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MAXIMUMS OF INTERNALLY QUASI-CONTINUOUS

FUNCTIONS

Mariola Marciniak — Paulina Szczuka

ABSTRACT. In this paper, we characterize maximums of internally quasi-conti-
nuous functions, Darboux internally quasi-continuous functions, internally strong

Świa̧tkowski functions, and lattices generated by these families of functions. More-
over, we examine maximal classes with respect to maximums for internally quasi-
-continuous functions and Darboux internally quasi-continuous functions.

1. Preliminaries

We mostly use the standard terminology and notation. The letters R and N

denote the real line and the set of positive integers, respectively. The word func-
tion denotes a mapping from R into R unless otherwise explicitly stated. Func-
tions will be identified with their graphs. The symbols I(a, b) and I[a, b] denote
the open and the closed interval with endpoints a and b, respectively. For each
A ⊂ R, we use the symbol intA to denote its interior.

We say that f is a Darboux function (f ∈ D), if it maps connected sets
onto connected sets. We say that f is quasi-continuous in the sense of K e m -
p i s t y [5] (f ∈ Q), if, for all x ∈ R and open sets U � x and V � f(x), the
set int

(
U ∩ f−1(V )

)
is nonempty. The symbols C(f) and Q(f) will stand for

the set of points of continuity of f and the set of points of quasi-continuity
of f, respectively. We say that f is internally quasi-continuous [8] (f ∈ Qi),
if it is quasi-continuous and its set of points of discontinuity is nowhere dense;
equivalently, f is internally quasi-continuous if f� intC(f) is dense in f . We
say that x0 is a point of internal quasi-continuity of f if and only if there is
a sequence (xn) ⊂ intC(f) such that xn → x0 and f(xn) → f(x0) (see [8]).
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Denote by Qi(f) the set of all points of internally quasi-continuity of f. We say

that f is a strong Świa̧tkowski function [6] (f ∈ Śs), if, whenever a, b ∈ R, a < b,
and y ∈ I

(
f(a), f(b)

)
, there is an x0 ∈ (a, b) ∩ C(f) such that f(x0) = y. The

symbol U(f) denotes
⋃{

(a, b) : f�(a, b) ∈ Śs

}
. We say that f is an internally

strong Świa̧tkowski function [8] (f ∈ Śsi), if, whenever a, b ∈ R, a < b, and
y ∈ I

(
f(a), f(b)

)
, there is an x0 ∈ (a, b) ∩ intC(f) such that f(x0) = y. We say

that f ∈ Const if and only if f [R] is a singleton.

If A ⊂ R and x is a limit point of A, then let

lim(f, A, x) = lim
t→x,
t∈A

f(t).

Similarly, we define lim(f, A, x), lim(f, A, x+), etc. Moreover, we write lim(f, x)

instead of lim(f,R, x), etc. If L and F are families of real functions, then we will
write LF instead of L∩F. We say that L is a lattice, if max{f, g},min{f, g} ∈ L

for all functions f, g ∈ L. Moreover, we define the maximal class with respect
to maximums for L as follows

Mmax(L) =

{
f : ∀

g∈L
max{f, g} ∈ L

}
.

We can easily see that the following inclusions are satisfied:

Śsi ⊂ Śs ⊂ DQ ⊂ D, DQ ⊂ Q, and Śsi ⊂ DQi ⊂ Qi ⊂ Q.

2. Introduction

In 1992, T. N a t k a n i e c proved the following result [9, Proposition 3].

������� 2.1� For every function f the following conditions are equivalent :

a) there are functions g1, g2 ∈ Q with f = max{g1, g2},
b) the set R\Q(f) is nowhere dense and f(x) ≤ lim

(
f,C(f), x

)
for each x ∈ R.

(In 1996 this theorem was generalized by J. B o r s ı́ k for functions defined on
regular second countable topological spaces [1].) He also remarked that if a func-
tion f can be written as the maximum of Darboux quasi-continuous functions,
then

f(x) ≤ min
{

lim
(
f,C(f), x−), lim(

f,C(f), x+
)}

for each x ∈ R, (1)

and asked whether the following conjecture is true [9, Remark 3].

��	
����� 2.2� If f is a function such that R \ Q(f) is nowhere dense and
condition (1) holds, then there are Darboux quasi-continuous functions g1 and g2
with f = max{g1, g2}.
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In 1999, A. M a l i s z e w s k i showed that this conjecture is false and proved
some facts about the maximums of Darboux quasi-continuous functions [7].
In 2002, P. S z c z u k a proved the following theorem [11, Theorem 4.1].

������� 2.3� For every function f the following conditions are equivalent :

a) there are functions g1, g2 ∈ Śs with f = max{g1, g2},
b) the set U(f) is dense in R and

f(x) ≤ min
{

lim
(
f,C(f), x+

)
, lim

(
f,C(f), x−)} for each x ∈ R.

In this paper, we examine three new interesting subfamilies of quasi-conti-
nuous functions, namely families of internally quasi-continuous functions, Dar-
boux quasi-continuous functions, and internally strong Świa̧tkowski functions.
We show some theorems quite analogous to Theorems 2.1 and 2.3. Note that
although the problem of the characterization of maximums of Darboux quasi-
continuous functions is still open, when replacing ’quasi-continuity’ with ’inter-
nally quasi-continuity’, we obtain a fine characterization (Theorem 3.2). More-

over, we find the smallest lattice containing Qi, DQi, and Śsi (Theorem 3.3 and
Corollary 3.4). The obtained characterizations are similar to those ones of lat-

tices generated by families of quasi-continuous functions and strong Świa̧tkowski
functions (See [3, Theorem 1] and [11, Teorem 4.2].) Finally, we examine maxi-
mal classes with respect to maximums for families Qi and DQi.

3. Main results

������� 3.1� For every function f , the following conditions are equivalent :

a) there exist functions g1, g2 ∈ Qi with f = max{g1, g2},
b) the set intC(f) is dense in R and f(x) ≤ lim

(
f,C(f), x

)
for each x ∈ R.

P r o o f. a)⇒b). Assume that there are internally quasi-continuous functions g1
and g2 with f = max{g1, g2}. Then clearly, intC(g1)∩ intC(g2) ⊂ intC(f). Since
the sets intC(g1) and intC(g2) are dense in R, the set intC(f) is dense in R, too.
Recall that each internally quasi-continuous function is quasi-continuous. Hence
by Theorem 2.1, f(x) ≤ lim

(
f,C(f), x

)
for each x ∈ R.

b)⇒ a). If the function f is continuous we can set g1 = g2 = f . Clearly,
each continuous function is internally quasi-continuous. In the opposite case,
write intC(f) as the union of a family I consisting of nonoverlapping compact
intervals, such that for each x ∈ intC(f), there are I1, I2 ∈ I with x ∈ int(I1∪I2).
Fix an I ∈ I and let I = [x1, x2]. Define

rI = dist
(
I,R \ intC(f)

)
and MI = sup

{
f(x) : x ∈ I

}
.
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Observe that rI > 0. Since f is continuous on I, there is a point c ∈ int I such
that f(c) > MI − rI . Choose elements x1 < c1 < d1 < c < d2 < c2 < x2. For
i ∈ {1, 2}, define the function ϕI,i : I → R as follows

ϕI,i(x) =

⎧⎪⎨
⎪⎩

0 if x = xi or x ∈ I[di, x3−i],

− 1
rI

− |MI | if x = ci,

linear in intervals I[xi, ci] and I[ci, di].

Now, for i ∈ {1, 2}, define the function gi by formula

gi(x) =

{
f(x) if x /∈ intC(f),

f(x) + ϕI,i(x) if x ∈ I, I ∈ I.

Then clearly, f = max{g1, g2} and intC(f) ⊂ intC(g1) ∩ intC(g2). Moreover,[
− 1

rI
,MI − rI

]
⊂ gi[I] for each I ∈ I and i ∈ {1, 2}. (2)

Fix an i ∈ {1, 2}. We will show that gi is internally quasi-continuous.

Let x0 ∈ R and δ ∈ (0, 1). It is sufficient to find an element

t ∈ (x0 − δ, x0 + δ) ∩ intC(gi)
such that

gi(t) ∈
(
gi(x0) − δ, gi(x0) + δ

)
.

We can assume that x0 /∈ intC(gi). Therefore, x0 /∈ intC(f). Define

δ′ = min

{
δ

4
,

1

|f(x0)| + 1

}
.

It is easy to see that

lim
(
f,C(f), x

)
= lim

(
f, intC(f), x

)
.

Hence, using assumptions, we obtain that

gi(x0) = f(x0) ≤ lim
(
f, intC(f), x

)
.

So, there is an I ∈ I such that I ⊂ (x0 − δ′, x0 + δ′) and MI > f(x0) − δ
4 .

Since rI < δ′, we have

MI − rI > f(x0) − δ

2
and − 1

rI
< −|f(x0)| − 1 < f(x0) − δ

2
.

Therefore, by (2), f(x0) − δ
2 ∈ gi[I]. Hence, there is a t ∈ I ⊂ (x0 − δ, x0 + δ)

such that

gi(t) = f(x0) − δ

2
∈ (

f(x0) − δ, f(x0) + δ
)

=
(
gi(x0) − δ, gi(x0) + δ

)
.

Finally, since I ⊂ intC(f) ⊂ intC(gi), we have t ∈ intC(gi). It follows that gi is
internally quasi-continuous. �
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������� 3.2� For every function f , the following conditions are equivalent :

a) there are functions g1, g2 ∈ Śsi with f = max{g1, g2},
b) there are functions g1, g2 ∈ DQi with f = max{g1, g2},
c) the set intC(f) is dense in R and

f(x) ≤ min
{

lim
(
f,C(f), x+

)
, lim

(
f,C(f), x−)} for each x ∈ R.

P r o o f. The implication a)⇒ b) is evident.

b)⇒ c). Assume that there are Darboux internally quasi-continuous functions
g1 and g2 with f = max{g1, g2}. It is easy to see that the set intC(f) is dense
in R. Since each internally quasi-continuous function is quasi-continuous, by (1),
f(x) ≤ min

{
lim(f,C(f), x+), lim(f,C(f), x−)

}
for each x ∈ R.

c)⇒ a). If the function f is continuous we can set g1 = g2 = f . Clearly,

each continuous function is internally strong Świa̧tkowski. In the opposite case
write intC(f) as the union of a family I consisting of nonoverlapping compact
intervals, such that for each x ∈ intC(f), there are I1, I2 ∈ I with x ∈ int(I1∪I2).

Let the functions g1 and g2 be constructed as in the proof of Theorem 3.1.
Then, f = max{g1, g2}, intC(f) ⊂ intC(g1) ∩ intC(g2), and condition (2) holds.

Fix an i ∈ {1, 2}. We will show that gi is internally strong Świa̧tkowski.

Let α < β and y ∈ I
(
gi(α), gi(β)

)
. We can assume that gi(α) < gi(β). (The

case gi(α) > gi(β) is analogous.) If [α, β] ⊂ intC(f), then [α, β] ⊂ intC(gi),
whence there is an x0 ∈ (α, β) ∩ intC(gi) such that gi(x0) = y. So, assume that
[α, β] \ intC(f) �= ∅. We consider two cases.

Case 1. β /∈ intC(f).

By assumptions,

y < gi(β) = f(β) ≤ lim
(
f,C(f), β−) = lim

(
f, intC(f), β−). (3)

Define δ = lim(f,C(f),β−)−y
2 > 0 and let δ′ = min

{
β − α, δ, 1

|y|+1

}
. By (3), there

is an I ∈ I such that I ⊂ (β − δ′, β) and MI > y + δ. Since rI < δ′, we have

MI − rI > y and − 1
rI

< −|y| − 1 < y.

Therefore, by (2), y ∈ gi[I]. Hence there is an x0 ∈ I ⊂ (α, β) with gi(x0) = y.
Moreover, I ⊂ intC(f) ⊂ intC(gi) implies x0 ∈ intC(gi).

Case 2. β ∈ intC(f).

Put γ = max
{

[α, β] \ intC(f)
}

. Then γ < β and γ /∈ intC(f). Observe that,

if rI = dist I,R \ intC(f) → 0+, then − 1
rI

→ −∞. So, there is an η ∈ (γ, β)

such that gi(η) < y and [η, β] ⊂ intC(f) ⊂ intC(gi). Thus, gi(x0) = y for some
x0 ∈ (η, β) ∩ intC(gi) ⊂ (α, β) ∩ intC(gi).

It follows that gi ∈ Śsi, which completes the proof. �
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������� 3.3� The smallest lattice containing all internally strong Świa̧tkowski
functions is the family L consisting of all functions f such that the set intC(f)
is dense in R.

P r o o f. Let g1, g2 ∈ L. Then the sets intC(g1) and intC(g2) are dense in R.
Since intC(g1) ∩ intC(g2) ⊂ intC

(
max{g1, g2}

)
, the set intC

(
max{g1, g2}

)
is

dense in R, too. It proves that max{g1, g2} ∈ L. Moreover,

min{g1, g2} = −max{−g1,−g2} ∈ L.

So, L is a lattice. Since L contains Śsi, it contains the smallest lattice containing
Śsi as well.

Now, we will show the opposite inclusion. Let h ∈ L. If the function h is
continuous, then h belongs to each lattice containing Śsi. In the opposite case,
define f = −h. Then clearly the set intC(f) is dense in R. Write intC(f) as the
union of a family I consisting of nonoverlapping compact intervals, such that
for each x ∈ intC(f), there are I1, I2 ∈ I with x ∈ int(I1 ∪ I2).

Let the functions g1 and g2 be constructed as in the proof of Theorem 3.1.
Then, f = max{g1, g2}, intC(f) ⊂ intC(g1) ∩ intC(g2), and condition (2) holds.
Observe that, if rI = dist

(
I,R\intC(f)

) → 0, then − 1
rI

→ −∞. So, for i ∈ {1, 2}
and each x /∈ intC(f),

lim
(
gi,C(gi), x

+
)

= lim
(
gi, intC(gi), x

+
)

= −∞
and

lim
(
gi,C(gi), x

−) = lim
(
gi, intC(gi), x

−) = −∞.

Since the functions −g1 and −g2 fulfill condition c) of Theorem 3.2, there are

functions g11, g12, g21, g22 ∈ Śsi such that −g1 = max{g11, g12} and −g2 =
max{g21, g22}. Hence,

h = −f = min{−g1,−g2} = min
{

max{g11, g12},max{g21, g22}
}
.

Consequently the function h belongs to each lattice containing Śsi. This com-
pletes the proof. �

Note that Śsi ⊂ DQi ⊂ Qi ⊂ L. So, using Theorem 3.3, we obtain the
following corollary.

��������� 3.4� The smallest lattice containing all internally quasi-continuous
functions and all Darboux internally quasi-continuous functions is the family L

consisting of all functions f such that the set intC(f) is dense in R.

By Theorems 3.1 and 3.2, maximal classes with respect to maximums for
families Qi, DQi, and Śsi are not closed with respect to maximums. It was already
shown that Mmax(D) = Dusc [2], Mmax(Q) = C [4], Mmax(DQ) = DQusc [10],

Mmax(Śs) = Const [12], and Mmax(Śsi) = Const [8].
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Now, we will examine the maximal classes with respect to maximums for
families Qi and DQi. We start with the following obvious assertion.

����������	 3.5� If f is continuous and g is internally quasi-continuous, then
max{f, g} is internally quasi-continuous.

Before stating the next result, we have to prove a simple technical lemma.

����� 3.6� Let f be a function, x0 ∈ Qi(f), and assume that the set U is dense
in R. There is a sequence (xn) ⊂ U such that xn → x0 and f(xn) → f(x0).

P r o o f. Since x0 ∈ Qi(f), there is a sequence (tn) ⊂ intC(f) with tn → x0 and
f(tn) → f(x0). Hence, for each n ∈ N, there exists an open interval In such that
|In| < 1

n , tn ∈ In ⊂ intC(f), and f(In) ⊂ (
f(x0) − 1

n , f(x0) + 1
n

)
. Since the set

U is dense in R, for each n ∈ N, we can choose an xn ∈ U ∩ In. Clearly, the
sequence (xn) fulfills all our requirements. �
����������	 3.7� If f is upper semicontinuous internally quasi-continuous
and g is Darboux internally quasi-continuous, then max{f, g} is internally quasi-
-continuous.

P r o o f. Assume that f is upper semicontinuous internally quasi-continuous, g is
Darboux internally quasi-continuous, and h = max{f, g}. It is easy to see that
intC(f) ∩ intC(g) ⊂ intC(h) and intC(h) is dense in R. We will show that h is
internally quasi-continuous.

Fix an x0 ∈ R. Observe that x0 ∈ Qi(f) ∩ Qi(g). If lim(g, x) ≥ h(x0), then,
since g ∈ D and g(x0) ≤ h(x0), there exists a sequence (tn) such that tn → x0

and g(tn) → h(x0). Observe that tn ∈ Qi(g) for each n ∈ N. So, by Lemma 3.6,
for each n ∈ N, there is a xn ∈ intC(h) ∩ (

tn − 1
n , tn + 1

n

)
such that

g(xn) ∈
(
g(tn) − 1

n
, g(tn) +

1

n

)
.

Hence, xn → x0 and g(xn) → h(x0). Since the function f is upper semicontinu-
ous and h = max{f, g}, we have h(xn) → h(x0).

If lim(g, x) < h(x0), then h(x0) = f(x0). (Recall that g ∈ D.) Using Lem-
ma 3.6, we can choose a sequence (xn) ⊂ intC(h) such that xn → x0 and
f(xn) → f(x0) = h(x0). So, clearly h(xn) → h(x0). Consequently, x0 ∈ Qi(h),
which completes the proof. �
������� 3.8� Mmax(Qi) = C.

P r o o f. The inclusion C ⊂ Mmax(Qi) follows by Proposition 3.5. In [4, The-
orem 2], Z. G r a n d e and L. S o �l t y s i k, for a fixed discontinuous function,
constructed quasi-continuous functions such that their maximum is not quasi-
-continuous. In fact, such the functions are also internally quasi-continuous. So,
since Qi ⊂ Q, we clearly have Mmax(Qi) ⊂ C. �
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������� 3.9� Mmax(DQi) = DQiusc.

P r o o f. First,we will show that DQiusc⊂Mmax(DQi). Assume that f ∈DQiusc
and g ∈ DQi. By [2, Theorem 1], max{f, g} ∈ D and by Proposition 3.7,
max{f, g}∈Qi. So, f ∈Mmax(DQi).

The opposite inclusion follows by [10, Lemma 7]. �
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