VERSITA

ON HASHIMOTO TYPE TOPOLOGIES

MALGORZATA TEREPETA

ABSTRACT. For topological space (X, \mathcal{T}) and two different, proper ideals \mathcal{I}_1 , \mathcal{I}_2 , we consider a new topology of Hashimoto type.

Hashimoto type topologies (* topologies) were discussed by K. Kuratowski [3], N. F. G. Martin [4] and H. Hashimoto [1]. Some improvements of known results and applications of this notion were presented in 1990 by D. Janković and T. R. Hamlett [2].

Let us remind some basic information about Hashimoto type topologies. Let (X, \mathcal{T}) be a topological space (topology \mathcal{T} has to be T_1), \mathcal{I} – a proper ideal of subsets of X which contains all singletons. For a set $A \subset X$ we put

$$A^{\mathcal{I}} = \left\{ x \in X \colon \forall_{U_x \in \mathcal{T}} \ (U_x \cap A \notin \mathcal{I}) \right\},\$$

where U_x stands for a neighbourhood of a point $x \in X$. Then (see [1]) the set $A^{\mathcal{I}}$ is closed and contained in \overline{A} (the closure of A in topology \mathcal{T}). If we assume that the ideal \mathcal{I} satisfies the condition

$$A \cap A^{\mathcal{I}} = \emptyset \Longleftrightarrow A \in \mathcal{I},\tag{1}$$

then the set $A \setminus A^{\mathcal{I}}$ is small—it belongs to the ideal \mathcal{I} . The operator $A^{\mathcal{I}}$ is idempotent $A^{\mathcal{I}\mathcal{I}} = A^{\mathcal{I}}$ and monotone, if $A \subset B$, then $A^{\mathcal{I}} \subset B^{\mathcal{I}}$. The set $\operatorname{Cl}_{\mathcal{I}}(A) = A \cup A^{\mathcal{I}}$ is a closure of A in a new topology $\mathcal{T}_{\mathcal{I}}$ defined as follows

$$\mathcal{T}_{\mathcal{I}} = \{ U \setminus N \colon U \in \mathcal{T} \land N \in \mathcal{I} \}.$$

Throughout the paper, C will denote the ideal of countable sets, \mathcal{N} – the ideal of null sets, \mathcal{K} – the ideal of first category sets on \mathbb{R} .

EXAMPLE 1. Let $X = \mathbb{R}$. The ideals \mathcal{C} , \mathcal{N} , \mathcal{K} fulfil condition (1). If $\mathcal{I} = \mathcal{C}$, then $A^{\mathcal{I}} = \{x \in \mathbb{R} : x \text{ is an accumulation point of } A\}$, if $\mathcal{I} = \mathcal{N}$, then $A^{\mathcal{I}} = \{x \in \mathbb{R} : \forall_{U_x \in \mathcal{T}} \ U_x \cap A \text{ is of positive outer measure}\}$, if $\mathcal{I} = \mathcal{K}$ the set $A^{\mathcal{I}} = \{x \in \mathbb{R} : \forall_{U_x \in \mathcal{T}} \ U_x \cap A \text{ is of second category}\}$.

^{© 2012} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 54A10, 54A05, 11B05.

Keywords: Hashimoto topology, ideal, closure, nowhere dense set.

In the paper we will consider two different and proper ideals \mathcal{I}_1 , \mathcal{I}_2 fulfilling condition (1) and containing all singletons. For $A \subset X$ and $n \geq 2$, we define the sets

$$A^{\mathcal{I}_{i_1}\dots\mathcal{I}_{i_n}} = \left(A^{\mathcal{I}_{i_1}\dots\mathcal{I}_{i_{n-1}}}\right)^{\mathcal{I}_{i_n}},$$

where $\mathcal{I}_{i_m} \in {\mathcal{I}_1, \mathcal{I}_2}$ for $m = 1, \ldots, n$.

EXAMPLE 2. $A^{\mathcal{I}_1\mathcal{I}_2}$ and $A^{\mathcal{I}_2\mathcal{I}_1}$ need not be equal. Let $X = \mathbb{R}$, $\mathcal{I}_1 = \mathcal{N}$ and $\mathcal{I}_2 = \mathcal{K}$. Let $A \in \mathcal{I}_1, B \in \mathcal{I}_2$ be disjoint sets such that $\mathbb{R} = A \cup B$. Then $A^{\mathcal{I}_1} = \emptyset$, $A^{\mathcal{I}_2} = \mathbb{R}$, hence $A^{\mathcal{I}_1\mathcal{I}_2} = \emptyset$ and $A^{\mathcal{I}_2\mathcal{I}_1} = \mathbb{R}$. Moreover, we have $X = X^{\mathcal{I}_1\mathcal{I}_2}$.

EXAMPLE 3. Let $X = \mathbb{R}$, $\mathcal{T} = \mathcal{T}_o$, $\mathcal{I}_1 = \mathcal{C} \cup (0, 1)$ and $\mathcal{I}_2 = \mathcal{C} \cup (1, 2)$ Then \mathcal{I}_1 , \mathcal{I}_2 are ideals fulfilling condition (1). For such ideals we obtain $X^{\mathcal{I}_1} = \mathbb{R} \setminus [0, 1]$ and $X^{\mathcal{I}_1 \mathcal{I}_2} = \mathbb{R} \setminus [0, 2]$. Hence $X \setminus X^{\mathcal{I}_1 \mathcal{I}_2} \neq \emptyset$.

The main aim of this work is to answer the following questions. Can we introduce the closure operation in X in the same way as it is done for one ideal, do we obtain a topology of Hashimoto type, is this topology comparable to those obtained for ideals \mathcal{I}_1 and \mathcal{I}_2 separately? What kind of ideal generates this topology?

From [1] and the definition of $A^{\mathcal{I}_1 \mathcal{I}_2}$, we immediately have

PROPERTY 4. For any $A \subset X$

(1) $A^{\mathcal{I}_{1}\mathcal{I}_{2}} \subset \overline{A} \text{ and } A^{\mathcal{I}_{1}\mathcal{I}_{2}} \text{ is closed in } \mathcal{T},$ (2) $(A \cup B)^{\mathcal{I}_{1}\mathcal{I}_{2}} = A^{\mathcal{I}_{1}\mathcal{I}_{2}} \cup B^{\mathcal{I}_{1}\mathcal{I}_{2}}, (A \setminus B)^{\mathcal{I}_{1}\mathcal{I}_{2}} \supset A^{\mathcal{I}_{1}\mathcal{I}_{2}} \setminus B^{\mathcal{I}_{1}\mathcal{I}_{2}},$ (3) $A^{\mathcal{I}_{1}} \setminus A^{\mathcal{I}_{1}\mathcal{I}_{2}} \in \mathcal{I}_{2}, A^{\mathcal{I}_{2}} \setminus A^{\mathcal{I}_{2}\mathcal{I}_{1}} \in \mathcal{I}_{1},$ (4) if $A \subset B$, then $A^{\mathcal{I}_{1}\mathcal{I}_{2}} \subset B^{\mathcal{I}_{1}\mathcal{I}_{2}}.$

In some proofs we will make use of [1, Lemma 1], so let us remind it using the notation introduced earlier.

LEMMA 5. For any open set G and a set $A \subset X$,

$$(G \cap A)^{\mathcal{I}} = (G \cap A^{\mathcal{I}})^{\mathcal{I}} = \overline{G \cap A^{\mathcal{I}}}.$$

Further, we will prove similar lemma for two ideals \mathcal{I}_1 , \mathcal{I}_2 instead of one ideal \mathcal{I} .

THEOREM 6. If $\mathcal{I}_1 \subset \mathcal{I}_2$, then for any set $A \subset X$ the following inclusions hold: $A^{\mathcal{I}_2} = A^{\mathcal{I}_2 \mathcal{I}_1} \subset A^{\mathcal{I}_1 \mathcal{I}_2} \subset A^{\mathcal{I}_1} \subset \overline{A}.$

Proof. Let $A \subset X$. If $\mathcal{I}_1 \subset \mathcal{I}_2$, then $A^{\mathcal{I}_2} \subset A^{\mathcal{I}_1}$. From Property 4 we immediately obtain

 $A^{\mathcal{I}_2} \subset A^{\mathcal{I}_1 \mathcal{I}_2} \subset A^{\mathcal{I}_1} \subset \overline{A} \quad \text{and} \quad A^{\mathcal{I}_2} \subset A^{\mathcal{I}_2 \mathcal{I}_1} \subset A^{\mathcal{I}_1} \subset \overline{A}.$

ON HASHIMOTO TYPE TOPOLOGIES

We will show that $A^{\mathcal{I}_2\mathcal{I}_1} \subset A^{\mathcal{I}_2}$ for any $A \subset X$. Suppose that there exists a point $x \in A^{\mathcal{I}_2\mathcal{I}_1} \setminus A^{\mathcal{I}_2}$. Then, for any its neighbourhood U_x , we have $U_x \cap A^{\mathcal{I}_2} \notin \mathcal{I}_1$ and there is a neighbourhood V_x of x such that $V_x \cap A \in \mathcal{I}_2$. So $V_x \cap A^{\mathcal{I}_2} \notin \mathcal{I}_1$ and $V_x \cap A \in \mathcal{I}_2$. From Lemma 5 we obtain $\emptyset = (V_x \cap A)^{\mathcal{I}_2} = V_x \cap A^{\mathcal{I}_2}$, hence $V_x \cap A^{\mathcal{I}_2} = \emptyset$, and we have a contradiction.

EXAMPLE 7. Let $X = \mathbb{R}$, $\mathcal{I}_1 = \mathcal{C}$, $\mathcal{I}_2 = \mathcal{N}$ ($\mathcal{I}_2 = \mathcal{K}$). Then there exist sets for which the above inclusions are proper.

Let C denote the ternary Cantor set. Then $C \in \mathcal{I}_2$ and $C^{\mathcal{I}_1} = C$, $C^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset$. Therefore, $C^{\mathcal{I}_1} \setminus C^{\mathcal{I}_1 \mathcal{I}_2} \neq \emptyset$.

Taking the set C we will construct the set B for which $B^{\mathcal{I}_1\mathcal{I}_2} \setminus B^{\mathcal{I}_2} \neq \emptyset$. For $a, b \in \mathbb{R}$, a < b we put $C(a, b) = \{a + (b - a)x : x \in C\}$. The set C(a, b) is perfect, nowhere dense and of measure zero. Let $B = \bigcup_{a,b \in \mathbb{Q}, a < b} C(a, b)$. Then B is of first category and of measure zero, hence $B^{\mathcal{I}_2} = \emptyset$. We will show that $B^{\mathcal{I}_1} = \mathbb{R}$. Let $x \in \mathbb{R}$ and U_x be its neighbourhood. Then there exist numbers $a, b \in \mathbb{Q}, a < b$ such that $C(a, b) \subset U_x$, so $C(a, b) \subset U_x \cap B$. The set $U_x \cap B$ is uncountable, so $U_x \cap B \notin \mathcal{I}_1$. Hence $x \in B^{\mathcal{I}_1}$ and $B^{\mathcal{I}_1} = \mathbb{R}$. From this we have $B^{\mathcal{I}_1\mathcal{I}_2} \setminus B^{\mathcal{I}_2} \neq \emptyset$.

PROPERTY 8. If \mathcal{I}_2 contains all nowhere dense sets, then $\overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1 \mathcal{I}_2}} \in \mathcal{I}_2$.

Proof. Let
$$A \subset X$$
. The sets $A^{\mathcal{I}_1}$ and $A^{\mathcal{I}_1\mathcal{I}_2}$ are closed and

$$\overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}} = \overline{A^{\mathcal{I}_1} \cap (A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2})} \subset A^{\mathcal{I}_1} \cap \overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}}$$

$$= \left(A^{\mathcal{I}_1} \cap \overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}} \cap A^{\mathcal{I}_1\mathcal{I}_2}\right) \cup \left((A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}) \cap \overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}}\right)$$

$$= \left(A^{\mathcal{I}_1} \cap A^{\mathcal{I}_1\mathcal{I}_2} \cap \overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}}\right) \cup (A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2})$$

$$\subset \left(A^{\mathcal{I}_1} \cap A^{\mathcal{I}_1\mathcal{I}_2} \cap \overline{X \setminus A^{\mathcal{I}_1\mathcal{I}_2}}\right) \cup (A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2})$$

$$\subset \left(A^{\mathcal{I}_1} \cap \operatorname{Fr} A^{\mathcal{I}_1\mathcal{I}_2}\right) \cup \left(A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}\right) \subset \operatorname{Fr} A^{\mathcal{I}_1\mathcal{I}_2} \cup \left(A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}\right).$$

The set $\operatorname{Fr} A^{\mathcal{I}_1 \mathcal{I}_2}$ is nowhere dense, $A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1 \mathcal{I}_2} \in \mathcal{I}_2$ from Property 4, so

$$\overline{A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1 \mathcal{I}_2}} \in \mathcal{I}_2.$$

From now on, we will assume that \mathcal{I}_2 contains all nowhere dense subsets of X. Let $\mathcal{I} \oplus \overline{\mathcal{I}} \oplus \overline{\mathcal{I}} = \{N \mapsto M \in \mathcal{I} \oplus \overline{\mathcal{I}} \oplus \overline{\mathcal{I}}\}$

$$\mathcal{I}_1 \oplus \mathcal{I}_2 = \left\{ N \cup M \colon N \in \mathcal{I}_1 \land M \in \mathcal{I}_2 \right\}$$

Then $\mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$ is a proper ideal containing all singletons.

The next lemma is a simple observation how small the difference between A and $A^{\mathcal{I}_1 \mathcal{I}_2}$ is. It will be mentioned again as a part of Property 23, where an oposite difference is also considered.

LEMMA 9. If $A \subset X$, then $A \setminus A^{\mathcal{I}_1 \mathcal{I}_2} \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$.

Proof. It follows directly from Properties 4 and 8 and the fact that

$$A \setminus A^{\mathcal{I}_{1}\mathcal{I}_{2}} = \left(\left(A \setminus A^{\mathcal{I}_{1}} \right) \cup \left(A \cap A^{\mathcal{I}_{1}} \right) \right) \setminus A^{\mathcal{I}_{1}\mathcal{I}_{2}} = \left(\left(A \setminus A^{\mathcal{I}_{1}} \right) \setminus A^{\mathcal{I}_{1}\mathcal{I}_{2}} \right) \cup \left(A \cap \left(A^{\mathcal{I}_{1}} \setminus A^{\mathcal{I}_{1}\mathcal{I}_{2}} \right) \right) \subset \left(A \setminus A^{\mathcal{I}_{1}} \right) \cup \left(A^{\mathcal{I}_{1}} \setminus A^{\mathcal{I}_{1}\mathcal{I}_{2}} \right).$$

Let us notice that

$$A^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset \iff A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}.$$
 (2)

Indeed, if $A^{\mathcal{I}_1\mathcal{I}_2} = \emptyset$, then, from the above lemma, $A = A \setminus A^{\mathcal{I}_1\mathcal{I}_2} \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$. If $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then $A = N \cup M$, where $N \in \mathcal{I}_1$ and $\overline{M} \in \mathcal{I}_2$. Hence $A^{\mathcal{I}_1\mathcal{I}_2} = (N \cup M)^{\mathcal{I}_1\mathcal{I}_2} = (M^{\mathcal{I}_1})^{\mathcal{I}_2} \subset (\overline{M})^{\mathcal{I}_2} = \emptyset$. Moreover, if $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then for any set $B \subset X$, $(B \cup A)^{\mathcal{I}_1\mathcal{I}_2} = B^{\mathcal{I}_1\mathcal{I}_2}$ and $(B \setminus A)^{\mathcal{I}_1\mathcal{I}_2} = B^{\mathcal{I}_1\mathcal{I}_2}$.

The operator
$$A^{\mathcal{I}_1 \mathcal{I}_2}$$
 is idempotent, as the next theorem shows.

Theorem 10. If $A \subset X$, then $A^{\mathcal{I}_1 \mathcal{I}_2 \mathcal{I}_1 \mathcal{I}_2} = A^{\mathcal{I}_1 \mathcal{I}_2}$.

Proof. Let $A \subset X$. First, we will show that $A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1} \subset A^{\mathcal{I}_1\mathcal{I}_2}$. Suppose that there is a point $x \in A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2}$. Then there exists V_x —an open neighbourhood of x for which $V_x \cap A^{\mathcal{I}_1\mathcal{I}_2} \notin \mathcal{I}_1$ and $V_x \cap A^{\mathcal{I}_1} \in \mathcal{I}_2$. Therefore, $(V_x \cap A^{\mathcal{I}_1})^{\mathcal{I}_2} = \emptyset$. From Lemma 5 we obtain $\overline{V_x \cap A^{\mathcal{I}_1\mathcal{I}_2}} = (V_x \cap A^{\mathcal{I}_1})^{\mathcal{I}_2} = \emptyset$, so $V_x \cap A^{\mathcal{I}_1\mathcal{I}_2} = \emptyset$ what contradicts the assumption $V_x \cap A^{\mathcal{I}_1\mathcal{I}_2} \notin \mathcal{I}_1$. Hence $A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1} \setminus A^{\mathcal{I}_1\mathcal{I}_2} = \emptyset$ and $A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1} \subset A^{\mathcal{I}_1\mathcal{I}_2}$.

From Property 4 we have $A^{\mathcal{I}_1 \mathcal{I}_2 \mathcal{I}_1 \mathcal{I}_2} \subset A^{\mathcal{I}_1 \mathcal{I}_2 \mathcal{I}_2} = A^{\mathcal{I}_1 \mathcal{I}_2}$.

Now, we will show that $A^{\mathcal{I}_1\mathcal{I}_2} \subset A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1\mathcal{I}_2}$. From Lemma 9 we have $A \setminus A^{\mathcal{I}_1\mathcal{I}_2} = N \cup M$, where $N \in \mathcal{I}_1$ and $\overline{M} \in \mathcal{I}_2$. Therefore,

$$(A \setminus A^{\mathcal{I}_1 \mathcal{I}_2})^{\mathcal{I}_1 \mathcal{I}_2} = (N \cup M)^{\mathcal{I}_1 \mathcal{I}_2} = (M^{\mathcal{I}_1})^{\mathcal{I}_2} \subset (\overline{M})^{\mathcal{I}_2} = \emptyset.$$
(3)

From Property 4 and inclusion $A^{\mathcal{I}_1\mathcal{I}_2} \setminus A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1\mathcal{I}_2} \subset (A \setminus A^{\mathcal{I}_1\mathcal{I}_2})^{\mathcal{I}_1\mathcal{I}_2} = \emptyset$ we obtain $A^{\mathcal{I}_1\mathcal{I}_2} \subset A^{\mathcal{I}_1\mathcal{I}_2\mathcal{I}_1\mathcal{I}_2}$, which completes the proof.

From Theorem 10 it follows that the set $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A) = A \cup A^{\mathcal{I}_1\mathcal{I}_2}$ is a closure of A. If $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A) = A$, then we will say that A is $\mathcal{I}_1\mathcal{I}_2$ -closed. The set is $\mathcal{I}_1\mathcal{I}_2$ --open, if its complement is $\mathcal{I}_1\mathcal{I}_2$ -closed. Moreover, we have

$$x \in \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(A \setminus \{x\}) \Longleftrightarrow x \in A^{\mathcal{I}_1 \mathcal{I}_2},$$

so $A^{\mathcal{I}_1 \mathcal{I}_2}$ is a derived set of A.

THEOREM 11. A is $\mathcal{I}_1\mathcal{I}_2$ -closed if and only if $A = F \cup N \cup M$, where F is closed in \mathcal{T} , $N \in \mathcal{I}_1$ and $\overline{M} \in \mathcal{I}_2$.

Proof. Assume that A is $\mathcal{I}_1\mathcal{I}_2$ -closed, so $A^{\mathcal{I}_1\mathcal{I}_2} \subset A$. Then

$$A = (A \setminus A^{\mathcal{I}_1}) \cup (A \cap A^{\mathcal{I}_1})$$

= $(A \setminus A^{\mathcal{I}_1}) \cup ((A \cap A^{\mathcal{I}_1}) \cap A^{\mathcal{I}_1 \mathcal{I}_2}) \cup ((A \cap A^{\mathcal{I}_1}) \setminus A^{\mathcal{I}_1 \mathcal{I}_2})$
= $(A \setminus A^{\mathcal{I}_1}) \cup (A^{\mathcal{I}_1} \cap A^{\mathcal{I}_1 \mathcal{I}_2}) \cup (A \cap (A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1 \mathcal{I}_2})).$

The sets $A^{\mathcal{I}_1}$ and $A^{\mathcal{I}_1\mathcal{I}_2}$ are closed, so does $A^{\mathcal{I}_1} \cap A^{\mathcal{I}_1\mathcal{I}_2}$. Moreover, $A \setminus A^{\mathcal{I}_1} \in \mathcal{I}_1$ and from Property 4 we have

$$A \cap \left(A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1 \mathcal{I}_2} \right) \in \mathcal{I}_2.$$

Additionally, from the proof of Lemma 9 we obtain $A \cap (A^{\mathcal{I}_1} \setminus A^{\mathcal{I}_1 \mathcal{I}_2}) \in \mathcal{I}_2$.

Suppose now that $A = F \cup N \cup M$, where F is closed in $\mathcal{T}, N \in \mathcal{I}_1$ and $\overline{M} \in \mathcal{I}_2$. Then from [1] and Property 4

$$A^{\mathcal{I}_1} = F^{\mathcal{I}_1} \cup N^{\mathcal{I}_1} \cup M^{\mathcal{I}_1} = F^{\mathcal{I}_1} \cup M^{\mathcal{I}_1} \subset F^{\mathcal{I}_1} \cup \overline{M}.$$

Hence

$$A^{\mathcal{I}_1 \mathcal{I}_2} \subset F^{\mathcal{I}_1 \mathcal{I}_2} \cup (\overline{M})^{\mathcal{I}_2} = F^{\mathcal{I}_1 \mathcal{I}_2} \subset \overline{F} = F \subset A$$

and $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A) = A \cup A^{\mathcal{I}_1\mathcal{I}_2} = A$ which completes the proof.

COROLLARY 12. A is $\mathcal{I}_1\mathcal{I}_2$ -open if and only if $A = G \setminus N \setminus M$, where G is open in \mathcal{T} , $N \in \mathcal{I}_1$ and $\overline{M} \in \mathcal{I}_2$.

The topology introduced by the closure operation $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}$ will be denoted by $\mathcal{T}_{\mathcal{I}_1\mathcal{I}_2}$. From Theorem 6 we immediately have

THEOREM 13. $\mathcal{T}_{\mathcal{I}_1} \subset \mathcal{T}_{\mathcal{I}_1 \mathcal{I}_2}$ for any ideals \mathcal{I}_1 and \mathcal{I}_2 . Moreover, if $\mathcal{I}_1 \subset \mathcal{I}_2$, then $\mathcal{T}_{\mathcal{I}_1} \subset \mathcal{T}_{\mathcal{I}_2 \mathcal{I}_1} \subset \mathcal{T}_{\mathcal{I}_2 \mathcal{I}_1} = \mathcal{T}_{\mathcal{I}_2}$.

EXAMPLE 14. For the ideals $\mathcal{I}_1 = \mathcal{C}$ and $\mathcal{I}_2 = \mathcal{N}$ (or $\mathcal{I}_2 = \mathcal{K}$) the above inclusions are proper. If $\mathcal{I}_1 = \mathcal{N}$ and $\mathcal{I}_2 = \mathcal{K}$, then $\mathcal{T}_{\mathcal{I}_2}$ and $\mathcal{T}_{\mathcal{I}_1 \mathcal{I}_2}$ are incomparable.

For disjoint sets $A \in \mathcal{N}$ and $B \in \mathcal{K}$ such that $\mathbb{R} = A \cup B$ we have $B = \mathbb{R} \setminus A \setminus \emptyset \in \mathcal{T}_{\mathcal{I}_1 \mathcal{I}_2}$ and $B \notin \mathcal{T}_{\mathcal{I}_2}$.

In the same way as in Example 7 we will construct the set B_{α} such that it will be of first category and $\overline{B_{\alpha}} = \mathbb{R}$. Let C_{α} be a Cantor set of positive measure α . For $a, b \in \mathbb{R}$, a < b, put $C_{\alpha}(a, b) = \{a + (b - a)x \colon x \in C_{\alpha}\}$. The set $C_{\alpha}(a, b)$ is perfect, nowhere dense, so $B_{\alpha} = \bigcup_{a,b \in \mathbb{Q}, a < b} C_{\alpha}(a, b)$ is of first category. Hence $\mathbb{R} \setminus B_{\alpha} \in \mathcal{T}_{\mathcal{I}_2}$. We will show that $\overline{B_{\alpha}} = \mathbb{R}$. Let $x \in \mathbb{R}$ and U_x be its neighbourhood. Then there exist numbers $a, b \in \mathbb{Q}$, a < b such that $C_{\alpha}(a, b) \subset U_x$, so $C_{\alpha}(a, b) \subset U_x \cap B_{\alpha}$. Hence $U_x \cap B_{\alpha} \neq \emptyset$ and $x \in \overline{B_{\alpha}}$. The set $\mathbb{R} \setminus B_{\alpha} = \mathbb{R} \setminus \emptyset \setminus B_{\alpha}$ does not belong to the topology $\mathcal{T}_{\mathcal{I}_1\mathcal{I}_2}$. Hence $\mathcal{T}_{\mathcal{I}_2} \setminus \mathcal{T}_{\mathcal{I}_1\mathcal{I}_2} \neq \emptyset$.

For operator $A^{\mathcal{I}_1 \mathcal{I}_2}$ we can prove a lemma similar to Lemma 5.

LEMMA 15. For any open set G and a set $A \subset X$

$$(G \cap A)^{\mathcal{I}_1 \mathcal{I}_2} \stackrel{(i)}{=} \left(G \cap A^{\mathcal{I}_1 \mathcal{I}_2} \right)^{\mathcal{I}_1 \mathcal{I}_2} \stackrel{(ii)}{=} \overline{G \cap A^{\mathcal{I}_1 \mathcal{I}_2}}.$$

Proof. First, we will show that for any open set G and a set $A \subset X$

$$G \cap A^{\mathcal{I}_1 \mathcal{I}_2} = G \cap (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}.$$
(4)

From inclusion $G \cap A \subset A$ and from Property 4 we have $(G \cap A)^{\mathcal{I}_1 \mathcal{I}_2} \subset A^{\mathcal{I}_1 \mathcal{I}_2}$. Hence $G \cap (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2} \subset G \cap A^{\mathcal{I}_1 \mathcal{I}_2}$.

We will show that if $x \notin G \cap (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}$, then $x \notin G \cap A^{\mathcal{I}_1 \mathcal{I}_2}$. Assume that $x \notin G \cap (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}$. We consider two cases. First, let $x \notin G$. Then $x \notin G \cap A^{\mathcal{I}_1 \mathcal{I}_2}$. If $x \in G$ but $x \notin G \cap (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}$, then $x \notin (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}$. Therefore, there exists its neighbourhood V_x such that $V_x \cap (G \cap A)^{\mathcal{I}_1} \in \mathcal{I}_2$. Hence $V_x \cap G \cap (G \cap A)^{\mathcal{I}_1} \in \mathcal{I}_2$. From [1, Condition 2d] for the ideal \mathcal{I}_1 , we obtain $V_x \cap G \cap (G \cap A)^{\mathcal{I}_1} = V_x \cap (G \cap A^{\mathcal{I}_1}) \in \mathcal{I}_2$. So we have an open set $V_x \cap G$, such that $x \in V_x \cap G$ and $(V_x \cap G) \cap A^{\mathcal{I}_1} \in \mathcal{I}_2$, which means $x \notin A^{\mathcal{I}_1 \mathcal{I}_2}$. Finally, we have $x \notin G \cap A^{\mathcal{I}_1 \mathcal{I}_2}$ which completes the proof of (4).

Now, we will prove (i). From (4) we have $G \cap A^{\mathcal{I}_1 \mathcal{I}_2} \subset (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}$. From Theorem 10 it follows that

$$\left(G \cap A^{\mathcal{I}_1 \mathcal{I}_2}\right)^{\mathcal{I}_1 \mathcal{I}_2} \subset \left(G \cap A\right)^{\mathcal{I}_1 \mathcal{I}_2 \mathcal{I}_1 \mathcal{I}_2} = (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}.$$

Simultaneously, from Lemma 9,

$$(G \cap A)^{\mathcal{I}_1 \mathcal{I}_2} = \left(G \cap A \setminus A^{\mathcal{I}_1 \mathcal{I}_2} \right)^{\mathcal{I}_1 \mathcal{I}_2} \cup \left(G \cap A \cap A^{\mathcal{I}_1 \mathcal{I}_2} \right)^{\mathcal{I}_1 \mathcal{I}_2} \subset \left(G \cap A \cap A^{\mathcal{I}_1 \mathcal{I}_2} \right)^{\mathcal{I}_1 \mathcal{I}_2} \subset \left(G \cap A^{\mathcal{I}_1 \mathcal{I}_2} \right)^{\mathcal{I}_1 \mathcal{I}_2}$$

which finishes the proof of (i).

From Property 4 and (i) we obtain

$$\overline{G \cap A^{\mathcal{I}_1 \mathcal{I}_2}} \supset \left(G \cap A^{\mathcal{I}_1 \mathcal{I}_2}\right)^{\mathcal{I}_1 \mathcal{I}_2} = (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}.$$

On the other hand, from (4) we have

$$\overline{G \cap A^{\mathcal{I}_1 \mathcal{I}_2}} \subset \overline{(G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}} = (G \cap A)^{\mathcal{I}_1 \mathcal{I}_2}$$

which completes the proof of (ii).

Let us notice that if G is open and $G \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then $G \subset X \setminus X^{\mathcal{I}_1 \mathcal{I}_2}$. Indeed, by putting A = X in Lemma 15 we obtain

$$(G \cap X)^{\mathcal{I}_1 \mathcal{I}_2} = G^{\mathcal{I}_1 \mathcal{I}_2} = \overline{G \cap X^{\mathcal{I}_1 \mathcal{I}_2}}$$

 $G \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, hence $G^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset$. From this, $G \cap X^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset$ and $G \subset X \setminus X^{\mathcal{I}_1 \mathcal{I}_2}$ (see also Example 3).

Recall that in the paper we assume that $\mathcal{I}_1 \neq \mathcal{I}_2$ and the ideals are proper. Without this assumption the next property is not true. **PROPERTY 16.** If G is open in \mathcal{T} , then $\overline{G} = \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(G)$.

Proof. We will show that for any open set G we have $\overline{G} = \operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(G)$. From the definition of the closure operation we have $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(G) = G \cup G^{\mathcal{I}_1\mathcal{I}_2} \subset G \cup \overline{G} = \overline{G}$.

Let $x \in \overline{G}$. We will show that $x \in \operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(G)$. Let $U_x \in \mathcal{T}_{\mathcal{I}_1\mathcal{I}_2}$ be a neighbourhood of x. Then $U_x = U_0 \setminus N \setminus M$, where $U_0 \in \mathcal{T}$, $N \in \mathcal{I}_1$, $\overline{M} \in \mathcal{I}_2$. Consider $U_x \cap G = (U_0 \setminus N \setminus M) \cap G = (U_0 \cap G) \setminus N \setminus M$. The set $U_0 \cap G$ is open and nonempty, so $(U_0 \cap G) \setminus N \setminus M \neq \emptyset$, hence $x \in \operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(G)$.

PROPOSITION 17. If G is $\mathcal{I}_1\mathcal{I}_2$ -open and $A \subset X$, then

$$\overline{G \cap A^{\mathcal{I}_1 \mathcal{I}_2}} = \mathrm{Cl}_{\mathcal{I}_1 \mathcal{I}_2} \big(G \cap A^{\mathcal{I}_1 \mathcal{I}_2} \big).$$

Proof. Assume that $G = U \setminus N \setminus M$, where U is open, $N \in \mathcal{I}_1, \overline{M} \in \mathcal{I}_2$. Then from Lemma 15 (*ii*)

$$\begin{aligned} \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(G\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\right) \\ &= \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(\left(U\setminus N\setminus M\right)\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\right) \\ &= \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\setminus N\setminus M\right) \\ &= \left(U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\setminus N\setminus M\right)\cup \left(U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\setminus N\setminus M\right)^{\mathcal{I}_{1}\mathcal{I}_{2}} \\ &= \left(U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\setminus N\setminus M\right)\cup \left(U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\right)^{\mathcal{I}_{1}\mathcal{I}_{2}} \\ &\stackrel{(ii)}{=}\left(U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}\setminus N\setminus M\right)\cup \overline{U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}}\supset \overline{U\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}}\supset \overline{G\cap A^{\mathcal{I}_{1}\mathcal{I}_{2}}}.\end{aligned}$$

On the other hand, we know that $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(G \cap A^{\mathcal{I}_1\mathcal{I}_2}) \subset \overline{G \cap A^{\mathcal{I}_1\mathcal{I}_2}}$ which completes the proof. \Box

If $X^{\mathcal{I}_1\mathcal{I}_2} = X$ and G is $\mathcal{I}_1\mathcal{I}_2$ -open, then $\overline{G} = \operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(G)$.

We will say that a set is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense ($\mathcal{I}_1\mathcal{I}_2$ -scattered...), if it is nowhere dense (scattered...) in topology $\mathcal{T}_{\mathcal{I}_1\mathcal{I}_2}$.

Let us notice that any nowhere dense set is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense. If A is nowhere dense, then $\overline{X \setminus \overline{A}} = X$. From Property 16 we obtain

$$X \setminus \overline{A} = \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(X \setminus \overline{A})$$

and

$$X = \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(X \setminus \overline{A}) \subset \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(X \setminus \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(A)) \subset X,$$

so A is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense.

PROPERTY 18. If A is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense set, then $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$.

Proof. Let A be $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense. Then

 $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(X \setminus \operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A)) = X.$

The set $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A)$ is $\mathcal{I}_1\mathcal{I}_2$ -closed, so it can be presented in the form $F \cup N \cup M$, where F is closed in \mathcal{T} , $N \in \mathcal{I}_1$ and $\overline{M} \in \mathcal{I}_2$. Let G be an open set such that $F = X \setminus G$. Then $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A) = (X \setminus G) \cup N \cup M$ and

$$X = \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(X \setminus \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(A))$$

= $\operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(X \setminus ((X \setminus G) \cup N \cup M))$
= $\operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(X \setminus (X \setminus G) \setminus N \setminus M)$
= $\operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(G \setminus N \setminus M)$
 $\subset \overline{G \setminus N \setminus M} \subset \overline{G} \subset X.$

The set G is open and dense, so $X \setminus G$ is nowhere dense in X, as \mathcal{I}_2 contains all nowhere dense sets $\overline{X \setminus G} \in \mathcal{I}_2$. Moreover,

 $A = A \cap \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(A) = A \cap \left((X \setminus G) \cup N \cup M \right) = \left(A \cap (X \setminus G) \right) \cup (A \cap N) \cup (A \cap M)$ what finishes the proof. \Box

Let us notice that if $X^{\mathcal{I}_1\mathcal{I}_2} = X$ and $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then A is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense set. Indeed, if $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then $A^{\mathcal{I}_1\mathcal{I}_2} = \emptyset$ and $\operatorname{Cl}_{\mathcal{I}_1\mathcal{I}_2}(A) = A$. Therefore,

$$Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(X \setminus Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A)) = Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(X \setminus A)$$
$$= (X \setminus A) \cup (X \setminus A)^{\mathcal{I}_{1}\mathcal{I}_{2}}$$
$$\supset (X \setminus A) \cup X^{\mathcal{I}_{1}\mathcal{I}_{2}} = X$$

and we obtain the following corollary.

COROLLARY 19. Let $X^{\mathcal{I}_1\mathcal{I}_2} = X$. Then A is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense set if and only if $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$.

Remind that a set is called scattered if it does not contain any dense in itself subset.

PROPERTY 20. A is $\mathcal{I}_1\mathcal{I}_2$ -scattered if and only if $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$.

Proof. First, we will show that for any A the set $A \cap A^{\mathcal{I}_1 \mathcal{I}_2}$ is $\mathcal{I}_1 \mathcal{I}_2$ -dense in itself. From Lemma 9 and (2) we have $(A \setminus A^{\mathcal{I}_1 \mathcal{I}_2})^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset$. So $A^{\mathcal{I}_1 \mathcal{I}_2} = (A \cap A^{\mathcal{I}_1 \mathcal{I}_2})^{\mathcal{I}_1 \mathcal{I}_2}$ and $A \cap A^{\mathcal{I}_1 \mathcal{I}_2} \subset (A \cap A^{\mathcal{I}_1 \mathcal{I}_2})^{\mathcal{I}_1 \mathcal{I}_2}$, what means $A \cap A^{\mathcal{I}_1 \mathcal{I}_2}$ is $\mathcal{I}_1 \mathcal{I}_2$ -dense in itself. Let A be $\mathcal{I}_1 \mathcal{I}_2$ -scattered, so it does not contain any $\mathcal{I}_1 \mathcal{I}_2$ -dense in itself subset. Hence $A \cap A^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset$ and from Lemma 9 we have $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$.

Assume that $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$. Let $B \subset A$, $B \neq \emptyset$. Then $B \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$ and from (2) we obtain $B \cap B^{\mathcal{I}_1 \mathcal{I}_2} = \emptyset$. Therefore, A does not contain any nonempty dense in itself subset and A is $\mathcal{I}_1 \mathcal{I}_2$ -scattered.

ON HASHIMOTO TYPE TOPOLOGIES

PROPERTY 21. If $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then $A = G \cup N$, where G is $\mathcal{I}_1\mathcal{I}_2$ -open included in $X \setminus X^{\mathcal{I}_1\mathcal{I}_2}$ and N is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense included in $X^{\mathcal{I}_1\mathcal{I}_2}$.

Proof. Let $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then A is $\mathcal{I}_1 \mathcal{I}_2$ -scattered. From [3, p. 79] we know that each scattered set can be decomposed into an open set and nowhere dense set, hence $A = G \cup N$, G is $\mathcal{I}_1 \mathcal{I}_2$ -open (but also from $\mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$ as a subset of A), N is $\mathcal{I}_1 \mathcal{I}_2$ -nowhere dense. As G is $\mathcal{I}_1 \mathcal{I}_2$ -open, it is a subset of certain open set G_0 . Then $G_0 \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$ and $G_0 \subset X \setminus X^{\mathcal{I}_1 \mathcal{I}_2}$. Hence $G \subset X \setminus X^{\mathcal{I}_1 \mathcal{I}_2}$.

We will show that $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense N is included in $X^{\mathcal{I}_1\mathcal{I}_2}$. Consider the set $N_1 = N \cap (X \setminus X^{\mathcal{I}_1\mathcal{I}_2})$. Suppose that the set N_1 is nonempty. Then $N_1 \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$ and $N_1 \subset X \setminus X^{\mathcal{I}_1\mathcal{I}_2}$. Hence

$$(X \setminus N_1)^{\mathcal{I}_1 \mathcal{I}_2} \cap N_1 = X^{\mathcal{I}_1 \mathcal{I}_2} \cap N_1 = \emptyset.$$

 N_1 is $\mathcal{I}_1\mathcal{I}_2$ -nowhere dense, so

$$N_{1} \subset X = \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(X \setminus \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(N_{1}))$$

= $(X \setminus \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(N_{1})) \cup (X \setminus \operatorname{Cl}_{\mathcal{I}_{1}\mathcal{I}_{2}}(N_{1}))^{\mathcal{I}_{1}\mathcal{I}_{2}}$
= $(X \setminus (N_{1} \cup N_{1}^{\mathcal{I}_{1}\mathcal{I}_{2}})) \cup (X \setminus (N_{1} \cup N_{1}^{\mathcal{I}_{1}\mathcal{I}_{2}}))^{\mathcal{I}_{1}\mathcal{I}_{2}}$
= $(X \setminus N_{1}) \cup (X \setminus N_{1})^{\mathcal{I}_{1}\mathcal{I}_{2}}.$

Thus $N_1 \subset (X \setminus N_1)^{\mathcal{I}_1 \mathcal{I}_2}$ which is a contradiction to the definition of N_1 . Hence $N_1 = \emptyset$ and $N \subset X^{\mathcal{I}_1 \mathcal{I}_2}$.

PROPERTY 22. If $X = X^{\mathcal{I}_1 \mathcal{I}_2}$ and $A \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2}$, then $X \setminus A$ is dense in X.

Proof. From the previous property we have that $A = G \cup N$, where $G \subset X \setminus X^{\mathcal{I}_1 \mathcal{I}_2}$ is $\mathcal{I}_1 \mathcal{I}_2$ -open and $N \subset X^{\mathcal{I}_1 \mathcal{I}_2}$ is $\mathcal{I}_1 \mathcal{I}_2$ -nowhere dense. Hence $G = \emptyset$ and $X \setminus A = X \setminus N$. Moreover,

$$X = \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2} \left(X \setminus \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(N) \right) \subset \overline{X \setminus \operatorname{Cl}_{\mathcal{I}_1 \mathcal{I}_2}(N)} \subset \overline{X \setminus N}$$

ns that $X = \overline{X \setminus A}$.

The next property contains the result of Lemma 9 and shows us how much the set A differs from its derive set in topology $\mathcal{T}_{\mathcal{I}_1\mathcal{I}_2}$.

PROPERTY 23. For any $A \subset X$

which mea

(1) $A \setminus A^{\mathcal{I}_1 \mathcal{I}_2} \in \mathcal{I}_1 \oplus \overline{\mathcal{I}_2},$ (2) $A^{\mathcal{I}_1 \mathcal{I}_2} \setminus A$ is the $\mathcal{I}_1 \mathcal{I}_2$ -boundary set.

Proof. Consider the set

$$Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(X \setminus \left(A^{\mathcal{I}_{1}\mathcal{I}_{2}} \setminus A\right)\right)$$

= $Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(X \setminus (Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A) \setminus A)\right)$
= $Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(\left(X \setminus Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A)\right) \cup (X \cap A)\right)$
= $Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(\left(X \setminus Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A)\right) \cup A\right)$
= $Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A) \cup Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}\left(X \setminus Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A)\right)$
 $\supset Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A) \cup \left(X \setminus Cl_{\mathcal{I}_{1}\mathcal{I}_{2}}(A)\right) = X.$

Hence $A^{\mathcal{I}_1 \mathcal{I}_2} \setminus A$ is a boundary set in topology $\mathcal{T}_{\mathcal{I}_1 \mathcal{I}_2}$.

REFERENCES

- [1] HASHIMOTO, H.: On the *topology and its application, Fund. Math. XCI (1976), 5–10.
- JANKOVIĆ, D.—HAMLETT, T. R.: New topologies from old via ideals, Amer. Math. Monthly 94 (1990), 295–310.
- [3] KURATOWSKI, K.: Topology. Vol. 1. PWN, Warsaw, 1966.
- [4] MARTIN, N. F. G.: Generalized condensation points, Duke Math. J. 28 (1961), 507–514.

Received April 4, 2012

Center of Mathematics and Physics Lódź University of Technology al. Politechniki 11 PL-90-924 Łódź POLAND E-mail: terepeta@p.lodz.pl