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QUASICONTINUOUS FUNCTIONS,
DENSELY CONTINUOUS FORMS AND
COMPACTNESS

L'uBica HoLA — DuSaN HoLY

ABSTRACT. Let X be a locally compact space. A subfamily F of the space
D*(X,R) of densely continuous forms with nonempty compact values from X
to R equipped with the topology 7y ¢ of uniform convergence on compact sets
is compact if and only if {sup(F) . F e .7-"} is compact in the space Q(X,R)
of quasicontinuous functions from X to R equipped with the topology ¢

1. Introduction

Quasicontinuous functions were introduced by Kempisty in 1932 in [14].
They are important in many areas of mathematics. They found applications in
the study of minimal USCO and minimal CUSCO maps [7], [8], in the study of
topological groups [3], [16], [18], in proofs of some generalizations of Michael’s
selection theorem [0, in the study of extensions of densely defined continuous
functions [6], in the study of dynamical systems [4]. The quasicontinuity is also
used in the study of CHART groups [17].

Densely continuous forms were introduced by Hammer and McCoy
in [I2]. Densely continuous forms can be considered as set-valued mappings from
a topological space X into a topological space Y which have a kind of minimality
property found in the theory of minimal USCO mappings. In particular, every
minimal USCO mapping from a Baire space into a metric space is a densely
continuous form. There is also a connection between differentiability properties
of convex functions and densely continuous forms as expressed via the subdiffer-
entials of convex functions, which are a kind of convexification of minimal USCO

mappings [12].
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In [12] the authors proved the Ascoli-type theorem for densely continuous
forms from a locally compact space to a boundedly compact metric space. In our
paper we present new characterizations of compact subsets of (D* (X , R) , TUc)
via quasicontinuous selections of elements of D* (X, R).

2. Preliminaries

In what follows let X, Y be Hausdorff topological spaces, Z™ be the set of posi-
tive integers, R be the space of real numbers with the usual metric. The symbol A
will stand for the closure of the set A in a topological space.

A function f: X — Y is quasicontinuous [19] at 2 € X if for every open set
V Y, f(x) € V and every open set U C X, x € U there is a nonempty open
set W C U such that f(W) C V. If f is quasicontinuous at every point of X
we say that f is quasicontinuous.

Denote by F(X,Y) the set of all functions from X to Y and by Q(X,Y) the
set of all quasicontinuous functions in F(X,Y).

By 2¥ we denote the space of all closed subsets of Y and by CL(Y) the
space of all nonempty closed subsets of Y. By K(Y) we denote the space of all
nonempty compact subsets of Y. The space of all functions from X to 2¥ we de-
note by FI(X,2Y). We also call the functions from F(X,2") set-valued functions,
or multifunctions, from X to Y. In our paper, we will identify functions and set-
valued functions with their graphs.

To define a densely continuous form from X to Y [12], denote by DC(X,Y)
the set of all functions f € F(X,Y") such that the set C(f) of points of continuity
of f is dense in X. We call such functions densely continuous.

Of course, DC(X,Y") contains the set C'(X,Y") of all continuous functions from
XtoY. If Y = R and X is a Baire space, then all upper and lower semicontinuous
functions on X belongs to DC'(X,Y) and if X is a Baire space and Y is a metric
space, then every quasicontinuous function f: X — Y has a dense Gs-set C(f)
of the points of continuity of f [19]; i.e., Q(X,Y) € DC(X,Y). Notice that
points of continuity and quasicontinuity of functions are studied in [2].

For every f € DC(X,Y), we denote by f [ C(f) the closure of the graph

of f 1 C(f)in X x Y. If D is any dense subset of C(f), then f | D, the closure

of the graph of f [ D in X xY is equal to f | C(f). We define the set D(X,Y)
of densely continuous forms by

DX, Y) = {TTC(): f € DO(X,Y)}.

Densely continuous forms from X to Y may be considered as set-valued map-
pings, where for each x € X and F € D(X,Y), F(z) = {y eY:(z,y) € F}
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DEFINITION 2.1 ([I9]). Let X,Y be topological spaces and F' be a set-valued
mapping from X to Y. F is lower quasicontinuous at a point x € X if for
every open set G intersecting F'(z) and every open set H containing x there is
a nonempty open set U C H such that GN F(u) # () for any w € U. F is lower
quasicontinuous if it is lower quasicontinuous at any point of X.

We will study relations between quasicontinuous functions and densely con-
tinuous forms.
The following two propositions are clear.

PROPOSITION 2.2. Let X, Y be topological spaces and F be a densely continuous
form from X toY. Then F is lower quasicontinuous.

PROPOSITION 2.3. Let X, Y be topological spaces. Let f be a function from X

toY. If f C f 1 C(f), then f is a quasicontinuous function and f € DC(X,Y).

Remark 2.4. It is easy to see that if f € Q(X,Y) and D is a dense subset
of X, then f=f1D.

Denote by
D*(X,Y)={F € D(X,Y): F(z) # 0 for every x € X }.

We have the following characterizations of the elements of D*(X,Y) [7].
For a reader’s convenience we will prove it.

THEOREM 2.5. Let X be a Baire space and Y be a metric space. Let F be
a set-valued mapping from X to Y. The following are equivalent:

(1) Fe D*(X,Y).

(2) There is a quasicontinuous function f: X — Y such that f = F.

(3) Every selection f of F is quasicontinuous and f = F.

Proof. (1) = (3) Let f be a selection of F. There is g € DC(X,Y) such that
F =g C(g). Of course F(z) = {g(x)} for every z € C(g); i.e., f(z) = g(x) for
every x € C(g). It is easy to verify that C(g) C C(f). (Let = € C(g). Suppose
x ¢ C(f). There is an open neighbourhood V of f(x) such that for every open
neighbourhood U of x there is zy € U with f(xy) ¢ V. Let H be an open
neighbourhood of f(x) such that H C V. The continuity of g at 2 implies that
there is an open neighbourhood O of z such that g(O) C H. Then O x (Y \ H) is
a neighbourhood of (xo, f (xo)) which has an empty intersection with the graph
of g, a contradiction, since f C g [ C(g).)

Since f C F =g [ C(g) C f[C(f), by Proposition 23] we have that f is
quasicontinuous. Of course F' = f.

(3) = (2) is trivial. (2) = (1) is also trivial since if f € Q(X,Y), then C(f)

is a dense Gs-set by [19] and by Remark 24 f = f | C(f) = F. O
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Notice that closures of graphs of quasicontinuous functions were studied also
in [15].

Let (Y, d) be a metric space. The open d-ball with center zy € Y and radius
€ > 0 will be denoted by Sc(z0) and the e-enlargement (J,. 4 Se(a) for a subset
A of Y will be denoted by Se(A).

If A e CL(Y), the distance functional d(., A): Y + [0, 00) is described by the

familiar formula
d(z,A) = inf{d(z,a): a € A}.

Let A and B be nonempty subsets of (Y, d). The excess of A over B with

respect to d is defined by the formula
ea(A, B) = sup{d(a, B): a € A}.
The Hausdorff (extended-valued) metric Hy on CL(Y') [I] is defined by
Hy(A, B) = max{eq(A, B),eq(B,A)}.
We will often use the following equality on CL(Y):
Hq(A,B) =inf{e > 0: AC S.(B) and B C S.(A)}.

If (Y, d) is a complete metric space, then both (CL(Y), Hq) and (K(Y), Hy)
are complete [1].

The topology generated by Hg is called the Hausdorff metric topology.

Following [I2] we will define the topology 7, of pointwise convergence on
F(X,2Y). The topology 7, of pointwise convergence on F(X,2Y) is induced
by the uniformity 4L, of pointwise convergence which has a base consisting of sets
of the form

W (A, &) = {(@, U):VoeAd Hy(d(x), ()< 5},

where A is a finite set in X and € > 0.

We will define the topology 1i7¢ of uniform convergence on compact sets on
F(X,2Y) [12]. This topology is induced by the uniformity ;¢ which has a base
consisting of sets of the form

W(K,e) = {(@,\If):v veK Hy(®(z),¥(x))< e},

where K € K(X) and & >0. The general 7y¢-basic neighborhood of ® € F(X, 2Y)
will be denoted by W(®, K, ¢), i.e.,

W(P,K,e) = W(K,e)[®] = {\II: Hq(®(z),¥(x)) < € for every z € K}

Finally we will define the topology 717 of uniform convergence on F(X, 2Y) [12].
Let e be the (extended-valued) metric on F(X,2Y) defined by

e(P, ) = sup{Hd(qD(x), U(z)):z € X}
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for each ®, ¥ € F(X,2Y). Then the topology of uniform convergence for the
space F(X,2Y) is the topology generated by the metric e.

We use the symbols 7,, 7y¢ and 7y also for the topology of pointwise con-
vergence, the topology of uniform convergence on compacta and the topology
of uniform convergence on the space of all functions from X to Y, respectively.

3. Densely continuous forms and
quasicontinuous functions

Let X and Y be topological spaces. Define the mapping
¢: F(X,Y) = F(X,2") as ¢(f) = [.

We say that a metric space (Y, d) is boundedly compact [I] if every closed
bounded subset is compact. Therefore (Y, d) is a locally compact, separable met-
ric space and d is complete. In fact, any locally compact, separable metric space
has a compatible metric d such that (Y, d) is a boundedly compact space [20].

PRrROPOSITION 3.1. Let X be a topological space and (Y,d) be a boundedly com-
pact metric space. The mapping ¢: (F(X, Y), TU) %(F(X, 2Y), TU) s continuous.
Proof. Let {f,: 0 € ¥} be a net in F'(X,Y) which uniformly converges to
f € F(X,Y). We show that {f, : 0 € ¥} uniformly converges to f in F'(X, 2Y).
Suppose that {f, : o € X} fails to converge uniformly to f. There exists € > 0

such that
for every o € X there are 5, > ¢ and a, € X

such that Hy(f(as), fg, (ac)) > €.

There is 0 € ¥ such that d(f,(z), f(z)) < €/4 for every n > ¢ and for every
x € X. By (*) there are , > o and a, € X such that
Hy (7(‘10)7750 (aa)) > €.
So either there exists s € f(a,) such that Sc(s) N fﬂo(ag) = () or there is
t € fg,(as) such that Sc(t) N f(ay) = 0.
Suppose there is s € f(a,) such that S(s) N fﬁg(ag) = 0.

Then there exists a net {x): A € A} converging to a, such that fz () €
Se/a(s) for every A € A. Since the space (Y,d) is boundedly compact there is

(*)

a point u € S,/2(s) which is a cluster point of the net {fs_(zx): A € A} and so
Se(s)N fs,(ag) # 0, a contradiction.
The other case is similar. O

The following proposition follows from the previous one.
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PRrROPOSITION 3.2. Let X be a locally compact topological space and (Y,d) be
a boundedly compact metric space. Then the mapping ¢ : (F(X,Y),TUC) —
(F(X,2Y),1u¢c) is continuous.

PROPOSITION 3.3. Let X be a locally compact topological space and (Y, d) be
a boundedly compact metric space. Let C be a compact subset of (Q(X, Y), TUc).
Then D = {7 fe C} is a compact subset of (D(X,Y),TUC).

Proof. The proof follows from Proposition d

The following example shows that Proposition 3.2 does not work for the point-
wise topology.

EXAMPLE 3.4. Let X = [0,1] with the usual topology. Consider the function
f: X — R defined by f(z) =1 for each x € X and the functions f,: X — R,
n € ZT defined by

B cos%, xe(O,ﬁ];
Inle) = {1, z e {0} U (52,1].

2nm?

Then the sequence {f,,: n € Z*} pointwise converges to f, but {f,: n € Z*}
does not pointwise converge to f.

Denote by D*(X,R) the set of all densely continuous forms with nonempty
compact values in R. Define the mapping sup: D*(X,R) — Q(X,R) as follows

sup(F)(z) = sup F(x).
We have the following proposition.

PROPOSITION 3.5. Let X be a Baire space. The mapping sup : D*(X,R) —
Q(X,R) is injective.
Proof. Let F,G € D*(X,R) be such that F # G. By Theorem [Z3lsup(F) = F
and sup(G) = G.

Let (x,y) € sup(F) \ sup(G). Let U,V be open sets in X and R, respectively,
such that x € U, y € V and (U x V) Nsup(G) = 0. Let (z,sup(F)(z)) € U x V.
Thus sup F(z) # sup G(z). O

Remark 3.6. It is easy to see that if A and B are nonempty compact subsets
of R, then d(sup A,sup B) < H,(A, B).

THEOREM 3.7. Let X be a locally compact space. The spaces (D*(X, R),TUC)
and (sup(D*(X, R)), TUc) are uniformly isomorphic.
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Proof. From Remark follows that the mapping sup : (D*(X,R),7u¢) —
(Q(X, R), TUc) is uniformly continuous.

To prove that also sup~! is uniformly continuous let K € K(X) and € > 0.
The local compactness of X implies that there is an open set V in X such that
K C V and V is compact. Let F,G € D*(X,R) be such that d(sup(F)(m),
sup(G)(z)) < ¢ for every @ € V. We prove that Hy(F,G) < ¢ for every z € K.

By Theorem we have sup(F') = F and sup(G) = G. Let zp € K and let
r € F(zg). Then there is a net {z,: 0 € X} in V such that {sup(F)(z,): o € £}
converges to 7. The net {sup(G)(z,): o € X} has a cluster point s € G(zo).
From this follows that d(r,G(x)) < e. Similarly, we can show that if s € G(zy),
then d(s, F(z0)) < e. Hence Hq(F (o), G(z0)) < €. O

The following Lemma will be useful in the proof of the next theorem.

LEMMA 3.8. Let X be a locally compact space and (Y, d) be a metric space. Then
Q(X,Y) is a closed subset of (F(X,Y),Tuc).

Proof. It is known that the uniform limit of quasicontinuous functions with
values in a metric space is quasicontinuous [19]. 0

THEOREM 3.9. Let X be a locally compact topological space. Then the spaces
(D*(X, R),ZLUC) and (Sup(D*(X, R)),uUC) are complete uniform spaces.

Proof. Let {F,: o € X} be a Cauchy net in (D*(X,R),yc). By Remark 3.0
the corresponding net {sup(Fa) c o€ E} is Cauchy in (Q(X, R),uUC). Since
R with the Euclidean metric d is complete, by [13] {sup(F,): 0 € ©} Tyc-
converges to a function f: X — R. By Lemma f is quasicontinuous. By
Proposition {Fa co € E} Tuc-converges to f. Since the space (K(R), Hd)
is complete, by [13] {F, : 0 € X} Tyc-converges to a F': X — K(R). It is
easy to verify that F = f. By Theorem F' is densely continuous form, i.e.,
(D*(X, R),ZLUC) is complete. By Theorem [B.1] (Sup(D*(X, R)),uUC) is com-
plete. (I

THEOREM 3.10. Let X be a locally compact topological space. A subset F C
D*(X,R) is compact in (D*(X, ]R),TUC) if and only if {sup(F) : F e .7-"} 18
compact in (Q(X, R), TUC) .

Let £ C F(X,Y) and let « € X, denote by E[z] the set {f(z) € Y; f € £}.
We say that a subset & of F'(X,Y) is pointwise bounded [9] provided for every

x € X, E[z] is compact in (Y, d).
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If X is a locally compact space and (Y, d) is a metric space, the Ascoli the-
orem [I3] says that a subset & of (C(X,Y),7yc) is compact if and only if it
is closed in (C(X JY), TUC), pointwise bounded and & is equicontinuous, where
a subset £ of C'(X,Y) is equicontinuous provided that for each z € X and € > 0
there is a neighbourhood U of z with d(f(z), f(z)) < eforall z € U and f € €.

In [I1] it is proved the Ascoli-type theorem for quasicontinuous locally bound-
ed functions, in [9] we proved Ascoli-type theorems for quasicontinuous subcon-
tinuous functions and in [I0] we proved Ascoli-type theorems for quasicontinuous
functions. To present our characterizations of compact subsets of (Q(X ,Y), TUc)
we need the following definition, which was introduced in [I1] in the context of
locally bounded functions from F(X,Y).

DEFINITION 3.11. Let X be a topological space and (Y, d) be a metric space.
We say that a subset €& of F(X,Y) is densely equiquasicontinuous at a point
x of X provided that for every € > 0, there exists a finite family B of subsets
of X which are either open or nowhere dense such that UB is a neighbourhood
of z and such that for every f € &, for every B € B and for every p,q € B,
d( f), f (q)) < €. Then & is densely equiquasicontinuous provided that it is
densely equiquasicontinuous at every point of X.

Remark 3.12. It is easy to prove that if £ is a densely equiquasicontinuous
subset of F'(X,Y), then closure of £ with respect to the topology 7, is also
densely equiquasicontinuous.

We say that a system £ C F(X,Y) is supported at z € X [10] if for every
€ > 0 there exists a neighbourhood U(z) of x and a finite family {&1,&,...,En}
of nonempty subsets of £ such that |J_, & = & and for every z € U(z), every
i€ {1,2,...,n}, and every f,g € &, d(f(z),g(z)) < e

THEOREM 3.13 ([I0]). Let X be a locally compact topological space and (Y, d)
be a boundedly compact metric space. A subset £ C (Q(X,Y),TUc) s compact
if and only if £ is closed, pointwise bounded, there is a dense open set M such

that £ is densely equiquasicontinuous at each x € M and & is supported at each
point x € X \ M.

THEOREM 3.14 ([I0]). Let X be a locally compact topological space and (Y, d)
be a boundedly compact metric space. A subset £ C (Q(X,Y),TUc) 18 compact
if and only if € is closed, pointwise bounded, there is a dense Gs-set G such

that £ is equicontinuous at each point x € G and £ is supported at each point
xeX\G.

In [12] the authors proved the Ascoli-type theorem for densely continuous
forms from a locally compact space to a boundedly compact metric space. In our
paper we present new characterizations of compact subsets of (D*(X ,R), TUc)
via quasicontinuous selections of elements of D* (X, R).
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THEOREM 3.15. Let X be a locally compact topological space. A subset
F C (D*(X,R),1uc) is compact if and only if {sup(F): F € F} is closed
mn (Q(X, R),TUC), pointwise bounded, there is a dense open set M such that

{sup(F) : F e .7-"} is densely equiquasicontinuous at each x € M and is sup-
ported at each point x € X \ M.

THEOREM 3.16. Let X be a locally compact topological space. A subset F C
(D*(X,R),7uc) is compact if and only if {sup(F) : F € F} is closed in
(Q(X,R),TUC), pointwise bounded, there is a dense Gg-set G such that
{sup(F)  F e .7:} is equicontinuous at each point x € G and is supported
at each point x € X \ G.

(12]

(13]
(14]
(15]
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