TATRA
 MOuNTaiNS

Mathematical Publications
DOI: 10.2478/v10127-012-0022-z
Tatra Mt. Math. Publ. 52 (2012), 19-28

ON HASHIMOTO TYPE TOPOLOGIES

Ma£gorzata Terepeta

ABSTRACT. For topological space (X, \mathcal{T}) and two different, proper ideals \mathcal{I}_{1}, \mathcal{I}_{2}, we consider a new topology of Hashimoto type.

Hashimoto type topologies (\star topologies) were discussed by K. Kuratowski [3, N. F. G. Martin [4] and H. Hashimoto [1]. Some improvements of known results and applications of this notion were presented in 1990 by D. Janković and T. R. Hamlett [2].

Let us remind some basic information about Hashimoto type topologies. Let (X, \mathcal{T}) be a topological space (topology \mathcal{T} has to be $\left.T_{1}\right), \mathcal{I}$ - a proper ideal of subsets of X which contains all singletons. For a set $A \subset X$ we put

$$
A^{\mathcal{I}}=\left\{x \in X: \forall_{U_{x} \in \mathcal{T}}\left(U_{x} \cap A \notin \mathcal{I}\right)\right\},
$$

where U_{x} stands for a neighbourhood of a point $x \in X$. Then (see [1]) the set $A^{\mathcal{I}}$ is closed and contained in \bar{A} (the closure of A in topology \mathcal{T}). If we assume that the ideal \mathcal{I} satisfies the condition

$$
\begin{equation*}
A \cap A^{\mathcal{I}}=\emptyset \Longleftrightarrow A \in \mathcal{I} \tag{1}
\end{equation*}
$$

then the set $A \backslash A^{\mathcal{I}}$ is small-it belongs to the ideal \mathcal{I}. The operator $A^{\mathcal{I}}$ is idempotent $A^{\mathcal{I I}}=A^{\mathcal{I}}$ and monotone, if $A \subset B$, then $A^{\mathcal{I}} \subset B^{\mathcal{I}}$. The set $\mathrm{Cl}_{\mathcal{I}}(A)=$ $A \cup A^{\mathcal{I}}$ is a closure of A in a new topology $\mathcal{T}_{\mathcal{I}}$ defined as follows

$$
\mathcal{T}_{\mathcal{I}}=\{U \backslash N: U \in \mathcal{T} \wedge N \in \mathcal{I}\}
$$

Throughout the paper, \mathcal{C} will denote the ideal of countable sets, \mathcal{N} - the ideal of null sets, \mathcal{K} - the ideal of first category sets on \mathbb{R}.

Example 1. Let $X=\mathbb{R}$. The ideals $\mathcal{C}, \mathcal{N}, \mathcal{K}$ fulfil condition (11). If $\mathcal{I}=\mathcal{C}$, then $A^{\mathcal{I}}=\{x \in \mathbb{R}: x$ is an accumulation point of $A\}$, if $\mathcal{I}=\mathcal{N}$, then $A^{\mathcal{I}}=\{x \in$ $\mathbb{R}: \forall_{U_{x} \in \mathcal{T}} U_{x} \cap A$ is of positive outer measure $\}$, if $\mathcal{I}=\mathcal{K}$ the set $A^{\mathcal{I}}=\{x \in$ $\mathbb{R}: \forall_{U_{x} \in \mathcal{T}} U_{x} \cap A$ is of second category $\}$.

[^0]
MAtGORZATA TEREPETA

In the paper we will consider two different and proper ideals $\mathcal{I}_{1}, \mathcal{I}_{2}$ fulfilling condition (1) and containing all singletons. For $A \subset X$ and $n \geq 2$, we define the sets

$$
A^{\mathcal{I}_{i_{1}} \ldots \mathcal{I}_{i_{n}}}=\left(A^{\mathcal{I}_{i_{1}} \ldots \mathcal{I}_{i_{n-1}}}\right)^{\mathcal{I}_{i_{n}}}
$$

where $\mathcal{I}_{i_{m}} \in\left\{\mathcal{I}_{1}, \mathcal{I}_{2}\right\}$ for $m=1, \ldots, n$.
Example 2. $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ and $A^{\mathcal{I}_{2} \mathcal{I}_{1}}$ need not be equal. Let $X=\mathbb{R}, \mathcal{I}_{1}=\mathcal{N}$ and $\mathcal{I}_{2}=\mathcal{K}$. Let $A \in \mathcal{I}_{1}, B \in \mathcal{I}_{2}$ be disjoint sets such that $\mathbb{R}=A \cup B$. Then $A^{\mathcal{I}_{1}}=\emptyset$, $A^{\mathcal{I}_{2}}=\mathbb{R}$, hence $A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ and $A^{\mathcal{I}_{2} \mathcal{I}_{1}}=\mathbb{R}$. Moreover, we have $X=X^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

Example 3. Let $X=\mathbb{R}, \mathcal{T}=\mathcal{T}_{o}, \mathcal{I}_{1}=\mathcal{C} \cup(0,1)$ and $\mathcal{I}_{2}=\mathcal{C} \cup(1,2)$ Then $\mathcal{I}_{1}, \mathcal{I}_{2}$ are ideals fulfilling condition (11). For such ideals we obtain $X^{\mathcal{I}_{1}}=\mathbb{R} \backslash[0,1]$ and $X^{\mathcal{I}_{1} \mathcal{I}_{2}}=\mathbb{R} \backslash[0,2]$. Hence $X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}} \neq \emptyset$.

The main aim of this work is to answer the following questions. Can we introduce the closure operation in X in the same way as it is done for one ideal, do we obtain a topology of Hashimoto type, is this topology comparable to those obtained for ideals \mathcal{I}_{1} and \mathcal{I}_{2} separately? What kind of ideal generates this topology?

From [1] and the definition of $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$, we immediately have
Property 4. For any $A \subset X$
(1) $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset \bar{A}$ and $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is closed in \mathcal{T},
(2) $(A \cup B)^{\mathcal{I}_{1} \mathcal{I}_{2}}=A^{\mathcal{I}_{1} \mathcal{I}_{2}} \cup B^{\mathcal{I}_{1} \mathcal{I}_{2}},(A \backslash B)^{\mathcal{I}_{1} \mathcal{I}_{2}} \supset A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash B^{\mathcal{I}_{1} \mathcal{I}_{2}}$,
(3) $A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \in \mathcal{I}_{2}, A^{\mathcal{I}_{2}} \backslash A^{\mathcal{I}_{2} \mathcal{I}_{1}} \in \mathcal{I}_{1}$,
(4) if $A \subset B$, then $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset B^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

In some proofs we will make use of [1, Lemma 1], so let us remind it using the notation introduced earlier.

Lemma 5. For any open set G and a set $A \subset X$,

$$
(G \cap A)^{\mathcal{I}}=\left(G \cap A^{\mathcal{I}}\right)^{\mathcal{I}}=\overline{G \cap A^{\mathcal{I}}} .
$$

Further, we will prove similar lemma for two ideals $\mathcal{I}_{1}, \mathcal{I}_{2}$ instead of one ideal \mathcal{I}.

Theorem 6. If $\mathcal{I}_{1} \subset \mathcal{I}_{2}$, then for any set $A \subset X$ the following inclusions hold:

$$
A^{\mathcal{I}_{2}}=A^{\mathcal{I}_{2} \mathcal{I}_{1}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset A^{\mathcal{I}_{1}} \subset \bar{A}
$$

Proof. Let $A \subset X$. If $\mathcal{I}_{1} \subset \mathcal{I}_{2}$, then $A^{\mathcal{I}_{2}} \subset A^{\mathcal{I}_{1}}$. From Property 4 we immediately obtain

$$
A^{\mathcal{I}_{2}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset A^{\mathcal{I}_{1}} \subset \bar{A} \quad \text { and } \quad A^{\mathcal{I}_{2}} \subset A^{\mathcal{I}_{2} \mathcal{I}_{1}} \subset A^{\mathcal{I}_{1}} \subset \bar{A}
$$

ON HASHIMOTO TYPE TOPOLOGIES

We will show that $A^{\mathcal{I}_{2} \mathcal{I}_{1}} \subset A^{\mathcal{I}_{2}}$ for any $A \subset X$. Suppose that there exists a point $x \in A^{\mathcal{I}_{2} \mathcal{I}_{1}} \backslash A^{\mathcal{I}_{2}}$. Then, for any its neighbourhood U_{x}, we have $U_{x} \cap A^{\mathcal{I}_{2}} \notin \mathcal{I}_{1}$ and there is a neighbourhood V_{x} of x such that $V_{x} \cap A \in \mathcal{I}_{2}$. So $V_{x} \cap A^{\mathcal{I}_{2}} \notin \mathcal{I}_{1}$ and $V_{x} \cap A \in \mathcal{I}_{2}$. From Lemma 5 we obtain $\emptyset=\left(V_{x} \cap A\right)^{\mathcal{I}_{2}}=\overline{V_{x} \cap A^{\mathcal{I}_{2}}}$, hence $V_{x} \cap A^{\mathcal{I}_{2}}=\emptyset$, and we have a contradiction.

Example 7. Let $X=\mathbb{R}, \mathcal{I}_{1}=\mathcal{C}, \mathcal{I}_{2}=\mathcal{N}\left(\mathcal{I}_{2}=\mathcal{K}\right)$. Then there exist sets for which the above inclusions are proper.

Let C denote the ternary Cantor set. Then $C \in \mathcal{I}_{2}$ and $C^{\mathcal{I}_{1}}=C, C^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$. Therefore, $C^{\mathcal{I}_{1}} \backslash C^{\mathcal{I}_{1} \mathcal{I}_{2}} \neq \emptyset$.

Taking the set C we will construct the set B for which $B^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash B^{\mathcal{I}_{2}} \neq \emptyset$. For $a, b \in \mathbb{R}, a<b$ we put $C(a, b)=\{a+(b-a) x: x \in C\}$. The set $C(a, b)$ is perfect, nowhere dense and of measure zero. Let $B=\bigcup_{a, b \in \mathbb{Q}, a<b} C(a, b)$. Then B is of first category and of measure zero, hence $B^{\mathcal{I}_{2}}=\emptyset$. We will show that $B^{\mathcal{I}_{1}}=\mathbb{R}$. Let $x \in \mathbb{R}$ and U_{x} be its neighbourhood. Then there exist numbers $a, b \in \mathbb{Q}, a<b$ such that $C(a, b) \subset U_{x}$, so $C(a, b) \subset U_{x} \cap B$. The set $U_{x} \cap B$ is uncountable, so $U_{x} \cap B \notin \mathcal{I}_{1}$. Hence $x \in B^{\mathcal{I}_{1}}$ and $B^{\mathcal{I}_{1}}=\mathbb{R}$. From this we have $B^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash B^{\mathcal{I}_{2}} \neq \emptyset$.
Property 8. If \mathcal{I}_{2} contains all nowhere dense sets, then $\overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \in \mathcal{I}_{2}$.
Proof. Let $A \subset X$. The sets $A^{\mathcal{I}_{1}}$ and $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ are closed and

$$
\begin{aligned}
\overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}} & \left.=\overline{A^{\mathcal{I}_{1}} \cap\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right.}\right) \subset A^{\mathcal{I}_{1}} \cap \overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \\
& =\left(A^{\mathcal{I}_{1}} \cap \overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}}\right) \cup\left(\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \cap \overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}}\right) \\
& =\left(A^{\mathcal{I}_{1}} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \cap \overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}}\right) \cup\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right. \\
& \subset\left(A^{\mathcal{I}_{1}} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \cap \overline{X \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}}\right) \cup\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \\
& \subset\left(A^{\mathcal{I}_{1}} \cap \operatorname{Fr} A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \cup\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \subset \operatorname{Fr} A^{\mathcal{I}_{1} \mathcal{I}_{2}} \cup\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right.
\end{aligned} .
$$

The set $\operatorname{Fr} A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is nowhere dense, $A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \in \mathcal{I}_{2}$ from Property 4 so

$$
\overline{A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \in \mathcal{I}_{2} .
$$

From now on, we will assume that \mathcal{I}_{2} contains all nowhere dense subsets of X. Let

$$
\mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}=\left\{N \cup M: N \in \mathcal{I}_{1} \wedge \bar{M} \in \mathcal{I}_{2}\right\} .
$$

Then $\mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$ is a proper ideal containing all singletons.
The next lemma is a simple observation how small the difference between A and $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is. It will be mentioned again as a part of Property 23, where an oposite difference is also considered.

MAŁGORZATA TEREPETA

Lemma 9. If $A \subset X$, then $A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$.
Proof. It follows directly from Properties 4 and 8 and the fact that

$$
\begin{aligned}
A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} & =\left(\left(A \backslash A^{\mathcal{I}_{1}}\right) \cup\left(A \cap A^{\mathcal{I}_{1}}\right)\right) \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& =\left(\left(A \backslash A^{\mathcal{I}_{1}}\right) \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \cup\left(A \cap\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)\right) \\
& \subset\left(A \backslash A^{\mathcal{I}_{1}}\right) \cup\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) .
\end{aligned}
$$

Let us notice that

$$
\begin{equation*}
A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset \Longleftrightarrow A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}} . \tag{2}
\end{equation*}
$$

Indeed, if $A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$, then, from the above lemma, $A=A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$. If $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then $A=N \cup M$, where $N \in \mathcal{I}_{1}$ and $\bar{M} \in \mathcal{I}_{2}$. Hence $A^{\mathcal{I}_{1} \mathcal{I}_{2}}=$ $(N \cup M)^{\mathcal{I}_{1} \mathcal{I}_{2}}=\left(M^{\mathcal{I}_{1}}\right)^{\mathcal{I}_{2}} \subset(\bar{M})^{\mathcal{I}_{2}}=\emptyset$. Moreover, if $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then for any set $B \subset X$,

$$
(B \cup A)^{\mathcal{I}_{1} \mathcal{I}_{2}}=B^{\mathcal{I}_{1} \mathcal{I}_{2}} \quad \text { and } \quad(B \backslash A)^{\mathcal{I}_{1} \mathcal{I}_{2}}=B^{\mathcal{I}_{1} \mathcal{I}_{2}} .
$$

The operator $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is idempotent, as the next theorem shows.
Theorem 10. If $A \subset X$, then $A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1} \mathcal{I}_{2}}=A^{\mathcal{I}_{1} \mathcal{I}_{2}}$.
Proof. Let $A \subset X$. First, we will show that $A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Suppose that there is a point $x \in A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Then there exists V_{x}-an open neighbourhood of x for which $V_{x} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \notin \mathcal{I}_{1}$ and $V_{x} \cap A^{\mathcal{I}_{1}} \in \mathcal{I}_{2}$. Therefore, $\left(V_{x} \cap A^{\mathcal{I}_{1}}\right)^{\mathcal{I}_{2}}=\emptyset$. From Lemma 号 we obtain $\overline{V_{x} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}}=\left(V_{x} \cap A^{\mathcal{I}_{1}}\right)^{\mathcal{I}_{2}}=\emptyset$, so $V_{x} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ what contradicts the assumption $V_{x} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \notin \mathcal{I}_{1}$. Hence $A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ and $A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

From Property 4 we have $A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1} \mathcal{I}_{2}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{2}}=A^{\mathcal{I}_{1} \mathcal{I}_{2}}$.
Now, we will show that $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1} \mathcal{I}_{2}}$. From Lemma 9 we have $A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}=$ $N \cup M$, where $N \in \mathcal{I}_{1}$ and $\bar{M} \in \mathcal{I}_{2}$. Therefore,

$$
\begin{equation*}
\left(A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}=(N \cup M)^{\mathcal{I}_{1} \mathcal{I}_{2}}=\left(M^{\mathcal{I}_{1}}\right)^{\mathcal{I}_{2}} \subset(\bar{M})^{\mathcal{I}_{2}}=\emptyset \tag{3}
\end{equation*}
$$

From Property 4 and inclusion $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1} \mathcal{I}_{2}} \subset\left(A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ we obtain $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1} \mathcal{I}_{2}}$, which completes the proof.

From Theorem 10 it follows that the set $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)=A \cup A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is a closure of A. If $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)=A$, then we will say that A is $\mathcal{I}_{1} \mathcal{I}_{2}$-closed. The set is $\mathcal{I}_{1} \mathcal{I}_{2^{-}}$ -open, if its complement is $\mathcal{I}_{1} \mathcal{I}_{2}$-closed. Moreover, we have

$$
x \in \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A \backslash\{x\}) \Longleftrightarrow x \in A^{\mathcal{I}_{1} \mathcal{I}_{2}},
$$

so $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is a derived set of A.
Theorem 11. A is $\mathcal{I}_{1} \mathcal{I}_{2}$-closed if and only if $A=F \cup N \cup M$, where F is closed in $\mathcal{T}, N \in \mathcal{I}_{1}$ and $\bar{M} \in \mathcal{I}_{2}$.

ON HASHIMOTO TYPE TOPOLOGIES

Proof. Assume that A is $\mathcal{I}_{1} \mathcal{I}_{2}$-closed, so $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset A$. Then

$$
\begin{aligned}
A & =\left(A \backslash A^{\mathcal{I}_{1}}\right) \cup\left(A \cap A^{\mathcal{I}_{1}}\right) \\
& =\left(A \backslash A^{\mathcal{I}_{1}}\right) \cup\left(\left(A \cap A^{\mathcal{I}_{1}}\right) \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \cup\left(\left(A \cap A^{\mathcal{I}_{1}}\right) \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \\
& =\left(A \backslash A^{\mathcal{I}_{1}}\right) \cup\left(A^{\mathcal{I}_{1}} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \cup\left(A \cap\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)\right) .
\end{aligned}
$$

The sets $A^{\mathcal{I}_{1}}$ and $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ are closed, so does $A^{\mathcal{I}_{1}} \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Moreover, $A \backslash A^{\mathcal{I}_{1}} \in \mathcal{I}_{1}$ and from Property 4 we have

$$
A \cap\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \in \mathcal{I}_{2} .
$$

Additionally, from the proof of Lemma 9 we obtain $\overline{A \cap\left(A^{\mathcal{I}_{1}} \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)} \in \mathcal{I}_{2}$.
Suppose now that $A=F \cup N \cup M$, where F is closed in $\mathcal{T}, N \in \mathcal{I}_{1}$ and $\bar{M} \in \mathcal{I}_{2}$. Then from [1] and Property 4

$$
A^{\mathcal{I}_{1}}=F^{\mathcal{I}_{1}} \cup N^{\mathcal{I}_{1}} \cup M^{\mathcal{I}_{1}}=F^{\mathcal{I}_{1}} \cup M^{\mathcal{I}_{1}} \subset F^{\mathcal{I}_{1}} \cup \bar{M}
$$

Hence

$$
A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset F^{\mathcal{I}_{1} \mathcal{I}_{2}} \cup(\bar{M})^{\mathcal{I}_{2}}=F^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset \bar{F}=F \subset A
$$

and $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)=A \cup A^{\mathcal{I}_{1} \mathcal{I}_{2}}=A$ which completes the proof.
Corollary 12. A is $\mathcal{I}_{1} \mathcal{I}_{2}$-open if and only if $A=G \backslash N \backslash M$, where G is open in $\mathcal{T}, N \in \mathcal{I}_{1}$ and $\bar{M} \in \mathcal{I}_{2}$.

The topology introduced by the closure operation $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}$ will be denoted by $\mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$. From Theorem [6 we immediately have

Theorem 13. $\mathcal{T}_{\mathcal{I}_{1}} \subset \mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$ for any ideals \mathcal{I}_{1} and \mathcal{I}_{2}. Moreover, if $\mathcal{I}_{1} \subset \mathcal{I}_{2}$, then $\mathcal{T}_{\mathcal{I}_{1}} \subset \mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}} \subset \mathcal{T}_{\mathcal{I}_{2} \mathcal{I}_{1}}=\mathcal{T}_{\mathcal{I}_{2}}$.
Example 14. For the ideals $\mathcal{I}_{1}=\mathcal{C}$ and $\mathcal{I}_{2}=\mathcal{N}\left(\right.$ or $\left.\mathcal{I}_{2}=\mathcal{K}\right)$ the above inclusions are proper. If $\mathcal{I}_{1}=\mathcal{N}$ and $\mathcal{I}_{2}=\mathcal{K}$, then $\mathcal{T}_{\mathcal{I}_{2}}$ and $\mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$ are incomparable.

For disjoint sets $A \in \mathcal{N}$ and $B \in \mathcal{K}$ such that $\mathbb{R}=A \cup B$ we have $B=$ $\mathbb{R} \backslash A \backslash \emptyset \in \mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$ and $B \notin \mathcal{T}_{\mathcal{I}_{2}}$.

In the same way as in Example7 we will construct the set B_{α} such that it will be of first category and $\overline{B_{\alpha}}=\mathbb{R}$. Let C_{α} be a Cantor set of positive measure α. For $a, b \in \mathbb{R}, a<b$, put $C_{\alpha}(a, b)=\left\{a+(b-a) x: x \in C_{\alpha}\right\}$. The set $C_{\alpha}(a, b)$ is perfect, nowhere dense, so $B_{\alpha}=\bigcup_{a, b \in \mathbb{Q}, a<b} C_{\alpha}(a, b)$ is of first category. Hence $\mathbb{R} \backslash B_{\alpha} \in \mathcal{T}_{\mathcal{I}_{2}}$. We will show that $\overline{B_{\alpha}}=\mathbb{R}$. Let $x \in \mathbb{R}$ and U_{x} be its neighbourhood. Then there exist numbers $a, b \in \mathbb{Q}, a<b$ such that $C_{\alpha}(a, b) \subset U_{x}$, so $C_{\alpha}(a, b) \subset$ $U_{x} \cap B_{\alpha}$. Hence $U_{x} \cap B_{\alpha} \neq \emptyset$ and $x \in \overline{B_{\alpha}}$. The set $\mathbb{R} \backslash B_{\alpha}=\mathbb{R} \backslash \emptyset \backslash B_{\alpha}$ does not belong to the topology $\mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$. Hence $\mathcal{T}_{\mathcal{I}_{2}} \backslash \mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}} \neq \emptyset$.

For operator $A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ we can prove a lemma similar to Lemma 5

MAŁGORZATA TEREPETA

Lemma 15. For any open set G and a set $A \subset X$

$$
(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} \stackrel{(i)}{=}\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \stackrel{(i i)}{=} \overline{G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}} .
$$

Proof. First, we will show that for any open set G and a set $A \subset X$

$$
\begin{equation*}
G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}=G \cap(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} . \tag{4}
\end{equation*}
$$

From inclusion $G \cap A \subset A$ and from Property 4 we have $(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Hence $G \cap(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

We will show that if $x \notin G \cap(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}$, then $x \notin G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Assume that $x \notin G \cap(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}$. We consider two cases. First, let $x \notin G$. Then $x \notin G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. If $x \in G$ but $x \notin G \cap(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}$, then $x \notin(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Therefore, there exists its neighbourhood V_{x} such that $V_{x} \cap(G \cap A)^{\mathcal{I}_{1}} \in \mathcal{I}_{2}$. Hence $V_{x} \cap G \cap(G \cap A)^{\mathcal{I}_{1}} \in \mathcal{I}_{2}$. From [1, Condition 2d] for the ideal \mathcal{I}_{1}, we obtain $V_{x} \cap G \cap(G \cap A)^{\mathcal{I}_{1}}=V_{x} \cap$ $\left(G \cap A^{\mathcal{I}_{1}}\right) \in \mathcal{I}_{2}$. So we have an open set $V_{x} \cap G$, such that $x \in V_{x} \cap G$ and $\left(V_{x} \cap G\right) \cap A^{\mathcal{I}_{1}} \in \mathcal{I}_{2}$, which means $x \notin A^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Finally, we have $x \notin G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ which completes the proof of (4).

Now, we will prove (i). From (4) we have $G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}$. From Theorem 10 it follows that

$$
\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{1} \mathcal{I}_{2}}=(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} .
$$

Simultaneously, from Lemma 9 ,

$$
\begin{aligned}
(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} & =\left(G \cap A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \cup\left(G \cap A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& \subset\left(G \cap A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}
\end{aligned}
$$

which finishes the proof of (i).
From Property 4 and (i) we obtain

$$
\overline{G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \supset\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}=(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}} .
$$

On the other hand, from (4) we have

$$
\overline{G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \subset \overline{(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}}=(G \cap A)^{\mathcal{I}_{1} \mathcal{I}_{2}}
$$

which completes the proof of $(i i)$.
Let us notice that if G is open and $G \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then $G \subset X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Indeed, by putting $A=X$ in Lemma 15 we obtain

$$
(G \cap X)^{\mathcal{I}_{1} \mathcal{I}_{2}}=G^{\mathcal{I}_{1} \mathcal{I}_{2}}=\overline{G \cap X^{\mathcal{I}_{1} \mathcal{I}_{2}}} .
$$

$G \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, hence $G^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$. From this, $G \cap X^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ and $G \subset X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$ (see also Example (3).

Recall that in the paper we assume that $\mathcal{I}_{1} \neq \mathcal{I}_{2}$ and the ideals are proper. Without this assumption the next property is not true.

Property 16. If G is open in \mathcal{T}, then $\bar{G}=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G)$.
Proof. We will show that for any open set G we have $\bar{G}=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G)$. From the definition of the closure operation we have $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G)=G \cup G^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset G \cup \bar{G}=\bar{G}$.

Let $x \in \bar{G}$. We will show that $x \in \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G)$. Let $U_{x} \in \mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$ be a neighbourhood of x. Then $U_{x}=U_{0} \backslash N \backslash M$, where $U_{0} \in \mathcal{T}, N \in \mathcal{I}_{1}, \bar{M} \in \mathcal{I}_{2}$. Consider $U_{x} \cap G=\left(U_{0} \backslash N \backslash M\right) \cap G=\left(U_{0} \cap G\right) \backslash N \backslash M$. The set $U_{0} \cap G$ is open and nonempty, so $\left(U_{0} \cap G\right) \backslash N \backslash M \neq \emptyset$, hence $x \in \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G)$.

Proposition 17. If G is $\mathcal{I}_{1} \mathcal{I}_{2}$-open and $A \subset X$, then

$$
\overline{G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}}=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) .
$$

Proof. Assume that $G=U \backslash N \backslash M$, where U is open, $N \in \mathcal{I}_{1}, \bar{M} \in \mathcal{I}_{2}$. Then from Lemma 15 (ii)

$$
\begin{aligned}
& \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left((U \backslash N \backslash M) \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash N \backslash M\right) \\
& =\left(U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash N \backslash M\right) \cup\left(U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash N \backslash M\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& =\left(U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash N \backslash M\right) \cup\left(U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& \stackrel{(i i)}{=}\left(U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash N \backslash M\right) \cup \overline{U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \supset \overline{U \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}} \supset \overline{G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}}
\end{aligned}
$$

On the other hand, we know that $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right) \subset \overline{G \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}}$ which completes the proof.

If $X^{\mathcal{I}_{1} \mathcal{I}_{2}}=X$ and G is $\mathcal{I}_{1} \mathcal{I}_{2}$-open, then $\bar{G}=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G)$.
We will say that a set is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense ($\mathcal{I}_{1} \mathcal{I}_{2}$-scattered...), if it is nowhere dense (scattered...) in topology $\mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$.

Let us notice that any nowhere dense set is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense. If A is nowhere dense, then $\overline{X \backslash \bar{A}}=X$. From Property 16 we obtain

$$
\overline{X \backslash \bar{A}}=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(X \backslash \bar{A})
$$

and

$$
X=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(X \backslash \bar{A}) \subset \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right) \subset X
$$

so A is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense.
Property 18. If A is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense set, then $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$.

MAtGORZATA TEREPETA

Proof. Let A be $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense. Then

$$
\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right)=X
$$

The set $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)$ is $\mathcal{I}_{1} \mathcal{I}_{2}$-closed, so it can be presented in the form $F \cup N \cup M$, where F is closed in $\mathcal{T}, N \in \mathcal{I}_{1}$ and $\bar{M} \in \mathcal{I}_{2}$. Let G be an open set such that $F=X \backslash G$. Then $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)=(X \backslash G) \cup N \cup M$ and

$$
\begin{aligned}
X & =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(X \backslash((X \backslash G) \cup N \cup M)) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(X \backslash(X \backslash G) \backslash N \backslash M) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(G \backslash N \backslash M) \\
& \subset \overline{G \backslash N \backslash M \subset \bar{G} \subset X .}
\end{aligned}
$$

The set G is open and dense, so $X \backslash G$ is nowhere dense in X, as \mathcal{I}_{2} contains all nowhere dense sets $\overline{X \backslash G} \in \mathcal{I}_{2}$. Moreover,
$A=A \cap \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)=A \cap((X \backslash G) \cup N \cup M)=(A \cap(X \backslash G)) \cup(A \cap N) \cup(A \cap M)$ what finishes the proof.

Let us notice that if $X^{\mathcal{I}_{1} \mathcal{I}_{2}}=X$ and $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then A is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense set. Indeed, if $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then $A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ and $\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)=A$. Therefore,

$$
\begin{aligned}
\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right) & =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(X \backslash A) \\
& =(X \backslash A) \cup(X \backslash A)^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& \supset(X \backslash A) \cup X^{\mathcal{I}_{1} \mathcal{I}_{2}}=X
\end{aligned}
$$

and we obtain the following corollary.
Corollary 19. Let $X^{\mathcal{I}_{1} \mathcal{I}_{2}}=X$. Then A is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense set if and only if $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$.

Remind that a set is called scattered if it does not contain any dense in itself subset.

Property 20. A is $\mathcal{I}_{1} \mathcal{I}_{2}$-scattered if and only if $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$.
Proof. First, we will show that for any A the set $A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is $\mathcal{I}_{1} \mathcal{I}_{2}$-dense in itself. From Lemma 9 and (2) we have $\left(A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$. So $A^{\mathcal{I}_{1} \mathcal{I}_{2}}=$ $\left(A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}$ and $A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}} \subset\left(A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}$, what means $A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is $\mathcal{I}_{1} \mathcal{I}_{2^{-}}$ -dense in itself. Let A be $\mathcal{I}_{1} \mathcal{I}_{2}$-scattered, so it does not contain any $\mathcal{I}_{1} \mathcal{I}_{2}$-dense in itself subset. Hence $A \cap A^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$ and from Lemma 9 we have $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$.

Assume that $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$. Let $B \subset A, B \neq \emptyset$. Then $B \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$ and from (2) we obtain $B \cap B^{\mathcal{I}_{1} \mathcal{I}_{2}}=\emptyset$. Therefore, A does not contain any nonempty dense in itself subset and A is $\mathcal{I}_{1} \mathcal{I}_{2}$-scattered.

ON HASHIMOTO TYPE TOPOLOGIES

Property 21. If $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then $A=G \cup N$, where G is $\mathcal{I}_{1} \mathcal{I}_{2}$-open included in $X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$ and N is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense included in $X^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

Proof. Let $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then A is $\mathcal{I}_{1} \mathcal{I}_{2}$-scattered. From [3, p. 79] we know that each scattered set can be decomposed into an open set and nowhere dense set, hence $A=G \cup N, G$ is $\mathcal{I}_{1} \mathcal{I}_{2}$-open (but also from $\mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$ as a subset of A), N is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense. As G is $\mathcal{I}_{1} \mathcal{I}_{2}$-open, it is a subset of certain open set G_{0}. Then $G_{0} \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$ and $G_{0} \subset X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Hence $G \subset X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

We will show that $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense N is included in $X^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Consider the set $N_{1}=N \cap\left(X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)$. Suppose that the set N_{1} is nonempty. Then $N_{1} \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$ and $N_{1} \subset X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$. Hence

$$
\left(X \backslash N_{1}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \cap N_{1}=X^{\mathcal{I}_{1} \mathcal{I}_{2}} \cap N_{1}=\emptyset .
$$

N_{1} is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense, so

$$
\begin{aligned}
N_{1} \subset X & =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(N_{1}\right)\right) \\
& =\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(N_{1}\right)\right) \cup\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(N_{1}\right)\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& =\left(X \backslash\left(N_{1} \cup N_{1}^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)\right) \cup\left(X \backslash\left(N_{1} \cup N_{1}^{\mathcal{I}_{1} \mathcal{I}_{2}}\right)\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} \\
& =\left(X \backslash N_{1}\right) \cup\left(X \backslash N_{1}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}} .
\end{aligned}
$$

Thus $N_{1} \subset\left(X \backslash N_{1}\right)^{\mathcal{I}_{1} \mathcal{I}_{2}}$ which is a contradiction to the definition of N_{1}. Hence $N_{1}=\emptyset$ and $N \subset X^{\mathcal{I}_{1} \mathcal{I}_{2}}$.

Property 22. If $X=X^{\mathcal{I}_{1} \mathcal{I}_{2}}$ and $A \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$, then $X \backslash A$ is dense in X.
Proof. From the previous property we have that $A=G \cup N$, where $G \subset$ $X \backslash X^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is $\mathcal{I}_{1} \mathcal{I}_{2}$-open and $N \subset X^{\mathcal{I}_{1} \mathcal{I}_{2}}$ is $\mathcal{I}_{1} \mathcal{I}_{2}$-nowhere dense. Hence $G=\emptyset$ and $X \backslash A=X \backslash N$. Moreover,

$$
X=\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(N)\right) \subset \overline{X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(N)} \subset \overline{X \backslash N}
$$

which means that $X=\overline{X \backslash A}$.
The next property contains the result of Lemma 9 and shows us how much the set A differs from its derive set in topology $\mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$.

Property 23. For any $A \subset X$
(1) $A \backslash A^{\mathcal{I}_{1} \mathcal{I}_{2}} \in \mathcal{I}_{1} \oplus \overline{\mathcal{I}_{2}}$,
(2) $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash A$ is the $\mathcal{I}_{1} \mathcal{I}_{2}$-boundary set.

MAŁGORZATA TEREPETA

Proof. Consider the set

$$
\begin{aligned}
& \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash\left(A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash A\right)\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash\left(\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A) \backslash A\right)\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right) \cup(X \cap A)\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right) \cup A\right) \\
& =\mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A) \cup \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right) \\
& \supset \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A) \cup\left(X \backslash \mathrm{Cl}_{\mathcal{I}_{1} \mathcal{I}_{2}}(A)\right)=X .
\end{aligned}
$$

Hence $A^{\mathcal{I}_{1} \mathcal{I}_{2}} \backslash A$ is a boundary set in topology $\mathcal{T}_{\mathcal{I}_{1} \mathcal{I}_{2}}$.

REFERENCES

[1] HASHIMOTO, H.: On the *topology and its application, Fund. Math. XCI (1976), 5-10.
[2] JANKOVIĆ, D.-HAMLETT, T. R.: New topologies from old via ideals, Amer. Math. Monthly 94 (1990), 295-310.
[3] KURATOWSKI, K.: Topology. Vol. 1. PWN, Warsaw, 1966.
[4] MARTIN, N. F. G.: Generalized condensation points, Duke Math. J. 28 (1961), 507-514.

```
Center of Mathematics and Physics
Eódź University of Technology
al. Politechniki 11
PL-90-924 Łódź
POLAND
E-mail: terepeta@p.lodz.pl
```


[^0]: © 2012 Mathematical Institute, Slovak Academy of Sciences. 2010 Mathematics Subject Classification: 54A10, 54A05, 11B05. Keywords: Hashimoto topology, ideal, closure, nowhere dense set.

