1)}}(A) \subsetneqq \Phi_{\mathcal{A}_{I(n)}}(A) \hookrightarrow \Phi_{\mathcal{A}_{I(n)}}(A)$.

Proof. Part (a) is a consequence of Remark 9.

(b) Let $\{(a_n, b_n)\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint open subintervals of [0, 1]. We take the sequence of sets $D^{(k)}$, $k = 1, 2, 3, \ldots n+1$, defined in Proposition 4 and extend the sequence in similar manner for all k > n + 1. Then, we define

$$A = \bigcup_{k \in \mathbb{N}} \left[\left(\frac{b_k - a_k}{2} \cdot \left(-D^{(k)} \cup D^{(k)} \right) \right) + \frac{a_k + b_k}{2} \right].$$

THEOREM 15. The mapping $\Phi_{\mathcal{A}_{I(\omega)}}: S \to 2^{\mathbb{R}}$ has the following properties:

- (0) For each $A \in S$, $\Phi_{\mathcal{A}_{I(\omega)}}(A) \in S$.
- (1) For each $A \in S$, $A \sim \Phi_{\mathcal{A}_{I(\omega)}}(A)$.
- (2) For each $A, B \in S$, if $A \sim B$, then $\Phi_{\mathcal{A}_{I(\omega)}}(A) = \Phi_{\mathcal{A}_{I(\omega)}}(B)$.
- (3) $\Phi_{\mathcal{A}_{I(n)}}(\emptyset) = \emptyset, \Phi_{\mathcal{A}_{I(\omega)}}(\mathbb{R}) = \mathbb{R}.$
- (4) For each $A, B \in S$, $\Phi_{\mathcal{A}_{I(\omega)}}(A \cap B) = \Phi_{\mathcal{A}_{I(\omega)}}(A) \cap \Phi_{\mathcal{A}_{I(\omega)}}(B)$.

Proof. (4) follows from the fact that if $x \in \Phi_{\mathcal{A}_{I(\omega)}}(A) \cap \Phi_{\mathcal{A}_{I(\omega)}}(B)$, then there exists $k, l \in \mathbb{N}$ such that

$$x \in \Phi_{\mathcal{A}_{I(k)}}(A)$$
 and $x \in \Phi_{\mathcal{A}_{I(l)}}(B)$.

Then,

$$x \in \Phi_{\mathcal{A}_{I(n)}}(A) \cap \Phi_{\mathcal{A}_{I(n)}}(B)$$
,

where $n = \max\{k, l\}$, and $x \in \Phi_{\mathcal{A}_{I(n)}}(A \cap B) \subset \Phi_{\mathcal{A}_{I(\omega)}}(A \cap B)$ follows directly from Theorem 9 (4) and Remark 9.

THEOREM 16. The family $\mathcal{T}_{\mathcal{A}_{I(\omega)}} = \{A \in S : A \subset \Phi_{\mathcal{A}_{I(\omega)}}(A)\}$ is a topology stronger than the $\mathcal{T}_{\mathcal{A}_{I(n)}}$ -density topology for every $n \in \mathbb{N}$.

Proof. Obvious.

Thus, we have now

$$\mathcal{T} \subsetneqq \mathcal{T}_{\mathcal{A}_I} \subsetneqq \mathcal{T}_{\mathcal{A}_{II}} \subsetneqq \cdots \subsetneqq \mathcal{T}_{\mathcal{A}_{I(n-1)}} \subsetneqq \mathcal{T}_{\mathcal{A}_{I(n)}} \cdots \subsetneqq \mathcal{T}_{\mathcal{A}_{I(\omega)}}.$$

THEOREM 17. For an arbitrary set $A \subset \mathbb{R}$,

$$\operatorname{Int}_{\mathcal{T}_{\mathcal{A}_{I(\omega)}}}(A) = A \cap \Phi_{\mathcal{A}_{I(\omega)}}(B) \,,$$

where $B \in S$ is such that $B \subset A$ and $A \setminus B \in I$.

Theorem 18. We have $\bigcup_{n \in \mathbb{N}} \mathcal{T}_{\mathcal{A}_{I(n)}} \subsetneqq \mathcal{T}_{\mathcal{A}_{I(\omega)}}$.

Proof. Since $\Phi_{\mathcal{A}_{I(\omega)}}(A) = \bigcup_{n \in \mathbb{N}} \Phi_{\mathcal{A}_{I(n)}}(A), A \subset \Phi_{\mathcal{A}_{I(n)}}(A)$ implies $A \subset \Phi_{\mathcal{A}_{I(\omega)}}(A)$. The set A defined in proposition 5 verifies that $\bigcup_{n \in \mathbb{N}} \mathcal{T}_{\mathcal{A}_{I(n)}} \neq \mathcal{T}_{\mathcal{A}_{I(\omega)}}$.

THEOREM 19. There is a set $E \in S$ such that, for every $n \in \mathbb{N}$, the difference $\Phi_{\mathcal{A}_{I(n+1)}}(E) \setminus \Phi_{\mathcal{A}_{I(n)}}(E)$ is a countable set.

Proof. In each interval $[k, k+1], k \in \mathbb{N}$, we put a copy of the set A from Proposition 5 obtaining $E = \bigcup_{k \in \mathbb{N}} (A+k)$. Thus, in every interval $[k, k+1], k \in \mathbb{N}$, we have a point in $\Phi_{\mathcal{A}_{I(n+1)}}(E) \setminus \Phi_{\mathcal{A}_{I(n)}}(E)$.

ON GENERALIZATION OF THE \mathcal{T}_{A_I} -DENSITY TOPOLOGY

REFERENCES

- [CLO] CIESIELSKI, K.—LARSON, L.—OSTASZEWSKI, K.: *I-Density continuous func*tions, Mem. Amer. Math. Soc. 107 (1994), 133 p.
- [PWW1] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. CXXV (1985), 167–173.
- [PWW2] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: Remarks on *I*-density and *I*-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985), 553–563.
- [W1] WILCZYŃSKI, W.: A generalization of the density topology, Real Anal. Exchange 8 (1982–83), 16–20.
- [W2] WILCZYŃSKI, W.: Density Topologies, in: Handbook of Measure Theory, Elsevier, Amsterdam, 2002, pp. 675–702.
- [WO1] WOJDOWSKI, W.: A generalization of density topology, Real. Anal. Exchange **32** (2006/2007), 349–358.
- [WO3] WOJDOWSKI, W.: A category analogue of the generalization of Lebesgue density topology, Tatra Mt. Math. Publ. 42 (2009), 11–25.
- [WO4] WOJDOWSKI, W.: A further generalization of the \mathcal{T}_{A_d} -density topology, J. Appl. Anal. **19** (2013), 283–304.
- [WO5] WOJDOWSKI, W.: Corrigendum in: A category analogue of the generalization of Lebesgue density topology, Tatra Mt. Math. Publ. **65** (2016), 161–164.

Received December 11, 2015

Department of Mathematics Technical University of Łódź ul. Wólczańska 215 PL-90-924 Łódź POLAND E-mail: alicjakrzeszowiec@gmail.com

wojwoj@gmail.com